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Abstract

We consider design of linear projection measurements for a vector Poisson signal
model. The projections are performed on the vector Poisson rate,X ∈ Rn+, and the
observed data are a vector of counts, Y ∈ Zm+ . The projection matrix is designed
by maximizing mutual information between Y and X , I(Y ;X). When there is
a latent class label C ∈ {1, . . . , L} associated with X , we consider the mutual
information with respect to Y and C, I(Y ;C). New analytic expressions for the
gradient of I(Y ;X) and I(Y ;C) are presented, with gradient performed with re-
spect to the measurement matrix. Connections are made to the more widely stud-
ied Gaussian measurement model. Example results are presented for compressive
topic modeling of a document corpora (word counting), and hyperspectral com-
pressive sensing for chemical classification (photon counting).

1 Introduction
There is increasing interest in exploring connections between information and estimation theory. For
example, mutual information and conditional mean estimation have been discovered to possess close
interrelationships. The derivative of mutual information in a scalar Gaussian channel [11] has been
expressed in terms of the minimum mean-squared error (MMSE). The connections have also been
extended from the scalar Gaussian to the scalar Poisson channel model [12]. The gradient of mutual
information in a vector Gaussian channel [17] has been expressed in terms of the MMSE matrix. It
has also been found that the relative entropy can be represented in terms of the mismatched MMSE
estimates [23, 24]. Recently, parallel results for scalar binomial and negative binomial channels have
been established [22, 10].

Inspired by the Lipster-Shiryaev formula [16], it has been demonstrated that for certain channels
(or measurement models), investigation of the gradient of mutual information can often lead to a
relatively simple formulation, relative to computing mutual information itself. Further, it has been
shown that the derivative of mutual information with respect to key system parameters also relates to
the conditional mean estimates in other channel settings beyond Gaussian and Poisson models [18].

This paper pursues this overarching theme for a vector Poisson measurement model. Results for
scalar Poisson signal models have been developed recently [12, 1] for signal recovery; the vector
results presented here are new, with known scalar results recovered as a special case. Further, we
consider the gradient of mutual information for Poisson data in the context of classification, for
which there are no previous results, even in the scalar case.

The results we present for optimizing mutual information in vector Poisson measurement models are
general, and may be applied to optical communication systems [15, 13]. The specific applications
that motivate this study are compressive measurements for vector Poisson data. Direct observation
of long vectors of counts may be computationally or experimentally expensive, and therefore it is
of interest to design compressive Poisson measurements. Almost all existing results for compres-

1



sive sensing (CS) directly or implicitly assume a Gaussian measurement model [6], and extension to
Poisson measurements represents an important contribution of this paper. To the authors knowledge,
the only previous examination of CS with Poisson data was considered in [20], and that paper con-
sidered a single special (random) measurement matrix, it did not consider design of measurement
matrices, and the classification problems was not addressed. It has been demonstrated in the context
of Gaussian measurements that designed measurement matrices, using information-theoretic met-
rics, may yield substantially improved performance relative to randomly constituted measurement
matrices [7, 8, 21]. In this paper we extend these ideas to vector Poisson measurement systems, for
both signal recovery and classification, and make connections to the Gaussian measurement model.
The theory is demonstrated by considering compressive topic modeling of a document corpora, and
chemical classification with a compressive photon-counting hyperspectral camera [25].

2 Mutual Information for Designed Compressive Measurements
2.1 Motivation

A source random variable X ∈ Rn, with probability density function PX(X), is sent through a
measurement channel, the output of which is characterized by random variable Y ∈ Rm, with
conditional probability density function PY |X(Y |X); we are interested in the case m < n, relevant
for compressive measurements, although the theory is general. Concerning PY |X(Y |X), in this
paper we focus on Poisson measurement models, but we also make connections to the much more
widely considered Gaussian case. For the Poisson and Gaussian measurement models the mean of
PY |X(Y |X) is ΦX , where Φ ∈ Rm×n is the measurement matrix. For the Poisson case the mean
may be modified as ΦX + λ for “dark current” λ ∈ Rm+ , and positivity constraints are imposed on
the elements of Φ and X .

Often the source statistics are characterized as a mixture model: PX(X) =
∑L
c=1 πcPX|C(X|C =

c), where πc > 0 and
∑L
c=1 πc = 1, and C may correspond to a latent class label. In this context,

for each draw X there is a latent class random variable C ∈ {1, . . . , L}, where the probability of
class c is πc.

