
EDML for Learning Parameters in
Directed and Undirected Graphical Models

Khaled S. Refaat, Arthur Choi, Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{krefaat,aychoi,darwiche}@cs.ucla.edu

Abstract

EDML is a recently proposed algorithm for learning parameters in Bayesian net-
works. It was originally derived in terms of approximate inference on a meta-
network, which underlies the Bayesian approach to parameter estimation. While
this initial derivation helped discover EDML in the first place and provided a con-
crete context for identifying some of its properties (e.g., in contrast to EM), the
formal setting was somewhat tedious in the number of concepts it drew on. In this
paper, we propose a greatly simplified perspective on EDML, which casts it as
a general approach to continuous optimization. The new perspective has several
advantages. First, it makes immediate some results that were non-trivial to prove
initially. Second, it facilitates the design of EDML algorithms for new graphical
models, leading to a new algorithm for learning parameters in Markov networks.
We derive this algorithm in this paper, and show, empirically, that it can sometimes
learn estimates more efficiently from complete data, compared to commonly used
optimization methods, such as conjugate gradient and L-BFGS.

1 Introduction

EDML is a recently proposed algorithm for learning MAP parameters of a Bayesian network from
incomplete data [5, 16]. While it is procedurally very similar to Expectation Maximization (EM) [7,
11], EDML was shown to have certain advantages, both theoretically and practically. Theoretically,
EDML can in certain specialized cases provably converge in one iteration, whereas EM may require
many iterations to solve the same learning problem. Some empirical evaluations further suggested
that EDML and hybrid EDML/EM algorithms can sometimes find better parameter estimates than
vanilla EM, in fewer iterations and less time. EDML was originally derived in terms of approximate
inference on a meta-network used for Bayesian approaches to parameter estimation. This graphical
representation of the estimation problem lent itself to the initial derivation of EDML, as well to the
identification of certain key theoretical properties, such as the one we just described. The formal
details, however, can be somewhat tedious as EDML draws on a number of different concepts. We
review EDML in such terms in the supplementary appendix.

In this paper, we propose a new perspective on EDML, which views it more abstractly in terms of
a simple method for continuous optimization. This new perspective has a number of advantages.
First, it makes immediate some results that were previously obtained for EDML, but through some
effort. Second, it facilitates the design of new EDML algorithms for new classes of models, where
graphical formulations of parameter estimation, such as meta-networks, are lacking. Here, we de-
rive, in particular, a new parameter estimation algorithm for Markov networks, which is in many
ways a more challenging task, compared to the case of Bayesian networks. Empirically, we find that
EDML is capable of learning parameter estimates, under complete data, more efficiently than popu-
lar methods such as conjugate-gradient and L-BFGS, and in some cases, by an order-of-magnitude.

1

This paper is structured as follows. In Section 2, we highlight a simple iterative method for, approxi-
mately, solving continuous optimization problems. In Section 3, we formulate the EDML algorithm
for parameter estimation in Bayesian networks, as an instance of this optimization method. In Sec-
tion 4, we derive a new EDML algorithm for Markov networks, based on the same perspective. In
Section 5, we contrast the two EDML algorithms for directed and undirected graphical models, in
the complete data case. We empirically evaluate our new algorithm for parameter estimation under
complete data in Markov networks, in Section 6; review related work in Section 7; and conclude in
Section 8. Proofs of theorems appear in the supplementary appendix.

2 An Approximate Optimization of Real-Valued Functions

Consider a real-valued objective function f(x) whose input x is a vector of components:

x = (x1, . . . , xi, . . . , xn),

where each component xi is a vector in Rki for some ki. Suppose further that we have a constraint
on the domain of function f(x) with a corresponding function g that maps an arbitrary point x to a
point g(x) satisfying the given constraint. We say in this case that g(x) is a feasibility function and
refer to the points in its range as feasible points.

