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Abstract

We consider the partial observability model for multi-armed bandits, introduced
by Mannor and Shamir [14]. Our main result is a characterization of regret in
the directed observability model in terms of the dominating and independence
numbers of the observability graph (which must be accessible before selecting an
action). In the undirected case, we show that the learner can achieve optimal regret
without even accessing the observability graph before selecting an action. Both
results are shown using variants of the Exp3 algorithm operating on the observ-
ability graph in a time-efficient manner.

1 Introduction

Prediction with expert advice —see, e.g., [13, 16, 6, 10, 7]— is a general abstract framework for
studying sequential prediction problems, formulated as repeated games between a player and an
adversary. A well studied example of prediction game is the following: In each round, the adversary
privately assigns a loss value to each action in a fixed set. Then the player chooses an action (possibly
using randomization) and incurs the corresponding loss. The goal of the player is to control regret,
which is defined as the excess loss incurred by the player as compared to the best fixed action over
a sequence of rounds. Two important variants of this game have been studied in the past: the expert
setting, where at the end of each round the player observes the loss assigned to each action for that
round, and the bandit setting, where the player only observes the loss of the chosen action, but not
that of other actions.
Let K be the number of available actions, and T be the number of prediction rounds. The best
possible regret for the expert setting is of order

√
T logK. This optimal rate is achieved by the

Hedge algorithm [10] or the Follow the Perturbed Leader algorithm [12]. In the bandit setting, the
optimal regret is of order

√
TK, achieved by the INF algorithm [2]. A bandit variant of Hedge,

called Exp3 [3], achieves a regret with a slightly worse bound of order
√
TK logK.

Recently, Mannor and Shamir [14] introduced an elegant way for defining intermediate observability
models between the expert setting (full observability) and the bandit setting (single observability).
An intuitive way of representing an observability model is through a directed graph over actions:
an arc1 from action i to action j implies that when playing action i we get information also about
the loss of action j. Thus, the expert setting is obtained by choosing a complete graph over actions
(playing any action reveals all losses), and the bandit setting is obtained by choosing an empty edge
set (playing an action only reveals the loss of that action).

1 According to the standard terminology in directed graph theory, throughout this paper a directed edge will
be called an arc.
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The main result of [14] concerns undirected observability graphs. The regret is characterized in
terms of the independence number α of the undirected observability graph. Specifically, they prove
that
√
Tα logK is the optimal regret (up to logarithmic factors) and show that a variant of Exp3,

called ELP, achieves this bound when the graph is known ahead of time, where α ∈ {1, . . . ,K}
interpolates between full observability (α = 1 for the clique) and single observability (α = K for
the graph with no edges). Given the observability graph, ELP runs a linear program to compute the
desired distribution over actions. In the case when the graph changes over time, and at each time

step ELP observes the current observability graph before prediction, a bound of
√∑T

t=1 αt logK
is shown, where αt is the independence number of the graph at time t. A major problem left open
in [14] was the characterization of regret for directed observability graphs, a setting for which they
only proved partial results.
Our main result is a full characterization (to within logarithmic factors) of regret in the case of di-
rected observability graphs. Our upper bounds are proven using a new algorithm, called Exp3-DOM.
This algorithm is efficient to run even when the graph changes over time: it just needs to compute
a small dominating set of the current observability graph (which must be given as side informa-
tion) before prediction.2 As in the undirected case, the regret for the directed case is characterized in
terms of the independence numbers of the observability graphs (computed ignoring edge directions).
We arrive at this result by showing that a key quantity emerging in the analysis of Exp3-DOM can
be bounded in terms of the independence numbers of the graphs. This bound (Lemma 13 in the
appendix) is based on a combinatorial construction which might be of independent interest.
We also explore the possibility of the learning algorithm receiving the observability graph only after
prediction, and not before. For this setting, we introduce a new variant of Exp3, called Exp3-SET,
which achieves the same regret as ELP for undirected graphs, but without the need of accessing the
current observability graph before each prediction. We show that in some random directed graph
models Exp3-SET has also a good performance. In general, we can upper bound the regret of Exp3-
SET as a function of the maximum acyclic subgraph of the observability graph, but this upper bound
may not be tight. Yet, Exp3-SET is much simpler and computationally less demanding than ELP,
which needs to solve a linear program in each round.
There are a variety of real-world settings where partial observability models corresponding to di-
rected and undirected graphs are applicable. One of them is route selection. We are given a graph
of possible routes connecting cities: when we select a route r connecting two cities, we observe the
cost (say, driving time or fuel consumption) of the “edges” along that route and, in addition, we have
complete information on any sub-route r′ of r, but not vice versa. We abstract this in our model by
having an observability graph over routes r, and an arc from r to any of its sub-routes r′.3