Our goal is to design Φ such that the observed Y is most informative about the underlying X or C.
When the interest is in recovering X , we design Φ with the goal of maximizing mutual information
I(X;Y ), while when interested in inferring C we design Φ with the goal of maximizing I(C;Y ).

To motivate use of the mutual information as the design metric, we note several results from the
literature. For the case in which we are interested in recovering X from Y , it has been shown [19]
that

MMSE ≥ 1

2πe
exp{2[h(X)− I(X;Y )]} (1)

where h(X) is the differential entropy of X and MMSE = E{trace[(X − E(X|Y ))(X −
E(X|Y ))T ]} is the minimum mean-square error.

For the classification problem, we define the Bayesian classification error as Pe =
∫
PY (y)[1 −

maxcPC|Y (c|y)]dy. It has been shown in [14] that

[H(C|Y )−H(Pe)]/ logL ≤ Pe ≤
1

2
H(C|Y ) (2)

where H(C|Y ) = H(C) − I(C;Y ), 0 ≤ H(Pe) ≤ 1, and H(·) denotes the entropy of a discrete
random variable. By minimizing H(C|Y ) we minimize the upper bound to Pe, and since H(C) is
independent of Φ, to minimize the upper bound to Pe our goal is to design Φ such that I(C;Y ) is
maximized.

2.2 Existing results for Gaussian measurements
There are recent results for the gradient of mutual information for vector Gaussian measurements,
which we summarize here. Consider the case C ∼ PC(C), X|C ∼ PX|C(X|C), and Y |X ∼
N (Y ; ΦX,Λ−1), where Λ ∈ Rm×m is a known precision matrix. Note that PC and PX|C are
arbitrary, while PY |X = N (Y ; ΦX,Λ−1) corresponds to a Gaussian measurement with mean ΦX .

It has been established that the gradient of mutual information between the input and the output of
the vector Gaussian channel model obeys [17]

∇ΦI(X;Y ) = ΛΦE, (3)
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where E = E
[
(X − E(X|Y ))(X − E(X|Y ))T

]
denotes the MMSE matrix. The gradient of mu-

tual information between the class label and the output for the vector Gaussian channel is [8]

∇ΦI(C;Y ) = ΛΦẼ, (4)

where Ẽ = E
[
(E(X|Y,C)− E(X|Y ))(E(X|Y,C)− E(X|Y ))T

]
denotes the equivalent MMSE

matrix.
2.3 Conditional-mean estimation
Note from the above discussion that for a Gaussian measurement,∇ΦI(X;Y ) = E[f(X,E(X|Y ))]
and ∇ΦI(C;Y ) = E[g(E(X|Y,C),E(X|Y ))], where f(·) and g(·) are matrix-valued functions of
the respective arguments. These results highlight the connection between the gradient of mutual
information with respect to the measurement matrix Φ and conditional-mean estimation, constituted
by E(X|Y ) and E(X|Y,C). We will see below that these relationships hold as well for the vector
Poisson case, with distinct functions f̃(·) and g̃(·).

3 Vector Poisson Data
3.1 Model

The vector Poisson channel model is defined as

Pois(Y ; ΦX + λ) = PY |X (Y |X) =

m∏
i=1

PYi|X (Yi|X) =

m∏
i=1

Pois (Yi; (ΦX)i + λi) (5)

where the random vector X = (X1, X2, . . . , Xn) ∈ Rn+ represents the channel input, the random
vector Y = (Y1, Y2, . . . , Ym) ∈ Zm+ represents the channel output, Φ ∈ Rm×n+ represents a mea-
surement matrix, and the vector λ = (λ1, λ2, . . . , λm) ∈ Rm+ represents the dark current.

The vector Poisson channel model associated with arbitrarym and n is a generalization of the scalar
Poisson model, for which m = n = 1 [12, 1]. In the scalar case PY |X(Y |X) = Pois(Y ;φX + λ),
where here scalar random variables X ∈ R+ and Y ∈ Z+ are associated with the input and output
of the scalar channel, respectively, φ ∈ R+ is a scaling factor, and λ ∈ R+ is associated with the
dark current.

The goal is to design Φ to maximize the mutual information between X and Y . Toward that end, we
consider the gradient of mutual information with respect to Φ: ∇ΦI(X;Y ) = [∇ΦI(X;Y )ij ],
where ∇ΦI(X;Y )ij represents the (i, j)-th entry of the matrix ∇ΦI(X;Y ). We also con-
sider the gradient with respect to the vector dark current, ∇λI(X;Y ) = [∇λI(X;Y )i], where
∇λI(X;Y )i represents the i-th entry of the vector ∇λI(X;Y ). For a mixture-model source
PX(X) =

∑L
c=1 πcPX|C=c(X|C = c), for which there is more interest in recovering C than

in recovering X , we seek∇ΦI(C;Y ) and ∇λI(C;Y ).