Our goal here is to find a feasible input vector x = (x1, . . . , xi, . . . , xn) that optimizes the func-
tion f(x). Given the difficulty of this optimization problem in general, we will settle for finding
stationary points x in the constrained domain of function f(x).

One approach for finding such stationary points is as follows. Let x? = (x?1, . . . , x
?
i , . . . , x

?
n) be a

feasible point in the domain of function f(x). For each component xi, we define a sub-function

fx?(xi) = f(x?1, . . . , x
?
i−1, xi, x

?
i+1, . . . , x

?
n).

That is, we use the n-ary function f(x) to generate n sub-functions fx?(xi). Each of these sub-
functions is obtained by fixing all inputs xj of f(x), for j 6= i, to their values in x?, while keeping
the input xi free. We further assume that these sub-functions are subject to the same constraints that
the function f(x) is subject to.

We can now characterize all feasible points x? that are stationary with respect to the function f(x),
in terms of local conditions on sub-functions fx?(xi).

Claim 1 A feasible point x? = (x?1, . . . , x
?
i , . . . , x

?
n) is stationary for function f(x) iff for all i,

component x?i is stationary for sub-function fx?(xi).

This is immediate from the definition of a stationary point. Assuming no constraints, at a stationary
point x?, the gradient ∇f(x?) = 0, i.e., ∇xif(x?) = ∇fx?(x?i) = 0 for all xi, where ∇xif(x?)
denotes the sub-vector of gradient∇f(x?) with respect to component xi.1

With these observations, we can now search for feasible stationary points x? of the constrained
function f(x) using an iterative method that searches instead for stationary points of the constrained
sub-functions fx?(xi). The method works as follows:

1. Start with some feasible point xt of function f(x) for t = 0

2. While some xti is not a stationary point for constrained sub-function fxt(xi)

(a) Find a stationary point yt+1
i for each constrained sub-function fxt(xi)

(b) xt+1 = g(yt+1)

(c) Increment t

The real computational work of this iterative procedure is in Steps 2(a) and 2(b), although we shall
see later that such steps can, in some cases, be performed efficiently. With an appropriate feasibility
function g(y), one can guarantee that a fixed-point of this procedure yields a stationary point of the
constrained function f(x), by Claim 1.2 Further, any stationary point is trivially a fixed-point of this
procedure (one can seed this procedure with such a point).

1Under constraints, we consider points that are stationary with respect to the corresponding Lagrangian.
2We discuss this point further in the supplementary appendix.

2

As we shall show in the next section, the EDML algorithm—which has been proposed for parameter
estimation in Bayesian networks—is an instance of the above procedure with some notable obser-
vations: (1) the sub-functions fxt(xi) are convex and have unique optima; (2) these sub-functions
have an interesting semantics, as they correspond to posterior distributions that are induced by Naive
Bayes networks with soft evidence asserted on them; (3) defining these sub-functions requires infer-
ence in a Bayesian network parameterized by the current feasible point xt; (4) there are already sev-
eral convergent, fixed-point iterative methods for finding the unique optimum of these sub-functions;
and (5) these convergent methods produce solutions that are always feasible and, hence, the feasi-
bility function g(y) corresponds to the identity function g(y) = y in this case.

We next show this connection to EDML as proposed for parameter estimation in Bayesian networks.
We follow by deriving an EDML algorithm (another instance of the above procedure), but for param-
eter estimation in undirected graphical models. We will also study the impact of having complete
data on both versions of the EDML algorithm, and finally evaluate the new instance of EDML by
comparing it to conjugate gradient and L-BFGS when applied to complete datasets.

3 EDML for Bayesian Networks

From here on, we use upper case letters (X) to denote variables and lower case letters (x) to denote
their values. Variable sets are denoted by bold-face upper case letters (X) and their instantiations
by bold-face lower case letters (x). Generally, we will use X to denote a variable in a Bayesian
network and U to denote its parents. A network parameter will therefore have the general form
θx|u, representing the probability Pr(X=x|U=u).