Sequential prediction problems with partial observability models also arise in the context of recom-
mendation systems. For example, an online retailer, which advertises products to users, knows that
users buying certain products are often interested in a set of related products. This knowledge can be
represented as a graph over the set of products, where two products are joined by an edge if and only
if users who buy any one of the two are likely to buy the other as well. In certain cases, however,
edges have a preferred orientation. For instance, a person buying a video game console might also
buy a high-def cable to connect it to the TV set. Vice versa, interest in high-def cables need not
indicate an interest in game consoles.
Such observability models may also arise in the case when a recommendation system operates in
a network of users. For example, consider the problem of recommending a sequence of products,
or contents, to users in a group. Suppose the recommendation system is hosted on an online so-
cial network, on which users can befriend each other. In this case, it has been observed that social
relationships reveal similarities in tastes and interests [15]. However, social links can also be asym-
metric (e.g., followers of celebrities). In such cases, followers might be more likely to shape their
preferences after the person they follow, than the other way around. Hence, a product liked by a
celebrity is probably also liked by his/her followers, whereas a preference expressed by a follower
is more often specific to that person.

2 Computing an approximately minimum dominating set can be done by running a standard greedy set cover
algorithm, see Section 2.

3 Though this example may also be viewed as an instance of combinatorial bandits [8], the model studied
here is more general. For example, it does not assume linear losses, which could arise in the routing example
from the partial ordering of sub-routes.
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2 Learning protocol, notation, and preliminaries

As stated in the introduction, we consider an adversarial multi-armed bandit setting with a finite
action set V = {1, . . . ,K}. At each time t = 1, 2, . . . , a player (the “learning algorithm”) picks
some action It ∈ V and incurs a bounded loss `It,t ∈ [0, 1]. Unlike the standard adversarial bandit
problem [3, 7], where only the played action It reveals its loss `It,t, here we assume all the losses
in a subset SIt,t ⊆ V of actions are revealed after It is played. More formally, the player observes
the pairs (i, `i,t) for each i ∈ SIt,t. We also assume i ∈ Si,t for any i and t, that is, any action
reveals its own loss when played. Note that the bandit setting (Si,t = {i}) and the expert setting
(Si,t = V ) are both special cases of this framework. We call Si,t the observation set of action i at
time t, and write i t−→ j when at time t playing action i also reveals the loss of action j. Hence,
Si,t = {j ∈ V : i

t−→ j}. The family of observation sets {Si,t}i∈V we collectively call the
observation system at time t.
The adversaries we consider are nonoblivious. Namely, each loss `i,t at time t can be an arbitrary
function of the past player’s actions I1, . . . , It−1. The performance of a player A is measured
through the regret

