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Abstract

Suppose k centers are fit to m points by heuristically minimizing the k-means
cost; what is the corresponding fit over the source distribution? This question is
resolved here for distributions with p ≥ 4 bounded moments; in particular, the
difference between the sample cost and distribution cost decays with m and p as
mmin{−1/4,−1/2+2/p}. The essential technical contribution is a mechanism to uni-
formly control deviations in the face of unbounded parameter sets, cost functions,
and source distributions. To further demonstrate this mechanism, a soft clustering
variant of k-means cost is also considered, namely the log likelihood of a Gaus-
sian mixture, subject to the constraint that all covariance matrices have bounded
spectrum. Lastly, a rate with refined constants is provided for k-means instances
possessing some cluster structure.

1 Introduction

Suppose a set of k centers {pi}ki=1 is selected by approximate minimization of k-means cost; how
does the fit over the sample compare with the fit over the distribution? Concretely: given m points
sampled from a source distribution ρ, what can be said about the quantities∣∣∣∣∣ 1

m

m∑
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i
‖xj − pi‖22 −

∫
min
i
‖x− pi‖22dρ(x)

∣∣∣∣∣ (k-means), (1.1)
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ln

(
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i=1

αipθi(xj)

)
−
∫

ln

(
k∑
i=1

αipθi(x)

)
dρ(x)

∣∣∣∣∣ (soft k-means), (1.2)

where each pθi denotes the density of a Gaussian with a covariance matrix whose eigenvalues lie in
some closed positive interval.

The literature offers a wealth of information related to this question. For k-means, there is firstly a
consistency result: under some identifiability conditions, the global minimizer over the sample will
converge to the global minimizer over the distribution as the sample size m increases [1]. Further-
more, if the distribution is bounded, standard tools can provide deviation inequalities [2, 3, 4]. For
the second problem, which is maximum likelihood of a Gaussian mixture (thus amenable to EM
[5]), classical results regarding the consistency of maximum likelihood again provide that, under
some identifiability conditions, the optimal solutions over the sample converge to the optimum over
the distribution [6].

The task here is thus: to provide finite sample guarantees for these problems, but eschewing bound-
edness, subgaussianity, and similar assumptions in favor of moment assumptions.
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1.1 Contribution

The results here are of the following form: givenm examples from a distribution with a few bounded
moments, and any set of parameters beating some fixed cost c, the corresponding deviations in cost
(as in eq. (1.1) and eq. (1.2)) approach O(m−1/2) with the availability of higher moments.

• In the case of k-means (cf. Corollary 3.1), p ≥ 4 moments suffice, and the rate is
O(mmin{−1/4,−1/2+2/p}). For Gaussian mixtures (cf. Theorem 5.1), p ≥ 8 moments
suffice, and the rate is O(m−1/2+3/p).

• The parameter c allows these guarantees to hold for heuristics. For instance, suppose k
centers are output by Lloyd’s method. While Lloyd’s method carries no optimality guar-
antees, the results here hold for the output of Lloyd’s method simply by setting c to be the
variance of the data, equivalently the k-means cost with a single center placed at the mean.

• The k-means and Gaussian mixture costs are only well-defined when the source distribu-
tion has p ≥ 2 moments. The condition of p ≥ 4 moments, meaning the variance has a
variance, allows consideration of many heavy-tailed distributions, which are ruled out by
boundedness and subgaussianity assumptions.

The main technical byproduct of the proof is a mechanism to deal with the unboundedness of the
cost function; this technique will be detailed in Section 3, but the difficulty and its resolution can be
easily sketched here.

For a single set of centers P , the deviations in eq. (1.1) may be controlled with an application of
Chebyshev’s inequality. But this does not immediately grant deviation bounds on another set of
centers P ′, even if P and P ′ are very close: for instance, the difference between the two costs will
grow as successively farther and farther away points are considered.

The resolution is to simply note that there is so little probability mass in those far reaches that the
cost there is irrelevant. Consider a single center p (and assume x 7→ ‖x − p‖22 is integrable); the
dominated convergence theorem grants∫
Bi

‖x− p‖22dρ(x) →
∫
‖x− p‖22dρ(x), where Bi := {x ∈ Rd : ‖x− p‖2 ≤ i}.