Consider a (possibly incomplete) datasetD with examples d1, . . . ,dN , and a Bayesian network with
parameters θ. Our goal is to find parameter estimates θ that minimize the negative log-likelihood:

f(θ) = −``(θ|D) = −
N∑
i=1

logPrθ(di). (1)

Here, θ = (. . . , θX|u, . . .) is a vector over the network parameters. Moreover, Prθ is the distribution
induced by the Bayesian network structure under parameters θ. As such, Prθ(di) is the probability
of observing example di in dataset D under parameters θ.

Each component of θ is a parameter set θX|u, which defines a parameter θx|u for each value x of
variableX and instantiation u of its parents U. The feasibility constraint here is that each component
θX|u satisfies the convex sum-to-one constraint:

∑
x θx|u = 1.

The above parameter estimation problem is clearly in the form of the constrained optimization prob-
lem that we phrased in the previous section and, hence, admits the same iterative procedure proposed
in that section for finding stationary points. The relevant questions now are: What form do the sub-
functions fθ?(θX|u) take in this context? What are their semantics? What properties do they have?
How do we find their stationary points? What is the feasibility function g(y) in this case? Finally,
what is the connection to previous work on EDML? We address these questions next.

3.1 Form

We start by characterizing the sub-functions of the negative log-likelihood given in Equation 1.

Theorem 1 For each parameter set θX|u, the negative log-likelihood of Equation 1 has the sub-
function:

fθ?(θX|u) = −
N∑
i=1

log
(
Ciu +

∑
x

Cix|u · θx|u
)

(2)

where Ciu and Cix|u are constants that are independent of parameter set θX|u, given by

Ciu = Prθ?(di)− Prθ?(u,di) and Cix|u = Prθ?(x,u,di)/θ
?
x|u

To compute the constants Ci, we require inference on a Bayesian network with parameters θ?.3

3Theorem 1 assumes tacitly that θ?x|u 6= 0. More generally, however, Cix|u = ∂Prθ?(di)/∂θx|u, which
can also be computed using some standard inference algorithms [6, 14].

3

…	

…	
 η1

 η2
 ηN

!X

X1 X2 XN

Figure 1: Estimation given independent soft observations.

3.2 Semantics

Equation 2 has an interesting semantics, as it corresponds to the negative log-likelihood of a root
variable in a naive Bayes structure, on which soft, not necessarily hard, evidence is asserted [5].4

This model is illustrated in Figure 1, where our goal is to estimate a parameter set θX , given soft
observations η = (η1, . . . , ηN) on variables X1, . . . , XN , where each ηi has a strength specified by
a weight on each value xi of Xi. If we denote the distribution of this model by P, then (1) P(θ)
denotes a prior over parameters sets,5 (2) P(xi|θX = (. . . , θx, . . .)) = θx, and (3) weights P(ηi|xi)
denote the strengths of soft evidence ηi on value xi. The log likelihood of our soft observations η
is:

logP(η|θX) =

N∑
i=1

log
∑
xi

P(ηi|xi)P(xi|θX) =

N∑
i=1

log
∑
xi

P(ηi|xi) · θx (3)

The following result connects Equation 2 to the above likelihood of a soft dataset, when we now
want to estimate the parameter set θX|u, for a particular variable X and parent instantiation u.

Theorem 2 Consider Equations 2 and 3, and assume that each soft evidence ηi has the strength
P(ηi|xi) = Ciu + Cix|u. It then follows that

fθ?(θX|u) = − logP(η|θX|u) (4)

This theorem yields the following interesting semantics for EDML sub-functions. Consider a pa-
rameter set θX|u and example di in our dataset. The example can then be viewed as providing
“votes” on what this parameter set should be. In particular, the vote of example di for value x takes
the form of a soft evidence ηi whose strength is given by

P(ηi|xi) = Prθ?(di)− Prθ?(u,di) + Prθ?(x,u,di)/θ
?
x|u

The sub-function is then aggregating these votes from different examples and producing a corre-
sponding objective function on parameter set θX|u. EDML optimizes this objective function to
produce the next estimate for each parameter set θX|u.