3.2 Gradient of Mutual Information for Signal Recovery
In order to take full generality of the input distribution into consideration, we utilize the Radon-
Nikodym derivatives to represent the probability measures of interests. Consider random variables
X ∈ Rn and Y ∈ Rm. Let fθY |X be the Radon-Nikodym derivative of probability measure P θY |X
with respect to an arbitrary measure QY , provided that P θY |X is absolutely continuous with respect
to QY , i.e., P θY |X � QY . θ ∈ R is a parameter. fθY is the Radon-Nikodym derivative of the
probability measure P θY with respect to QY provided that P θY � QY . Note that in the continuous or
discrete case, fθY |X and fθY are simply probability density or mass functions with QY chosen to be
the Lebesgue measure or the counting measure, respectively. We note that similar notation is also
used for the signal classification case, except that we may also need to condition both on X and C.
Some results of the paper require the assumption on the regularity conditions (RC), which are listed
in the Supplementary Material. We will assume all four regularity conditions RC1–RC4 whenever
necessary in the proof and the statement of the results. Recall [9] that for a function f(x, θ) :
Rn ×R→ R with a Lebesgue measure µ on Rn, we have ∂

∂θ

∫
f(x, θ)dµ(x) =

∫
∂
∂θf(x, θ)dµ(x),

if f(x, θ) ≤ g(x), where g ∈ L1(µ). Hence, in light of this criterion, it is straightforward to
verify that the RC are valid for many common distributions of X . Proofs of the below theorems are
provided in the Supplementary Material.
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Theorem 1. Consider the vector Poisson channel model in (5). The gradient of mutual information
between the input and output of the channel, with respect to the matrix Φ, is given by:

[∇ΦI(X;Y )ij ] =
[
E [Xj log((ΦX)i + λi)]− E [E[Xj |Y ] logE[(ΦX)i + λi|Y ]]

]
, (6)

and with respect to the dark current is given by:

[∇λI(X;Y )i] =
[
E[log((ΦX)i + λi)]− E[logE[(ΦX)i + λi|Y ]]

]
. (7)

irrespective of the input distribution PX(X), provided that the regularity conditions hold.

3.3 Gradient of Mutual Information for Classification

Theorem 2. Consider the vector Poisson channel model in (5) and mixture signal model. The
gradient with respect to Φ of mutual information between the class label and output of the channel
is

[∇ΦI(C;Y )ij ] = E
[
E[Xj |Y,C] log

E[(ΦX)i + λi|Y,C]

E[(ΦX)i + λi|Y ]

]
, (8)

and with respect to the dark current is given by

(∇λI(C;Y ))i =E
[
log

E[(ΦX)i + λi|Y,C]

E[(ΦX)i + λi|Y ]

]
. (9)

irrespective of the input distribution PX|C(X|C), provided that the regularity conditions hold.

3.4 Relationship to known scalar results

It is clear that Theorem 1 represents a multi-dimensional generalization of Theorems 1 and 2 in [12].
The scalar result follows immediately from the vector counterpart by taking m = n = 1.
Corollary 1. For the scalar Poisson channel model PY |X(Y |X) = Pois(Y ;φX + λ), we have

∂

∂φ
I(X;Y ) = E [X log((φX) + λ)]− E [E[X|Y ] logE[φX + λ|Y ]] , (10)

∂

∂λ
I(X;Y ) = E[log(φX + λ)]− E[logE[φX + λ|Y ]]. (11)

irrespective of the input distribution PX(X), provided that the regularity conditions hold.

While the scalar result in [12] for signal recovery is obtained as a special case of our Theorem 1, for
recovery of the class label C there are no previous results for our Theorem 2, even in the scalar case.

3.5 Conditional mean and generalized Bregman divergence

Considering the results in Theorem 1, and recognizing that E[(ΦX) + λ|Y ] = ΦE(X|Y ) + λ, it
is clear that for the Poisson case ∇ΦI(X;Y ) = E[f̃(X,E(X|Y ))]. Similarly, for the classification
case, ∇ΦI(C;Y ) = E[g̃(E(X|Y,C),E(X|Y ))]. The gradient with respect to the dark current λ
has no analog for the Gaussian case, but similarly we have ∇λI(X;Y ) = E[f̃1(X,E(X|Y ))] and
∇λI(C;Y ) = E[g̃1(E(X|Y,C),E(X|Y ))].