In other words, a ball Bi may be chosen so that
∫
Bc

i
‖x− p‖22dρ(x) ≤ 1/1024. Now consider some

p′ with ‖p− p′‖2 ≤ i. Then∫
Bc

i

‖x− p′‖22dρ(x) ≤
∫
Bc

i

(‖x− p‖2 + ‖p− p′‖2)2dρ(x) ≤ 4

∫
Bc

i

‖x− p‖22dρ(x) ≤ 1

256
.

In this way, a single center may control the outer deviations of whole swaths of other centers. Indeed,
those choices outperforming the reference score c will provide a suitable swath. Of course, it would
be nice to get a sense of the size of Bi; this however is provided by the moment assumptions.

The general strategy is thus to split consideration into outer deviations, and local deviations. The
local deviations may be controlled by standard techniques. To control outer deviations, a single pair
of dominating costs — a lower bound and an upper bound — is controlled.

This technique can be found in the proof of the consistency of k-means due to Pollard [1]. The
present work shows it can also provide finite sample guarantees, and moreover be applied outside
hard clustering.

The content here is organized as follows. The remainder of the introduction surveys related work,
and subsequently Section 2 establishes some basic notation. The core deviation technique, termed
outer bracketing (to connect it to the bracketing technique from empirical process theory), is pre-
sented along with the deviations of k-means in Section 3. The technique is then applied in Section 5
to a soft clustering variant, namely log likelihood of Gaussian mixtures having bounded spectra. As
a reprieve between these two heavier bracketing sections, Section 4 provides a simple refinement for
k-means which can adapt to cluster structure.

All proofs are deferred to the appendices, however the construction and application of outer brackets
is sketched in the text.
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1.2 Related Work

As referenced earlier, Pollard’s work deserves special mention, both since it can be seen as the origin
of the outer bracketing technique, and since it handled k-means under similarly slight assumptions
(just two moments, rather than the four here) [1, 7]. The present work hopes to be a spiritual
successor, providing finite sample guarantees, and adapting technique to a soft clustering problem.

In the machine learning community, statistical guarantees for clustering have been extensively stud-
ied under the topic of clustering stability [4, 8, 9, 10]. One formulation of stability is: if param-
eters are learned over two samples, how close are they? The technical component of these works
frequently involves finite sample guarantees, which in the works listed here make a boundedness
assumption, or something similar (for instance, the work of Shamir and Tishby [9] requires the cost
function to satisfy a bounded differences condition). Amongst these finite sample guarantees, the
finite sample guarantees due to Rakhlin and Caponnetto [4] are similar to the development here after
the invocation of the outer bracket: namely, a covering argument controls deviations over a bounded
set. The results of Shamir and Tishby [10] do not make a boundedness assumption, but the main
results are not finite sample guarantees; in particular, they rely on asymptotic results due to Pollard
[7].

There are many standard tools which may be applied to the problems here, particularly if a bound-
edness assumption is made [11, 12]; for instance, Lugosi and Zeger [2] use tools from VC theory to
handle k-means in the bounded case. Another interesting work, by Ben-david [3], develops special-
ized tools to measure the complexity of certain clustering problems; when applied to the problems
of the type considered here, a boundedness assumption is made.

A few of the above works provide some negative results and related commentary on the topic of
uniform deviations for distributions with unbounded support [10, Theorem 3 and subsequent discus-
sion] [3, Page 5 above Definition 2]. The primary “loophole” here is to constrain consideration to
those solutions beating some reference score c. It is reasonable to guess that such a condition en-
tails that a few centers must lie near the bulk of the distribution’s mass; making this guess rigorous
is the first step here both for k-means and for Gaussian mixtures, and moreover the same conse-
quence was used by Pollard for the consistency of k-means [1]. In Pollard’s work, only optimal
choices were considered, but the same argument relaxes to arbitrary c, which can thus encapsulate
heuristic schemes, and not just nearly optimal ones. (The secondary loophole is to make moment
assumptions; these sufficiently constrain the structure of the distribution to provide rates.)