3.3 Properties

Equation 2 is a convex function, and thus has a unique optimum.6 In particular, we have logs of a
linear function, which are each concave. The sum of two concave functions is also concave, thus our
sub-function fθ?(θX|u) is convex, and is subject to a convex sum-to-one constraint [16]. Convex
functions are relatively well understood, and there are a variety of methods and systems that can be
used to optimize Equation 2; see, e.g., [3]. We describe one such approach, next.

3.4 Finding the Unique Optima

In every EDML iteration, and for each parameter set θX|u, we seek the unique optimum for each
sub-function fθ?(θX|u), given by Equation 2. Refaat, et al., has previously proposed a fixed-point

4Soft evidence is an observation that increases or decreases ones belief in an event, but not necessarily to
the point of certainty. For more on soft evidence, see [4].

5Typically, we assume Dirichlet priors for MAP estimation. However, we focus on ML estimation here.
6More specifically, strict convexity implies a unique optimum, although under certain assumptions, we can

guarantee that Equation 2 is indeed strictly convex.

4

algorithm that monotonically improves the objective, and is guaranteed to converge [16]. Moreover,
the solutions it produces already satisfy the convex sum-to-one constraint and, hence, the feasibility
function g ends up being the identity function g(θ) = θ.

In particular, we start with some initial feasible estimates θtX|u at iteration t = 0, and then apply the
following update equation until convergence:

θt+1
x|u =

1

N

N∑
i=1

(Ciu + Cix|u) · θtx|u
Ciu +

∑
x′ Cix′|u · θ

t
x′|u

(5)

Note here that constantsCi are computed by inference on a Bayesian network structure under param-
eters θt (see Theorem 1 for the definitions of these constants). Moreover, while the above procedure
is convergent when optimizing sub-functions fθ?(θX|u), the global EDML algorithm that is opti-
mizing function f(θ) may not be convergent in general.

3.5 Connection to Previous Work

EDML was originally derived by applying an approximate inference algorithm to a meta-network,
which is typically used in Bayesian approaches to parameter estimation [5, 16]. This previous
formulation of EDML, which is specific to Bayesian networks, now falls as a special instance of
the one given in Section 2. In particular, the “sub-problems” defined by the original EDML [5, 16]
correspond precisely to the sub-functions fθ?(θX|u) described here. Further, both versions of EDML
are procedurally identical when they both use the same method for optimizing these sub-functions.

The new formulation of EDML is more transparent, however, at least in revealing certain properties
of the algorithm. For example, it now follows immediately (from Section 2) that the fixed points
of EDML are stationary points of the log-likelihood—a fact that was not proven until [16], using a
technique that appealed to the relationship between EDML and EM. Moreover, the proof that EDML
under complete data will converge immediately to the optimal estimates is also now immediate (see
Section 5). More importantly though, this new formulation provides a systematic procedure for
deriving new instances of EDML for additional models, beyond Bayesian networks. Indeed, in the
next section, we use this procedure to derive an EDML instance for Markov networks, which is
followed by an empirical evaluation of the new algorithm under complete data.

4 EDML for Undirected Models

In this section, we show how parameter estimation for undirected graphical models, such as Markov
networks, can also be posed as an optimization problem, as described in Section 2.

For Markov networks, θ = (. . . , θXa
, . . .) is a vector over the network parameters. Component θXa

is a parameter set for a (tabular) factor a, assigning a number θxa ≥ 0 for each instantiation xa of
variables Xa. The negative log-likelihood −``(θ|D) for a Markov network is:

−``(θ|D) = N logZθ −
N∑
i=1

logZθ(di) (6)

where Zθ is the partition function, and where Zθ(di) is the partition function after conditioning on
example di, under parameterization θ. Sub-functions with respect to Equation 6 may not be convex,
as was the case in Bayesian networks. Consider instead the following objective function, which we
shall subsequently relate to the negative log-likelihood:

f(θ) = −
N∑
i=1

logZθ(di), (7)

with a feasibility constraint that the partition function Zθ equals some constant α. The following re-
sult tells us that it suffices to optimize Equation 7 under the given constraint, to optimize Equation 6.