For the scalar Poisson channel in Corollary 1, it has been shown in [1] that ∂
∂φI(X;Y ) =

E[`(X,E(X|Y ))], where `(X,E(X|Y )) is defined by the right side of (10), and is related to the
Bregman divergence [5, 2].

While beyond the scope of this paper, one may show that f̃(X,E(X|Y )) and
g̃(E(X|Y,C),E(X|Y )) may be interpreted as generalized Bregman divergences, where here
the generalization is manifested by the fact that these are matrix-valued measures, rather than the
scalar one in [1]. Further, for the vector Gaussian cases one may also show that f(X,E(X|Y ))
and g(E(X|Y,C),E(X|Y )) are also generalized Bregman divergences. These facts are primarily
of theoretical interest, as they do not affect the way we perform computations. Nevertheless,
these theoretical results, through generalized Bregman divergence, underscore the primacy the
conditional mean estimators E(X|Y ) and E(X|Y,C) within the gradient of mutual information
with respect to Φ, for both the Gaussian and Poisson vector measurement models.
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4 Applications
4.1 Topic Models
Consider the case for which the Poisson rate vector for document d may be represented Xd = ΨSd,
where Xd ∈ Rn+, Ψ ∈ Rn×T+ and Sd ∈ RT+. Here T represents the number of topics, and in
the context of documents, n represents the total number of words in dictionary D. The count for
the number of times each of the n words is manifested in document d may often be modeled as
Yd|Sd ∼ Pois(Yd; ΨSd); see [26] and the extensive set of references therein.
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Figure 1: Results on the 20 Newsgroups dataset. Random denotes
a random binary matrix with 1% non-zero values. Rand-Ortho de-
notes a random binary matrix restricted to an orthogonal matrix
with one non-zero entry per column. Optimized denotes the meth-
ods discussed in Section 4.3. Full denotes when each word is ob-
served. The error estimates were obtained by running the algorithm
over 10 different random splits of the corpus. (a) Per-word predic-
tive log-likelihood estimate versus the number of projections. (b)
KL Divergence versus the number of projections.

Rather than counting the number of
times each of the n words are sepa-
rately manifested, we may more ef-
ficiently count the number of times
words in particular subsets of D are
manifested. Specifically, consider a
compressive measurement for docu-
ment d, as Yd|Xd ∼ Pois(Yd; ΦXd),
where Φ ∈ {0, 1}m×n, with m �
n. Let φk ∈ {0, 1}n represent
the kth row of Φ, with Ydk the kth
component of Yd. Then Ydk|Xd ∼
Pois(Ydk;φTkXd) is equal in distri-
bution to Ydk =

∑n
i=1 Ỹdki, where

Ỹdki|Xdi ∼ Pois(φkiXdi), with
φki ∈ {0, 1} the ith component of
φk and Xdi the ith component of Xd.
Therefore, Ydk represents the number
of times words in the set defined by
the non-zero elements of φk are man-
ifested in document d; Yd therefore
represents the number of times words are manifested in a document in m distinct sets.

Our goal is to use the theory developed above to design the binary Φ such that the compressive
Yd|Xd ∼ Pois(Yd; ΦXd) is as informative as possible. In our experiments we assume that Ψ may
be learned separately based upon a small subset of the corpus, and then with Ψ so fixed the statistics
of Xd are driven by the statistics of Sd. When performing learning of Ψ, each column of Ψ is
assumed drawn from an n-dimensional Dirichlet distribution, and Sd is assumed drawn from a
gamma process, as specified in [26]. We employ variational Bayesian (VB) inference on this model
[26] to estimate Ψ (and retain the mean).

With Ψ so fixed, we then design Φ under two cases. For the case in which we are interested in
inferring Sd from the compressive measurements, i.e., based on counts of words in sets, we employ
a gamma process prior for pS(Sd), as in [26]. The result in Theorem 1 is then used to perform
gradients for design of Φ. For the classification case, for each document class c ∈ {1, . . . , L} we
learn a p(Sd|C) based on a training sub-corpus for class C. This is done for all document classes,
and we design a compressive matrix Φ ∈ {0, 1}m×n, with gradient performed using Theorem 2.