In recent years, the empirical process theory community has produced a large body of work on the
topic of maximum likelihood (see for instance the excellent overviews and recent work of Wellner
[13], van der Vaart and Wellner [14], Gao and Wellner [15]). As stated previously, the choice of the
term “bracket” is to connect to empirical process theory. Loosely stated, a bracket is simply a pair
of functions which sandwich some set of functions; the bracketing entropy is then (the logarithm of)
the number of brackets needed to control a particular set of functions. In the present work, brackets
are paired with sets which identify the far away regions they are meant to control; furthermore,
while there is potential for the use of many outer brackets, the approach here is able to make use of
just a single outer bracket. The name bracket is suitable, as opposed to cover, since the bracketing
elements need not be members of the function class being dominated. (By contrast, Pollard’s use in
the proof of the consistency of k-means was more akin to covering, in that remote fluctuations were
compared to that of a a single center placed at the origin [1].)

2 Notation

The ambient space will always be the Euclidean space Rd, though a few results will be stated for a
general domain X . The source probability measure will be ρ, and when a finite sample of size m
is available, ρ̂ is the corresponding empirical measure. Occasionally, the variable ν will refer to an
arbitrary probability measure (where ρ and ρ̂ will serve as relevant instantiations). Both integral and
expectation notation will be used; for example, E(f(X)) = Eρ(f(X) =

∫
f(x)dρ(x); for integrals,∫

B
f(x)dρ(x) =

∫
f(x)1[x ∈ B]dρ(x), where 1 is the indicator function. The moments of ρ are

defined as follows.
Definition 2.1. Probability measure ρ has order-pmoment boundM with respect to norm ‖·‖ when
Eρ‖X − Eρ(X)‖l ≤M for 1 ≤ l ≤ p.
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For example, the typical setting of k-means uses norm ‖·‖2, and at least two moments are needed for
the cost over ρ to be finite; the condition here of needing 4 moments can be seen as naturally arising
via Chebyshev’s inequality. Of course, the availability of higher moments is beneficial, dropping the
rates here from m−1/4 down to m−1/2. Note that the basic controls derived from moments, which
are primarily elaborations of Chebyshev’s inequality, can be found in Appendix A.

The k-means analysis will generalize slightly beyond the single-center cost x 7→ ‖x − p‖22 via
Bregman divergences [16, 17].
Definition 2.2. Given a convex differentiable function f : X → R, the corresponding Bregman
divergence is Bf (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉.

Not all Bregman divergences are handled; rather, the following regularity conditions will be placed
on the convex function.
Definition 2.3. A convex differentiable function f is strongly convex with modulus r1 and has Lip-
schitz gradients with constant r2, both respect to some norm ‖ · ‖, when f (respectively) satisfies

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− r1α(1− α)

2
‖x− y‖2,

‖∇f(x)−∇f(y)‖∗ ≤ r2‖x− y‖,
where x, y ∈ X , α ∈ [0, 1], and ‖ · ‖∗ is the dual of ‖ · ‖. (The Lipschitz gradient condition is
sometimes called strong smoothness.)

These conditions are a fancy way of saying the corresponding Bregman divergence is sandwiched
between two quadratics (cf. Lemma B.1).
Definition 2.4. Given a convex differentiable function f : Rd → R which is strongly convex and
has Lipschitz gradients with respective constants r1, r2 with respect to norm ‖ · ‖, the hard k-means
cost of a single point x according to a set of centers P is

φf (x;P ) := min
p∈P

Bf (x, p).

The corresponding k-means cost of a set of points (or distribution) is thus computed as
Eν(φf (X;P )), and letHf (ν; c, k) denote all sets of at most k centers beating cost c, meaning

Hf (ν; c, k) := {P : |P | ≤ k,Eν(φf (X;P )) ≤ c}.

For example, choosing norm ‖ · ‖2 and convex function f(x) = ‖x‖22 (which has r1 = r2 = 2), the
corresponding Bregman divergence is Bf (x, y) = ‖x− y‖22, and Eρ̂(φf (X;P )) denotes the vanilla
k-means cost of some finite point set encoded in the empirical measure ρ̂.