Theorem 3 Let α be a positive constant, and let g(θ) be a (feasibility) function satisfying Zg(θ) = α

and g(θxa) ∝ θxa for all θxa .7 For every point θ, if g(θ) is optimal for Equation 7, subject to its
7Here, g(θxa) denotes the component of g(θ) corresponding to θxa . Moreover, the function g(θ) can be

constructed, e.g., by simply multiplying all entries of one parameter set by α/Zθ . In our experiments, we

5

constraint, then it is also optimal for Equation 6. Moreover, a point θ is stationary for Equation 6
iff the point g(θ) is stationary for Equation 7, subject to its constraint.

With Equation 7 as a new (constrained) objective function for estimating the parameters of a Markov
network, we can now cast it in the terms of Section 2. We start by characterizing its sub-functions.

Theorem 4 For a given parameter set θXa , the objective function of Equation 7 has sub-functions:

fθ?(θXa
) = −

N∑
i=1

log
∑
xa

Cixa · θxa subject to
∑
xa

Cxa · θxa = α (8)

where Cixa and Cxa are constants that are independent of the parameter set θXa :

Cixa = Zθ?(xa,di)/θ
?
xa and Cxa = Zθ?(xa)/θ?xa .

Note that computing these constants requires inference on a Markov network with parameters θ?.8

Interestingly, this sub-function is convex, as well as the constraint (which is now linear), resulting in
a unique optimum, as in Bayesian networks. However, even when θ? is a feasible point, the unique
optima of these sub-functions may not be feasible when combined. Thus, the feasibility function
g(θ) of Theorem 3 must be utilized in this case.

We now have another instance of the iterative algorithm proposed in Section 2, but for undirected
graphical models. That is, we have just derived an EDML algorithm for such models.

5 EDML under Complete Data

We consider now how EDML simplifies under complete data for both Bayesian and Markov net-
works, identifying forms and properties of the corresponding sub-functions under complete data.

We start with Bayesian networks. Consider a variable X , and a parent instantiation u; and let
D#(xu) represent the number of examples that contain xu in the complete dataset D. Equation 2
of Theorem 1 then reduces to: fθ?(θX|u) = −

∑
xD#(xu) log θx|u +C, where C is a constant that

is independent of parameter set θX|u. Assuming that θ? is feasible (i.e., each θX|u satisfies the sum-
to-one constraint), the unique optimum of this sub-function is θx|u = D#(xu)

D#(u) , which is guaranteed
to yield a feasible point θ, globally. Hence, EDML produces the unique optimal estimates in its first
iteration and terminates immediately thereafter.

The situation is different, however, for Markov networks. Under a complete dataset D, Equation 8
of Theorem 4 reduces to: fθ?(θXa

) = −
∑

xa
D#(xa) log θxa + C, where C is a constant that

is independent of parameter set θXa
. Assuming that θ? is feasible (i.e., satisfies Zθ? = α), the

unique optimum of this sub-function has the closed form: θxa = α
N
D#(xa)
Cxa

, which is equivalent
to the unique optimum one would obtain in a sub-function for Equation 6 [15, 13]. Contrary to
Bayesian networks, the collection of these optima for different parameter sets do not necessarily
yield a feasible point θ. Hence, the feasibility function g of Theorem 3 must be applied here.
The resulting feasible point, however, may no longer be a stationary point for the corresponding
sub-functions, leading EDML to iterate further. Hence, under complete data, EDML for Bayesian
networks converges immediately, while EDML for Markov networks may take multiple iterations.