max
k∈V

E
[
LA,T − Lk,T

]
where LA,T = `I1,1 + · · · + `IT ,T and Lk,T = `k,1 + · · · + `k,T are the cumulative losses of the
player and of action k, respectively. The expectation is taken with respect to the player’s internal
randomization (since losses are allowed to depend on the player’s past random actions, also Lk,t
may be random).4 The observation system {Si,t}i∈V is also adversarially generated, and each Si,t
can be an arbitrary function of past player’s actions, just like losses are. However, in Section 3 we
also consider a variant in which the observation system is randomly generated according to a specific
stochastic model.
Whereas some algorithms need to know the observation system at the beginning of each step t,
others need not. From this viewpoint, we consider two online learning settings. In the first setting,
called the informed setting, the full observation system {Si,t}i∈V selected by the adversary is made
available to the learner before making its choice It. This is essentially the “side-information” frame-
work first considered in [14]. In the second setting, called the uninformed setting, no information
whatsoever regarding the time-t observation system is given to the learner prior to prediction. We
find it convenient to adopt the same graph-theoretic interpretation of observation systems as in [14].
At each step t = 1, 2, . . . , the observation system {Si,t}i∈V defines a directed graph Gt = (V,Dt),
where V is the set of actions, and Dt is the set of arcs, i.e., ordered pairs of nodes. For j 6= i, arc
(i, j) ∈ Dt if and only if i t−→ j (the self-loops created by i t−→ i are intentionally ignored). Hence,
we can equivalently define {Si,t}i∈V in terms of Gt. Observe that the outdegree d+

i of any i ∈ V
equals |Si,t|−1. Similarly, the indegree d−i of i is the number of action j 6= i such that i ∈ Sj,t (i.e.,
such that j t−→ i). A notable special case of the above is when the observation system is symmetric
over time: j ∈ Si,t if and only if i ∈ Sj,t for all i, j and t. In words, playing i at time t reveals the
loss of j if and only if playing j at time t reveals the loss of i. A symmetric observation system is
equivalent to Gt being an undirected graph or, more precisely, to a directed graph having, for every
pair of nodes i, j ∈ V , either no arcs or length-two directed cycles. Thus, from the point of view
of the symmetry of the observation system, we also distinguish between the directed case (Gt is a
general directed graph) and the symmetric case (Gt is an undirected graph for all t).
The analysis of our algorithms depends on certain properties of the sequence of graphs Gt. Two
graph-theoretic notions playing an important role here are those of independent sets and dominating
sets. Given an undirected graph G = (V,E), an independent set of G is any subset T ⊆ V such
that no two i, j ∈ T are connected by an edge in E. An independent set is maximal if no proper
superset thereof is itself an independent set. The size of a largest (maximal) independent set is the
independence number of G, denoted by α(G). If G is directed, we can still associate with it an
independence number: we simply view G as undirected by ignoring arc orientation. If G = (V,D)
is a directed graph, then a subset R ⊆ V is a dominating set for G if for all j 6∈ R there exists
some i ∈ R such that arc (i, j) ∈ D. In our bandit setting, a time-t dominating set Rt is a subset of
actions with the property that the loss of any remaining action in round t can be observed by playing

4 Although we defined the problem in terms of losses, our analysis can be applied to the case when actions
return rewards gi,t ∈ [0, 1] via the transformation `i,t = 1− gi,t.
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Algorithm 1: Exp3-SET algorithm (for the uninformed setting)
Parameter: η ∈ [0, 1]
Initialize: wi,1 = 1 for all i ∈ V = {1, . . . ,K}
For t = 1, 2, . . . :

1. Observation system {Si,t}i∈V is generated but not disclosed ;

2. Set pi,t =
wi,t
Wi,t

for each i ∈ V , where Wt =
∑
j∈V

wj,t ;

3. Play action It drawn according to distribution pt = (p1,t, . . . , pK,t) ;
4. Observe pairs (i, `i,t) for all i ∈ SIt,t;
5. Observation system {Si,t}i∈V is disclosed ;

6. For any i ∈ V set wi,t+1 = wi,t exp
(
−η ̂̀i,t), wherề

i,t =
`i,t
qi,t

I{i ∈ SIt,t} and qi,t =
∑

j : j
t−→i

pj,t .