The hard clustering guarantees will work with Hf (ν; c, k), where ν can be either the source distri-
bution ρ, or its empirical counterpart ρ̂. As discussed previously, it is reasonable to set c to simply
the sample variance of the data, or a related estimate of the true variance (cf. Appendix A).

Lastly, the class of Gaussian mixture penalties is as follows.
Definition 2.5. Given Gaussian parameters θ := (µ,Σ), let pθ denote Gaussian density

pθ(x) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
.

Given Gaussian mixture parameters (α,Θ) = ({αi}ki=1, {θi}ki=1) with α ≥ 0 and
∑
i αi = 1

(written α ∈ ∆), the Gaussian mixture cost at a point x is

φg(x; (α,Θ)) := φg(x; {(αi, θi) = (αi, µi, Σi)}ki=1) := ln

(
k∑
i=1

αipθi(x)

)
,

Lastly, given a measure ν, bound k on the number of mixture parameters, and spectrum bounds
0 < σ1 ≤ σ2, let Smog(ν; c, k, σ1, σ2) denote those mixture parameters beating cost c, meaning

Smog(ν; c, k, σ1, σ2) := {(α,Θ) : σ1I � Σi � σ2I, |α| ≤ k, α ∈ ∆,Eν (φg(X; (α,Θ))) ≤ c} .

While a condition of the form Σ � σ1I is typically enforced in practice (say, with a Bayesian prior,
or by ignoring updates which shrink the covariance beyond this point), the condition Σ � σ2I is
potentially violated. These conditions will be discussed further in Section 5.

4



3 Controlling k-means with an Outer Bracket

First consider the special case of k-means cost.

Corollary 3.1. Set f(x) := ‖x‖22, whereby φf is the k-means cost. Let real c ≥ 0 and probability
measure ρ be given with order-p moment bound M with respect to ‖ · ‖2, where p ≥ 4 is a positive
multiple of 4. Define the quantities

c1 := (2M)1/p +
√

2c, M1 := M1/(p−2) +M2/p, N1 := 2 + 576d(c1 + c21 +M1 +M2
1 ).

Then with probability at least 1 − 3δ over the draw of a sample of size m ≥
max{(p/(2p/4+2e))2, 9 ln(1/δ)}, every set of centers P ∈ Hf (ρ̂; c, k) ∪Hf (ρ; c, k) satisfies∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣
≤ m−1/2+min{1/4,2/p}

(
4 + (72c21 + 32M2

1 )

√
1

2
ln

(
(mN1)dk

δ

)
+

√
2p/4ep

8m1/2

(
2

δ

)4/p
)
.

One artifact of the moment approach (cf. Appendix A), heretofore ignored, is the term (2/δ)4/p.
While this may seem inferior to ln(2/δ), note that the choice p = 4 ln(2/δ)/ ln(ln(2/δ)) suffices to
make the two equal.

Next consider a general bound for Bregman divergences. This bound has a few more parameters
than Corollary 3.1. In particular, the term ε, which is instantiated to m−1/2+1/p in the proof of
Corollary 3.1, catches the mass of points discarded due to the outer bracket, as well as the resolution
of the (inner) cover. The parameter p′, which controls the tradeoff between m and 1/δ, is set to p/4
in the proof of Corollary 3.1.

Theorem 3.2. Fix a reference norm ‖ · ‖ throughout the following. Let probability measure ρ be
given with order-pmoment boundM where p ≥ 4, a convex function f with corresponding constants
r1 and r2, reals c and ε > 0, and integer 1 ≤ p′ ≤ p/2− 1 be given. Define the quantities

RB := max

{
(2M)1/p +

√
4c/r1,max

i∈[p′]
(M/ε)1/(p−2i)

}
,

RC :=
√
r2/r1

(
(2M)1/p +

√
4c/r1 +RB

)
+RB ,

B :=
{
x ∈ Rd : ‖x− E(X)‖ ≤ RB

}
,

C :=
{
x ∈ Rd : ‖x− E(X)‖ ≤ RC

}
,

τ := min

{√
ε

2r2
,

ε

2(RB +RC)r2

}
,

and letN be a cover of C by ‖ · ‖-balls with radius τ ; in the case that ‖ · ‖ is an lp norm, the size of
this cover has bound

|N | ≤
(

1 +
2RCd

τ

)d
.