Both results are consistent with what is already known in the literature on parameter estimation
for Bayesian and Markov networks. The result on Bayesian networks is useful in confirming that
EDML performs optimally in this case. The result for Markov networks, however, gives rise to a
new algorithm for parameter estimation under complete data. We evaluate the performance of this
new EDML algorithm after considering the following example.

Let D be a complete dataset over three variables A, B and C, specified in terms of the number
of times that each instantiation a, b, c appears in D. In particular, we have the following counts:

normalize each parameter set to sum-to-one, but then update the constant α = Zθt for the subsequent iteration.

8Theorem 4 assumes that θ?xa 6= 0. In general, Cixa =
∂Zθ? (di)

∂θxa
, and Cxa =

∂Zθ?
∂θxa

. See also Footnote 3.

6

Table 1: Speed-up results of EDML over CG and L-BFGS
problem #vars icg iedml tcg (S) il-bfgs i′edml tl-bfgs (S′)

zero 256 45 105 3.62 3.90x 24 74 1.64 1.98x
one 256 104 73 8.25 13.26x 58 42 3.87 8.08x
two 256 46 154 3.73 2.83x 21 87 1.54 1.54x

three 256 43 169 3.58 2.52x 52 169 3.55 1.93x
four 256 56 126 4.59 4.31x 61 115 3.90 3.22x
five 256 43 155 3.48 2.70x 49 155 3.20 1.90x
six 256 48 150 3.93 3.13x 20 90 1.47 1.40x

seven 256 57 147 4.64 3.37x 23 89 1.65 1.62x
eight 256 48 155 3.82 2.84x 57 154 3.83 2.28x
nine 256 56 168 4.46 3.15x 45 141 2.90 1.94x

54.wcsp 67 107.33 160.33 6.56 2.78x 68.33 172 1.80 0.72x
or-chain-42 385 120.33 27 0.12 31.27x 110 54.33 0.06 6.43x
or-chain-45 715 151 33.67 0.14 12.52x 94.33 36.33 0.06 4.85x

or-chain-147 410 107.67 18.67 3.27 80.72x 105 58.33 1.63 12.77x
or-chain-148 463 122.67 42.33 1.00 49.04x 80 32 0.28 14.24x
or-chain-225 467 181.33 58 0.79 44.14x 137.67 69 0.33 10.76x

rbm20 40 9 41 30.98 2.38x 30 107.22 30.18 0.99x
Seg2-17 228 63 83.66 1.77 7.00x 46.67 64.67 0.74 4.14x
Seg7-11 235 54.3 84 1.86 2.84x 48.66 73.33 1.27 2.32x

Family2Dominant.1.5loci 385 117.33 88 2.39 5.90x 85.67 78.33 1.04 2.69x
Family2Recessive.15.5loci 385 111.6 89.7 1.31 3.85x 86.33 81.67 0.74 2.18x

grid10x10.f5.wrap 100 136.67 239 17.36 6.26x 142 180.33 10.30 4.63x
grid10x10.f10.wrap 100 101.33 62.33 12.39 20.92x 92.67 59 5.94 9.70x

average 275.65 83.89 101.29 5.39 13.55x 66.84 94.89 3.56 4.45x

D#(a, b, c) = 4, D#(a, b, c̄) = 18, D#(a, b̄, c) = 2, D#(a, b̄, c̄) = 13, D#(ā, b, c) = 1,
D#(ā, b, c̄) = 1, D#(ā, b̄, c) = 42, and D#(ā, b̄, c̄) = 19. Suppose we want to learn, from
this dataset, a Markov network with 3 edges, (A,B), (B,C) and (A,C), with the corresponding
parameter sets θAB , θBC and θAC . If the initial set of parameters θ? = (θ?AB , θ

?
BC , θ

?
AC) is uniform,

i.e., θ?XY = (1, 1, 1, 1), then Equation 8 gives the sub-function fθ?(θAB) = −22 · log θab − 15 ·
log θab̄ − 2 · log θāb − 61 · log θāb̄. Moreover, we have Zθ? = 2 · θab + 2 · θab̄ + 2 · θāb + 2 · θāb̄.
Minimizing fθ?(θAB) under Zθ? = α = 2 corresponds to solving a convex optimization problem,
which has the unique solution: (θab, θab̄, θāb, θab̄) = (22

100 ,
15
100 ,

2
100 ,

61
100). We solve similar convex

optimization problems for the other parameter sets θBC and θAC , to update estimates θ?. We then
apply an appropriate feasibility function g (see Footnote 7), and repeat until convergence.