In the testing phase, using held-out documents, we employ the matrix Φ to group the counts of
words in document d into counts on m sets of words, with sets defined by the rows of Φ. Using
these Yd, which we assume are drawn Yd|Sd ∼ Pois(Yd; ΦΨSd), for known Φ and Ψ, we then use
VB computations for the model in [26] to infer a posterior distribution on Sd or class C, depending
on the application. The VB inference for this model was not considered in [26], and the update
equations are presented in the Supplementary Material.

4.2 Model for Chemical Sensing
The model employed for the chemical sensing [25] considered below is very similar in form to that
used for topic modeling, so we reuse notation. Assume that there are T fundamental (building-block)
chemicals of interest, and that the hyperspectral sensor performs measurements at n wavelengths.
Then the observed data for sample d may be represented Yd|Sd ∼ Pois(Yd; ΨSd + λ), where Yd ∈
Zn+ represents the count of photons at the n sensor wavelengths, λ ∈ Rn+ represents the sensor
dark current, and the tth column of Ψ ∈ Rn×T+ reflects the mean Poisson rate for chemical t (the
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Figure 2: Results on the NYTimes corpus. Optimized denotes the methods discussed in Section 4.3. Full
denotes when each word is observed. The error estimates were obtained by running the algorithm over 10
different random subsets of 20,000 documents. (a) Predictive log-likelihood estimate versus the number of pro-
jections. (b) KL Divergence versus the number of projections. (c) Predictive log-likelihood versus processing
time.

different chemicals play a role analogous to topics). The vector Sd ∈ RT+ reflects the amount of
each fundamental chemical present in the sample under test.

For the compressive chemical-sensing system discussed in Section 4.5, the measurement matrix is
again binary, Φ ∈ {0, 1}m×n. Through calibrations and known properties of chemicals and charac-
teristics of the camera, one may readily constitute Ψ and λ, and a model similar to that employed for
topic modeling is utilized to model Sd; here λ is a characteristic of the camera, and is not optimized.
In the experiments reported below the analysis of the chemical-sensing data is performed analo-
gously to how the documents were modeled (which we detail), and therefore no further modeling
details are provided explicitly for the chemical-sensing application, for brevity. For the chemical
sensing application, the goal is to classify the chemical sample under test, and therefore Φ is defined
based on optimization using the Theorem 2 gradient.
4.3 Details on Designing Φ

We wish to use Theorems 1 and 2 to design a binary Φ, for the document-analysis and chemical-
sensing applications. To do this, instead of directly optimizing Φ, we put a logistic link on each
value Φij = logit(Mij). We can state the gradient with respect to M as:

[∇MI(X;Y )ij ] = [∇ΦI(X;Y )ij ][∇MΦij ] (12)

Similar results hold for ∇MI(C;Y )ij .Φ was initialized at random, and we threshold the logistic at
0.5 to get the final binary Φ.

To estimate the expectations needed for the results in Theorems 1 and 2, we used Monte Carlo
integration methods, where we simulated X and Y from the appropriate distribution. The number
of samples in the Monte Carlo integration was set to n (data dimension), and 1000 gradient steps
were used for optimizing Φ.

The explicit forms for the gradients in Theorems 1 and 2 play an important role in making opti-
mization of Φ tractable for the practical applications considered here. One could in principle take a
brute-force gradient of I(Y ;X) and I(Y ;C) with respect to Φ, and evaluate all needed integrals via
Monte Carlo sampling. This leads to a cumbersome set of terms that need be computed. The “clean”
forms of the gradients in Theorems 1 and 2 significantly simplified design implementation within
the below experiments, with the added value of allowing connections to be made to the Gaussian
measurement model.
4.4 Examples for Document Corpora

We demonstrate designed projections on the NYTimes and 20 Newsgroups data. The NYTimes data
has n = 8000 unique words, and the Newsgroup data has n = 8052 unique words. When learning
Ψ, we placed the prior Dir(0.1, . . . , 0.1) on the columns of Ψ, and the components Sdk had a prior
Gamma(0.1, 0.1). We tried many different settings for these priors, and as in [26], the learned Ψ
was insensitive to “reasonable” settings. The number of topics (columns) in Ψ was set to T = 100.
In addition to designing Φ using the proposed theory, we also considered four comparative designs:
(i) binary Φ constituted uniformly at random, with 1% of the entries non-zero; (ii) orthogonal
binary rows of Φ, with one non-zero element in each column selected uniformly at random; (iii)
performing non-negative matrix factorization [3] on (NNMF) Ψ, and projecting onto the principal
vectors; and (iv) performing latent Dirichlet allocation [4] on the documents, and projecting onto
the topic-dependent probabilities of words. For (iii) and (iv), the top (highest amplitude) 5% of
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Figure 3: (a) Classification accuracy of projected measurements and the fully observed case. Random uses
10% non-zero values, Ortho is a random matrix limited to orthogonal projections, and Optimized uses designed
projections. The error bars are the standard deviation of the algorithm run independently on 10 random splits of
the dataset. (b) Subset of confusion matrix of of the fully observed counts. White numbers denote percentage
of documents classified in that manner. Only those classes in the “comp” subgroup are shown. The “comp”
group is the least accurate subgroup. (c) The confusion matrix on the “comp” subgroup for 150 compressive
measurements.