Then with probability at least 1 − 3δ over the draw of a sample of size m ≥
max{p′/(e2p′ε), 9 ln(1/δ)}, every set of centers P ∈ Hf (ρ; c, k) ∪Hf (ρ̂; c, k) satisfies∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣ ≤ 4ε+4r2R
2
C

√
1

2m
ln

(
2|N |k
δ

)
+

√
e2p′εp′

2m

(
2

δ

)1/p′

.

3.1 Compactification via Outer Brackets

The outer bracket is defined as follows.

Definition 3.3. An outer bracket for probability measure ν at scale ε consists of two triples, one
each for lower and upper bounds.
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1. The function `, function class Z`, and set B` satisfy two conditions: if x ∈ Bc` and φ ∈ Z`,
then `(x) ≤ φ(x), and secondly |

∫
Bc

`
`(x)dν(x)| ≤ ε.

2. Similarly, function u, function class Zu, and set Bu satisfy: if x ∈ Bcu and φ ∈ Zu, then
u(x) ≥ φ(x), and secondly |

∫
Bc

u
u(x)dν(x)| ≤ ε.

Direct from the definition, given bracketing functions (`, u), a bracketed function φf (·;P ), and the
bracketing set B := Bu ∪B`,

−ε ≤
∫
Bc

`(x)dν(x) ≤
∫
Bc

φf (x;P )dν(x) ≤
∫
Bc

u(x)dν(x) ≤ ε; (3.4)

in other words, as intended, this mechanism allows deviations on Bc to be discarded. Thus to
uniformly control the deviations of the dominated functions Z := Zu ∪ Z` over the set Bc, it
suffices to simply control the deviations of the pair (`, u).

The following lemma shows that a bracket exists for {φf (·;P ) : P ∈ Hf (ν; c, k)} and compact B,
and moreover that this allows sampled points and candidate centers in far reaches to be deleted.
Lemma 3.5. Consider the setting and definitions in Theorem 3.2, but additionally define

M ′ := 2p
′
ε, `(x) := 0, u(x) := 4r2‖x− E(X)‖2, ερ̂ := ε+

√
M ′ep′

2m

(
2

δ

)1/p′

.

The following statements hold with probability at least 1 − 2δ over a draw of size m ≥
max{p′/(M ′e), 9 ln(1/δ)}.

1. (u, `) is an outer bracket for ρ at scale ερ := ε with sets B` = Bu = B and Z` = Zu =
{φf (·;P ) : P ∈ Hf (ρ̂; c, k)∪Hf (ρ; c, k)}, and furthermore the pair (u, `) is also an outer
bracket for ρ̂ at scale ερ̂ with the same sets.

2. For every P ∈ Hf (ρ̂; c, k) ∪Hf (ρ; c, k),∣∣∣∣∫ φf (x;P )dρ(x)−
∫
B

φf (x;P ∩ C)dρ(x)

∣∣∣∣ ≤ ερ = ε.

and ∣∣∣∣∫ φf (x;P )dρ̂(x)−
∫
B

φf (x;P ∩ C)dρ̂(x)

∣∣∣∣ ≤ ερ̂.
The proof of Lemma 3.5 has roughly the following outline.

1. Pick some ball B0 which has probability mass at least 1/4. It is not possible for an element
of Hf (ρ̂; c, k) ∪ Hf (ρ; c, k) to have all centers far from B0, since otherwise the cost is
larger than c. (Concretely, “far from” means at least

√
4c/r1 away; note that this term

appears in the definitions of B and C in Theorem 3.2.) Consequently, at least one center
lies near to B0; this reasoning was also the first step in the k-means consistency proof due
to k-means Pollard [1].

2. It is now easy to dominate P ∈ Hf (ρ̂; c, k) ∪ Hf (ρ; c, k) far away from B0. In particular,
choose any p0 ∈ B0 ∩ P , which was guaranteed to exist in the preceding point; since
minp∈P Bf (x, p) ≤ Bf (x, p0) holds for all x, it suffices to dominate p0. This domination
proceeds exactly as discussed in the introduction; in fact, the factor 4 appeared there, and
again appears in the u here, for exactly the same reason. Once again, similar reasoning can
be found in the proof by Pollard [1].