6 Experimental Results

We evaluate now the efficiency of EDML, conjugate gradient (CG) and Limited-memory BFGS
(L-BFGS), when learning Markov networks under complete data.9 We first learned grid-structured
pairwise MRFs from the CEDAR dataset of handwritten digits, which has 10 datasets (one for each
digit) of 16×16 binary images. We also simulated datasets from networks used in the probabilistic
inference evaluations of UAI-2008, 2010 and 2012, that are amenable to jointree inference.10 For
each network, we simulated 3 datasets of size 210 examples each, and learned parameters using the
original structure. Experiments were run on a 3.6GHz Intel i5 CPU with access to 8GB RAM.

We used the CG implementation in the Apache Commons Math library, and the L-BFGS implemen-
tation in Mallet.11 Both are Java libraries, and our implementation of EDML is also in Java. More
importantly, all of the CG, L-BFGS, and EDML methods rely on the same underlying engine for

9We also considered Iterative Proportional Fitting (IPF) as a baseline. However, IPF does not scale to our
benchmarks, as it invokes inference many times more often than the methods we considered.

10Network 54.wcsp is a weighted CSP problem; or-chain-{42, 45, 147, 148, 225} are from the Pro-
medas suite; rbm-20 is a restricted Boltzmann machine; Seg2-17, Seg7-11 are from the Segmentation
suite; family2-dominant.1.5loci, family2-recessive.15.5loci are genetic linkage analysis networks; and
grid10x10.f5.wrap, grid10x10.10.wrap are 10x10 grid networks.

11Available at http://commons.apache.org/ and http://mallet.cs.umass.edu/.

7

http://commons.apache.org/
http://mallet.cs.umass.edu/

exact inference.12 For EDML, we damped parameter estimates at each iteration, which is typical for
algorithms like loopy belief propagation, which EDML was originally inspired by [5].13 We used
Brent’s method with default settings for line search in CG, which was the most efficient over all
univariate solvers in Apache’s library, which we evaluated in initial experiments.

We first run CG until convergence (or after exceeding 30 minutes) to obtain parameter estimates of
some quality qcg (in log likelihood), recording the number of iterations icg and time tcg required
in minutes. EDML is then run next until it obtains an estimate of the same quality qcg, or better,
recording also the number of iterations iedml and time tedml in minutes. The time speed-up S
of EDML over CG is computed as tcg/tedml. We also performed the same comparison with L-
BFGS instead of CG, recording the corresponding number of iterations (il-bfgs, i′edml) and time
taken (tl-bfgs, t′edml), giving us the speed-up of EDML over L-BFGS as S′ = tl-bfgs/t

′
edml.

Table 1 shows results for both sets of experiments. It shows the number of variables in each net-
work (#vars), the average number of iterations taken by each algorithm, and the average speed-up
achieved by EDML over CG (L-BFGS).14 On the given benchmarks, we see that on average EDML
was roughly 13.5× faster than CG, and 4.5× faster than L-BFGS. EDML was up to an order-of-
magnitude faster than L-BFGS in some cases. In many cases, EDML required more iterations but
was still faster in time. This is due in part by the number of times inference is invoked by CG and
L-BFGS (in line search), whereas EDML only needs to invoke inference once per iteration.