the words in each vector on which we project (e.g., topic) were set to have projection amplitude 1,
and all the rest were set to zero. The settings on (i), (iii) and (iv), i.e., with regard to the fraction
of words with non-zero values in Φ, were those that yielded the best results (other settings often
performed much worse).

We show results using two metrics, Kullback-Leibler (KL) divergence and predictive log-likelihood.
For the KL divergence, we compare the topic mixture learned from the projection measurements to
the topic mixture learned from the case where each word is observed (no compressive measurement).
We define the topic mixture S′d as the normalized version of Sd. We calculate DKL(S′d,p||S′d,f ) =∑K
k=1 S

′
dk,p log(S′dk,p/S

′
dk,f ), where S′dk,p is the relative weight on document d, topic k for the

full set of words, and S′dk,p is the same for the compressive topic model. We also calculate per-
word predictive log-likelihood. Because different projection metrics are in different dimensions,
we use 75% of a document’s words to get the projection measurements Yd and use the remaining
25% as the original word tokens Wd. We then calculate the predictive log-likelihood (PLL) as
log(Wd|Ψ,Φ, Yd).

We split the 20 Newgroups corpus into 10 random splits of 60% training and 40% testing to get an
estimate of uncertainty. The results are shown in Figure 1. Figure 1(a) shows the per-word predic-
tive log-likelihood (PLL). At very low numbers of compressive measurements we get similar PLL
between the designed matrix and the random methods. As we increase the number of measurements,
we get dramatic improvements by optimizing the sensing matrix and the optimized methods quickly
approach the fully observed case. The same trends can be seen in the KL divergence shown in Figure
1(b). Note that the relative quality of the NNMF and LDA based designs of Φ depends on the metric
(KL or PLL), but for both metrics the proposed mutual-information-based design of Φ yields best
performance.

To test the NYTimes corpus, we split the corpus into 10 random subsets with 20,000 training docu-
ments and 20,000 testing documents. The results are shown in Figure 2. As in the 20 Newsgroups
results, the predictive log-likelihood and KL divergence of the random and designed measurements
are similar when the number of projections are low. As we increase the number of projections the
optimized projection matrix offers dramatic improvements over the random methods. We also con-
sider predictive log-likelihood versus time in Figure 2(c). The compressive measurements give near
the same performance with half the per-document processing time. Since the total processing time
increases linearly with the total number of documents, a 50% decrease in processing time can make
a significant difference in large corpora.

We also consider the classification problem over the 20 classes in the 20 Newsgroups dataset, split
into 10 groups of 60% training and 40% testing. We learn a Ψ with T = 20 columns (topics) and
with the prior on the columns as above. Within the prior, we draw Sdcd |cd ∼ Gamma(1, 1) and
Sdc′ |cd = 0 for all c′ 6= cd. Separate topics are associated with each of the 20 classes, and we use
the MAP estimate to get the class label c∗d = arg max(c|Yd). Classification versus number of pro-
jections for random projections and designed projections are shown in Figure 3(a). It is also useful
to look at the type of errors made in the classifier when we use the designed projections. Figure
3(b) and Figure 3(c) show the newsgroups under the “comp” (computer) heading, which is the least
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accurate section. In the compressed case, many of the additional errors go into nearby topics with
overlapping ideas. For example, most additional misclassifications in “comp.os.ms-windows.misc”
go into “comp.sys.ibm.pc.hardware” and “comp.windows.x,” which have many similar discussions.
Additionally, 4% of the articles were originally posted in more than one topic, showing the intimate
relationship between similar discussion groups, and so misclassifying into a related (and overlap-
ping) class is less of a problem than misclassification into a completely disjoint class.