3. Satisfying the integral conditions over ρ is easy: it suffices to make B huge. To control the
size of B0, as well as the size of B, and moreover the deviations of the bracket over B, the
moment tools from Appendix A are used.

Now turning consideration back to the proof of Theorem 3.2, the above bracketing allows the re-
moval of points and centers outside of a compact set (in particular, the pair of compact sets B and
C, respectively). On the remaining truncated data and set of centers, any standard tool suffices; for
mathematical convenience, and also to fit well with the use of norms in the definition of moments
as well as the conditions on the convex function f providing the divergence Bf , norm structure
used throughout the other properties, covering arguments are used here. (For details, please see
Appendix B.)
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4 Interlude: Refined Estimates via Clamping

So far, rates have been given that guarantee uniform convergence when the distribution has a few
moments, and these rates improve with the availability of higher moments. These moment condi-
tions, however, do not necessarily reflect any natural cluster structure in the source distribution. The
purpose of this section is to propose and analyze another distributional property which is intended
to capture cluster structure. To this end, consider the following definition.
Definition 4.1. Real numberR and compact setC are a clamp for probability measure ν and family
of centers Z and cost φf at scale ε > 0 if every P ∈ Z satisfies

|Eν(φf (X;P ))− Eν (min {φf (X;P ∩ C) , R})| ≤ ε.

Note that this definition is similar to the second part of the outer bracket guarantee in Lemma 3.5,
and, predictably enough, will soon lead to another deviation bound.
Example 4.2. If the distribution has bounded support, then choosing a clamping valueR and clamp-
ing set C respectively slightly larger than the support size and set is sufficient: as was reasoned in
the construction of outer brackets, if no centers are close to the support, then the cost is bad. Corre-
spondingly, the clamped set of functions Z should again be choices of centers whose cost is not too
high.

For a more interesting example, suppose ρ is supported on k small balls of radius R1, where the
distance between their respective centers is some R2 � R1. Then by reasoning similar to the
bounded case, all choices of centers achieving a good cost will place centers near to each ball, and
thus the clamping value can be taken closer to R1. �

Of course, the above gave the existence of clamps under favorable conditions. The following shows
that outer brackets can be used to show the existence of clamps in general. In fact, the proof is very
short, and follows the scheme laid out in the bounded example above: outer bracketing allows the
restriction of consideration to a bounded set, and some algebra from there gives a conservative upper
bound for the clamping value.
Proposition 4.3. Suppose the setting and definitions of Lemma 3.5, and additionally define

R := 2((2M)2/p +R2
B).

Then (C,R) is a clamp for measure ρ and centerHf (ρ; c, k) at scale ε, and with probability at least
1 − 3δ over a draw of size m ≥ max{p′/(M ′e), 9 ln(1/δ)}, it is also a clamp for ρ̂ and centers
Hf (ρ̂; c, k) at scale ερ̂.

The general guarantee using clamps is as follows. The proof is almost the same as for Theorem 3.2,
but note that this statement is not used quite as readily, since it first requires the construction of
clamps.
Theorem 4.4. Fix a norm ‖ · ‖. Let (R,C) be a clamp for probability measure ρ and empirical
counterpart ρ̂ over some center class Z and cost φf at respective scales ερ and ερ̂, where f has
corresponding convexity constants r1 and r2. Suppose C is contained within a ball of radius RC ,
let ε > 0 be given, define scale parameter

τ := min

{√
ε

2r2
,
r1ε

2r2R3

}
,

and let N be a cover of C by ‖ · ‖-balls of radius τ (as per lemma B.4, if ‖ · ‖ is an lp norm, then
|N | ≤ (1 + (2RCd)/τ)d suffices). Then with probability at least 1− δ over the draw of a sample of
size m ≥ p′/(M ′e), every set of centers P ∈ Z satisfies∣∣∣∣∫ φf (x;P )dρ(x)−

∫
φf (x;P )dρ̂(x)

∣∣∣∣ ≤ 2ε+ ερ + ερ̂ +R2

√
1

2m
ln

(
2|N |k
δ

)
.