7 Related Work

As an iterative fixed-point algorithm, we can view EDML as a Jacobi-type method, where updates
are performed in parallel [1]. Alternatively, a version of EDML using Gauss-Seidel iterations would
update each parameter set in sequence using the most recently computed update. This leads to an
algorithm that monotonically improves the log likelihood at each update. In this case, we obtain a
coordinate descent algorithm, Iterative Proportional Fitting (IPF) [9], as a special case of EDML.

The notion of fixing all parameters, except for one, has been exploited before for the purposes of
optimizing the log likelihood of a Markov network, as a heuristic for structure learning [15]. This
notion also underlies the IPF algorithm; see, e.g., [13], Section 19.5.7. In the case of complete data,
the resulting sub-function is convex, yet for incomplete data, it is not necessarily convex.

Optimization methods such as conjugate gradient, and L-BFGS [12], are more commonly used to
optimize the parameters of a Markov network. For relational Markov networks or Markov networks
that otherwise assume a feature-based representation [8], evaluating the likelihood is typically in-
tractable, in which case one typically optimizes instead the pseudo-log-likelihood [2]. For more on
parameter estimation in Markov networks, see [10, 13].

8 Conclusion

In this paper, we provided an abstract and simple view of the EDML algorithm, originally proposed
for parameter estimation in Bayesian networks, as a particular method for continuous optimization.
One consequence of this view is that it is immediate that fixed-points of EDML are stationary points
of the log-likelihood, and vice-versa [16]. A more interesting consequence, is that it allows us to
propose an EDML algorithm for a new class of models, Markov networks. Empirically, we find that
EDML can more efficiently learn parameter estimates for Markov networks under complete data,
compared to conjugate gradient and L-BFGS, sometimes by an order-of-magnitude. The empirical
evaluation of EDML for Markov networks under incomplete data is left for future work.

Acknowledgments

This work has been partially supported by ONR grant #N00014-12-1-0423.

12For exact inference in Markov networks, we employed a jointree algorithm from the SAMIAM inference
library, http://reasoning.cs.ucla.edu/samiam/.

13 We start with an initial factor of 1
2

, which we tighten as we iterate.
14 For CG, we used a threshold based on relative change in the likelihood at 10−4. We used Mallet’s default

convergence threshold for L-BFGS.

8

http://reasoning.cs.ucla.edu/samiam/

References

[1] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, 1989.

[2] J. Besag. Statistical Analysis of Non-Lattice Data. The Statistician, 24:179–195, 1975.
[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2004.
[4] Hei Chan and Adnan Darwiche. On the revision of probabilistic beliefs using uncertain evi-

dence. AIJ, 163:67–90, 2005.
[5] Arthur Choi, Khaled S. Refaat, and Adnan Darwiche. EDML: A method for learning parame-

ters in Bayesian networks. In UAI, 2011.
[6] Adnan Darwiche. A differential approach to inference in Bayesian networks. JACM,

50(3):280–305, 2003.
[7] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society B, 39:1–38, 1977.
[8] Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial Intelli-

gence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers, 2009.

[9] Radim Jirousek and Stanislav Preucil. On the effective implementation of the iterative propor-
tional fitting procedure. Computational Statistics & Data Analysis, 19(2):177–189, 1995.

[10] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[11] S. L. Lauritzen. The EM algorithm for graphical association models with missing data. Com-
putational Statistics and Data Analysis, 19:191–201, 1995.

[12] D. C. Liu and J. Nocedal. On the Limited Memory BFGS Method for Large Scale Optimiza-
tion. Mathematical Programming, 45(3):503–528, 1989.

[13] Kevin Patrick Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
[14] James Park and Adnan Darwiche. A differential semantics for jointree algorithms. AIJ,

156:197–216, 2004.
[15] Stephen Della Pietra, Vincent J. Della Pietra, and John D. Lafferty. Inducing features of random

fields. IEEE Trans. Pattern Anal. Mach. Intell., 19(4):380–393, 1997.
[16] Khaled S. Refaat, Arthur Choi, and Adnan Darwiche. New advances and theoretical insights

into EDML. In UAI, pages 705–714, 2012.

9

