
Supplement to ‘Robust Data-Driven Dynamic
Programming’

Abstract

This supplement contains proofs and technical background material omitted from
the main text.

A Proofs

The following lemma constitutes a key ingredient for the proof of Theorem 4.1.

Lemma A.1 Select q ∈ ∆ and v ∈ RN , and define ∆(q) as in (5). Then, the worst-case expectation
maxp∈∆(q) v

ᵀp can be computed by solving the following tractable second-order cone program.

min λγ − µ− 2qᵀy + 2λqᵀ1

s. t. µ ∈ R, λ ∈ R+, z,y ∈ RN

vi ≤ zi, zi + µ ≤ λ,
√

4y2
i + (zi + µ)2 ≤ 2λ− zi − µ ∀i

(A.1)

Proof: Using the definition of ∆(q) in (5), we can express the worst-case expectation problem as

max
p∈RN

+

vᵀp

s. t. 1ᵀp = 1,

N∑
i=1

(pi − qi)2

pi
≤ γ .

(A.2)

The corresponding Lagrangian is given by

L(p, λ, µ) =λγ − µ+

N∑
i=1

(vi + µ)pi − λ
(pi − qi)2

pi
.

Next, we can use the Lagrangian to dualize (A.2),

max
p∈∆(q)

vᵀp = max
p∈RN

+

min
µ∈R,λ∈R+

L(p, λ, µ) = min
µ∈R,λ∈R+

max
p∈RN

+

L(p, λ, µ),

where the second equality follows from strong duality, which holds as q constitutes a Slater point in
the relative interior of the primal problem’s feasible set. After some elementary manipulations we
find that the optimal value of (A.2) is expressible as

min
µ∈R,λ∈R+

λγ − µ+

N∑
i=1

max
pi∈R+

(
(vi + µ)pi − λ

(pi − qi)2

pi

)
. (A.3)

Consider now the ith inner subproblem in (A.3). If qi = 0, then the subproblem reduces to

max
pi∈R+

(vi + µ− λ)pi =

{
0 if λ− vi − µ ≥ 0,
∞ otherwise.
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If qi > 0 and λ − vi − µ ≥ 0, then the subproblem has the analytical solution p∗i =

qi
√
λ/(λ− vi − µ) with corresponding optimal value 2λqi − 2qi

√
λ(λ− vi − µ). On the other

hand, if qi > 0 and λ− vi−µ < 0, the problem is unbounded. Substituting the explicit solutions of
all subproblems into (A.3) shows that the optimal value of (A.2) is given by

min
µ∈R,λ∈R+

λγ − µ+ 2λqᵀ1− 2

N∑
i=1

qi
√
λ(λ− vi − µ)

s. t. λ− vi − µ ≥ 0 ∀i .

(A.4)

It is now easy to see that problem (A.4) is equivalent to (A.1), and thus the claim follows.

Proof of Theorem 4.1: The claim is an immediate consequence of Lemma A.1. Substituting (A.1)
into the min-max problem (6) yields the desired result.

Proof of Corollary 4.1: The claim follows from [1, Theorem 1], which asserts that the partial min-
imum (taken only with respect of a subset of all variables) of a convex function is convex.

B Specifics of the RDDP algorithm

This section addresses implementational details of the RDDP algorithm. In Section B.1 we outline
a procedure for constructing sample trajectories of the endogenous state, and in Section B.2 we
describe the selection of the algorithm’s design parameters.

B.1 Generating sample trajectories

The sample trajectories {skt }Tt=1, k = 1, . . . ,K, which are needed as inputs for Algorithm 1, can
be obtained by simulating a given policy along randomly selected exogenous state trajectories. Best
results are achieved if the sample-generating policy is near-optimal. If no near-optimal policy is
known, an initial naive policy can be improved sequentially in a greedy fashion [2]. For constrained
linear-quadratic regulator (LQR) problems, we use the exact optimal policy of the corresponding
unconstrained LQR problem as the initial policy. In all other cases, we start with a naive model
predictive control policy. The underlying exogenous state trajectories (along which the endogenous
state is simulated) are obtained from the historical trajectories {ξit}Tt=1, i = 1, . . . , N , by allowing
random inter-trajectory crossovers according to the conditional probabilities (3).

If the endogenous state has low dimension (e.g., d1 < 4), the evaluation points {skt }Tt=1, k =
1, . . . ,K, can be sampled uniformly from the set of all feasible endogenous states; see e.g. [3].
Similarly, if the control objective is to track a prescribed target, the evaluation points can be obtained
by sampling states in the target’s vicinity; see [2, Section 7].

B.2 Parameter selection

The RDDP algorithm is parameterized by the level of robustness γ, the bandwidth matrix H and the
number of sample trajectories K. We choose γ via cross-validation from within the set {0.1, 1, 10}.
Note that γ should decrease as the number of observation histories N grows. The matrix H could
also be obtained via cross-validation. However, we set H = diag(h2

1, . . . , h
2
d2

), where

hj = σ̂j

(
4

N(d2 + 2)

) 1
d2+4

∀j = 1, . . . , d2 ,

and σ̂j denotes the (sample) standard deviation of the j-th component of the exogenous state. This
choice of H yields an asymptotically consistent estimator for the exogenous state distribution. More-
over, it minimizes the mean integrated square error if the exogenous state is Gaussian; see [4]. Fi-
nally, we choose K large enough to ensure that the approximate value function at the sample points
does not change significantly (in terms of the `2-norm) when new samples are added. The number of
historical observationsN can principally be selected in a similar manner asK. However, in practice
we typically use all the available historical observations as N is assumed to be small.
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