4.5 Poisson Compressive Sensing for Chemical Classification
We consider chemical sensing based on the wavelength-dependent signature of chemicals, at optical
frequencies (here we consider a 850-1000 nm laser system). In Figure 4(a) the measurement system
is summarized; details of this system are described in [25]. In Part 1 of Figure 4(a) multi-wavelength
photons are scattered off a chemical sample. In Part 2 of this figure a volume holographic grating
(VHG) is employed to diffract the photons in a wavelength-dependent manner, and therefore pho-
tons are distributed spatially across a digital mirror microdevice (DMD); distinct wavelengths are
associated with each micromirror. The DMD consists of 1920× 1080 aluminum mirrors. Each mir-
ror is in a binary state, either reflecting light back to a detector, or not. Each mirror approximately
samples a single wavelength, as a result of the VHG, and the photon counter counts all photons at
wavelengths for which the mirrors direct light to the sensor. Hence, the sensor counts all photons at
a subset of the wavelengths, those for which the mirror is at the appropriate angle.

D.S. Wilcox et al. / Analytica Chimica Acta 755 (2012) 17– 27 21

Fig. 1. Schematic of the DMD-based near infrared digital compressive detection instrument.

As for which vector � we should use in (7),  we believe that a
practical set of filters F can be designed assuming that the pure
component emission rates are normalized to the same value,

�i = �j (8)

for all i and j, i.e., we design measurement filters F to min-
imize the error in estimating a mixture where the rate of
photons emitted by all chemical species are the same. Setting
� = (1,  1, . . . , 1)T suffices. This determines A = FTP, B, and T. Mat-
lab software to determine OB filters is available on request. See
www.math.purdue.edu/∼buzzard/software/ for more details.

3. Experimental

3.1. Experimental apparatus

The compressive detection spectrometer, shown in Fig. 1,
employs a Raman backscattering collection geometry. Part 1 is
similar to that described in [2].  The excitation source is a 785 nm
single mode laser (Innovative Photonic Solutions). After passing
through a laser-line bandpass filter (Semrock, LL01-785-12.5), the
laser is focused onto the sample with a NIR lens (Olympus, LMPlan
IR, 20×).  The Raman scattering is collected and separated from
the laser Rayleigh scattering with a dichroic mirror (Semrock,
LPD01-785RS-25) and a 785 nm notch filter (Semrock, NF03-785E-
25).

The Raman scattered light is then sent to Part 2, where it is first
filtered with a 900 nm shortpass filter (Thorlabs, FES0900) and sub-
sequently directed to a volume holographic grating (1200 L mm−1,
center wavelength 830 nm,  Edmund Optics, 48–590). The window
of the dispersed light is ∼200–1700 cm−1 with a spectral resolution
of 30 cm−1 (this resolution is limited by the beam quality and
hence the image of the diode laser focal spot size, which spans
approximately 15 mirrors on the surface of the DMD). The light is
collimated with an achromatic lens with a focal length of f = 50 mm
(Thorlabs, AC254-050-B) and focused onto the DMD  (Texas Instru-
ments, DLP Discovery 4000). The DMD  consists of 1920 × 1080
aluminum mirrors (10.8 �m pitch) that can tilt ±12

◦
relative to

the flat state of the array, controlled by an interface card (DLP
D4000, Texas Instruments). All 1080 mirrors in each rows of the
array are set to the same angle, and the 1920 columns are divided
into adjacent groupings – e.g., if we want to divide the energy of
the photons into 128 “bins”, then groups of 15 adjacent columns

are set in unison. The DMD  is mounted at an angle such that the
−12◦ mirror position directs photons back with a vertical offset
of ∼1◦ below the incident light in order to spatially separate the
incident and reflected photons. The latter photons are recombined
in a second pass through the holographic grating, and focused
onto a fiber optic cable that is connected to a photodiode photon
counting module (PerkinElmer, SPCMCD2969PE). The photon
counting module has a dark count rate of ∼200 photons s−1 and
no read noise. A TTL pulse is output by the photon counter as
each photon is detected, and the pulses are counted in a USB data
acquisition (DAQ) card (National Instruments, USB-6212BNC).
Integration timing is controlled by setting the sampling rate and
number of samples to acquire with the DAQ card in Labview 2009.

Binary filter functions (F), optimal times (T), and the estimator
(B) were generated from the spectra of all pure components (see
Section 3.2 for more information) using functions from Matlab 7.13
R2011b. The input binary optical filter function determined which
mirrors will point toward the detector (assigned a value of 1) or
point away (assigned a value of 0). The binary (0–1) mathematical
filters are configured to the DMD  through Labview software (Texas
Instruments, DDC4100, Load Blocks.vi) that sets blocks of mirrors
on the DMD  array corresponding to different wavelengths to the
appropriate ±12◦ position. Labview scripts were used to sequen-
tially apply the filters and integrate for the corresponding times, to
store the raw photon counts, and to calculate the photon rates. Lin-
ear and quadratic discriminant analyses were performed in Matlab
7.13 R2011b. Data was  further processed and plotted in Igor Pro
6.04.