Before adjourning this section, note that clamps and outer brackets disagree on the treatment of the
outer regions: the former replaces the cost there with the fixed value R, whereas the latter uses the
value 0. On the technical side, this is necessitated by the covering argument used to produce the
final theorem: if the clamping operation instead truncated beyond a ball of radiusR centered at each
p ∈ P , then the deviations would be wild as these balls moved and suddenly switched the value at a
point from 0 to something large. This is not a problem with outer bracketing, since the same points
(namely Bc) are ignored by every set of centers.
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5 Mixtures of Gaussians

Before turning to the deviation bound, it is a good place to discuss the condition σ1I � Σ � σ2I ,
which must be met by every covariance matrix of every constituent Gaussian in a mixture.

The lower bound σ1I � Σ, as discussed previously, is fairly common in practice, arising either
via a Bayesian prior, or by implementing EM with an explicit condition that covariance updates are
discarded when the eigenvalues fall below some threshold. In the analysis here, this lower bound is
used to rule out two kinds of bad behavior.

1. Given a budget of at least 2 Gaussians, and a sample of at least 2 distinct points, arbitrarily
large likelihood may be achieved by devoting one Gaussian to one point, and shrinking its
covariance. This issue destroys convergence properties of maximum likelihood, since the
likelihood score may be arbitrarily large over every sample, but is finite for well-behaved
distributions. The condition σ1I � Σ rules this out.

2. Another phenomenon is a “flat” Gaussian, meaning a Gaussian whose density is high along
a lower dimensional manifold, but small elsewhere. Concretely, consider a Gaussian over
R2 with covariance Σ = diag(σ, σ−1); as σ decreases, the Gaussian has large density on
a line, but low density elsewhere. This phenomenon is distinct from the preceding in that
it does not produce arbitrarily large likelihood scores over finite samples. The condition
σ1I � Σ rules this situation out as well.

In both the hard and soft clustering analyses here, a crucial early step allows the assertion that good
scores in some region mean the relevant parameter is nearby. For the case of Gaussians, the condition
σ1I � Σ makes this problem manageable, but there is still the possibility that some far away, fairly
uniform Gaussian has reasonable density. This case is ruled out here via σ2I � Σ.
Theorem 5.1. Let probability measure ρ be given with order-pmoment boundM according to norm
‖ · ‖2 where p ≥ 8 is a positive multiple of 4, covariance bounds 0 < σ1 ≤ σ2 with σ1 ≤ 1 for
simplicity, and real c ≤ 1/2 be given. Then with probability at least 1 − 5δ over the draw of a
sample of size m ≥ max

{
(p/(2p/4+2e))2, 8 ln(1/δ), d2 ln(πσ2)2 ln(1/δ)

}
, every set of Gaussian

mixture parameters (α,Θ) ∈ Smog(ρ̂; c, k, σ1, σ2) ∪ Smog(ρ; c, k, σ1, σ2) satisfies∣∣∣∣∫ φg(x; (α,Θ))dρ(x)−
∫
φg(x; (α,Θ))dρ̂(x)

∣∣∣∣
= O

(
m−1/2+3/p

(
1 +

√
ln(m) + ln(1/δ) + (1/δ)4/p

))
,

where the O(·) drops numerical constants, polynomial terms depending on c, M , d, and k, σ2/σ1,
and ln(σ2/σ1), but in particular has no sample-dependent quantities.

The proof follows the scheme of the hard clustering analysis. One distinction is that the outer bracket
now uses both components; the upper component is the log of the largest possible density — indeed,
it is ln((2πσ1)−d/2) — whereas the lower component is a function mimicking the log density of
the steepest possible Gaussian — concretely, the lower bracket’s definition contains the expression
ln((2πσ2)−d/2) − 2‖x − Eρ(X)‖22/σ1, which lacks the normalization of a proper Gaussian, high-
lighting the fact that bracketing elements need not be elements of the class. Superficially, a second
distinction with the hard clustering case is that far away Gaussians can not be entirely ignored on
local regions; the influence is limited, however, and the analysis proceeds similarly in each case.
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