3.2. Constructing filters

Generating accurate filters for a given application requires high
signal-to-noise training spectra of each of the components of inter-
est. Measuring full spectra with the DMD  is achieved by notch
scanning. This is done by sequentially directing one mirror (or
a small set of mirrors) toward the detector (with all other mir-
rors directed away) and counting the number of photons detected
at each notch position. Notch scanning measurements were per-
formed using 1 s per notch to obtain spectra with a signal-to-noise
ratio of ∼500:1. A background spectrum is present in all of our train-
ing spectra, arising from the interaction of the excitation laser and
the intervening optical elements. We  have implemented two com-
pressive detection strategies for removing this background. The
first method involves measuring the background (with no sample)
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Figure 4: (a) Measurement system. The VHG is a volume holo-
graphic grating, that spatially spreads photons in a wavelength-
dependent manner across the digital mirror microdevice (DMD),
and the DMD is employed to implement binary coding. (b) Per-
formance of the compressive-measurement classifier as a function
of the number of compressive measurements; ten chemicals are
considered. Experimental results are shown (Exp), as well as pre-
dictions from simulations (Sim).

The measurement may be repre-
sented Y |Sd ∼ Pois[Φ(ΨSd + λ0)],
where λ0 ∈ Rn+ is known from cali-
bration. The elements of the rate vec-
tor of λ0 vary from .07 to 1.5 per bin,
and the cumulative dark current Φλ0

can provide in excess of 50% of the
signal energy, depending on the mea-
surement (very noisy measurements).
Design of Φ was based on Theorem
2, and λ0 here is treated as the sig-
nature of an additional chemical (ac-
tually associated with measurement
noise); finally, λ = Φλ0 is the mea-
surement dark current.

The ten chemicals considered in this
test were acetone, acetonitrile, ben-
zene, dimethylacetamide, dioxane,
ethanol, hexane, methylcyclohexane,
octane, and toluene, and we note
from Figure 4 that after only five compressive measurements excellent chemical classification is
manifested based on designed CS measurements. There are n > 1000 wavelengths in a conven-
tional measurement of these data, this system therefore reflecting significant compression. In Figure
4(b) we show results of measured data and performance predictions based on our model, with good
agreement manifested. Note that designed projection measurements perform markedly better than
random, where here the probability of a one in the random design was 10% (this yielded best random
results in simulations).
5 Conclusions
New results are presented for the gradient of mutual information with respect to the measurement
matrix and a dark current, within the context of a Poisson model for vector count data. The mutual
information is considered for signal recovery and classification. For the former we recover known
scalar results as a special case, and the latter results for classification have not been addressed in any
form previously. Fundamental connections between the gradient of mutual information and condi-
tional expectation estimates have been made for the Poisson model. Encouraging applications have
been demonstrated for compressive topic modeling, and for compressive hyperspectral chemical
sensing (with demonstration on a real compressive camera).

Acknowledgments
The work reported here was supported in part by grants from ARO, DARPA, DOE, NGA and ONR.

8



References
[1] R. Atar and T. Weissman. Mutual information, relative entropy, and estimation in the Poisson channel.

IEEE Transactions on Information Theory, 58(3):1302–1318, March 2012.

[2] A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh. Clustering with bregman divergences. JMLR, 2005.

[3] M.W Berry, M. Browne, A.N. Langville, V.P. Pauca, and R. J. Plemmons. Algorithms and applications
for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis, 2007.

[4] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet allocation. JMLR, 2003.

[5] L.M. Bregman. The relaxation method of finding the common point of convex sets and its application to
the solution of problems in convex programming. USSR computational mathematics and mathematical
physics, 1967.

[6] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. on Inform. Theory, 2006.

[7] W.R. Carson, M. Chen, M.R.D. Rodrigues, R. Calderbank, and L. Carin. Communications-inspired pro-
jection design with application to compressive sensing. SIAM J. Imaging Sciences, 2013.

[8] M. Chen, W. Carson, M. Rodrigues, R. Calderbank, and L. Carin. Communications inspired linear dis-
criminant analysis. In ICML, 2012.

[9] G.B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley New York, 1999.

[10] D. Guo. Information and estimation over binomial and negative binomial models. arXiv preprint
arXiv:1207.7144, 2012.
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