some action in Rt. A dominating set is minimal if no proper subset thereof is itself a dominating set.
The domination number of directed graph G, denoted by γ(G), is the size of a smallest (minimal)
dominating set of G.
Computing a minimum dominating set for an arbitrary directed graph Gt is equivalent to solving a
minimum set cover problem on the associated observation system {Si,t}i∈V . Although minimum
set cover is NP-hard, the well-known Greedy Set Cover algorithm [9], which repeatedly selects
from {Si,t}i∈V the set containing the largest number of uncovered elements so far, computes a
dominating set Rt such that |Rt| ≤ γ(Gt) (1 + lnK).
Finally, we can also lift the notion of independence number of an undirected graph to directed graphs
through the notion of maximum acyclic subgraphs: Given a directed graph G = (V,D), an acyclic
subgraph of G is any graph G′ = (V ′, D′) such that V ′ ⊆ V , and D′ = D ∩

(
V ′ × V ′

)
, with no

(directed) cycles. We denote by mas(G) = |V ′| the maximum size of such V ′. Note that when G
is undirected (more precisely, as above, when G is a directed graph having for every pair of nodes
i, j ∈ V either no arcs or length-two cycles), then mas(G) = α(G), otherwise mas(G) ≥ α(G).
In particular, when G is itself a directed acyclic graph, then mas(G) = |V |.

3 Algorithms without Explicit Exploration: The Uninformed Setting

In this section, we show that a simple variant of the Exp3 algorithm [3] obtains optimal regret (to
within logarithmic factors) in the symmetric and uninformed setting. We then show that even the
harder adversarial directed setting lends itself to an analysis, though with a weaker regret bound.

Exp3-SET (Algorithm 1) runs Exp3 without mixing with the uniform distribution. Similar to Exp3,
Exp3-SET uses loss estimates ̂̀i,t that divide each observed loss `i,t by the probability qi,t of ob-
serving it. This probability qi,t is simply the sum of all pj,t such that j t−→ i (the sum includes pi,t).
Next, we bound the regret of Exp3-SET in terms of the key quantity

Qt =
∑
i∈V

pi,t
qi,t

=
∑
i∈V

pi,t∑
j : j

t−→i
pj,t

. (1)

Each term pi,t/qi,t can be viewed as the probability of drawing i from pt conditioned on the event
that iwas observed. Similar to [14], a key aspect to our analysis is the ability to deterministically and
nonvacuously5 upper bound Qt in terms of certain quantities defined on {Si,t}i∈V . We do so in two
ways, either irrespective of how small each pi,t may be (this section) or depending on suitable lower
bounds on the probabilities pi,t (Section 4). In fact, forcing lower bounds on pi,t is equivalent to
adding exploration terms to the algorithm, which can be done only when knowing {Si,t}i∈V before
each prediction —an information available only in the informed setting.

5 An obvious upper bound on Qt is K.
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The following result is the building block for all subsequent results in the uninformed setting.6

Theorem 1 The regret of Exp3-SET satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[Qt] .

As we said, in the adversarial and symmetric case the observation system at time t can be described
by an undirected graph Gt = (V,Et). This is essentially the problem of [14], which they studied
in the easier informed setting, where the same quantity Qt above arises in the analysis of their
ELP algorithm. In their Lemma 3, they show that Qt ≤ α(Gt), irrespective of the choice of the
probabilities pt. When applied to Exp3-SET, this immediately gives the following result.

Corollary 2 In the symmetric setting, the regret of Exp3-SET satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[α(Gt)] .

In particular, if for constants α1, . . . , αT we have α(Gt) ≤ αt, t = 1, . . . , T , then setting η =√
(2 lnK)

/∑T
t=1 αt, gives

max
k∈V

E
[
LA,T − Lk,T

]
≤

√√√√2(lnK)
T∑
t=1

αt .

The bounds proven in Corollary 2 are equivalent to those proven in [14] (Theorem 2 therein) for
the ELP algorithm. Yet, our analysis is much simpler and, more importantly, our algorithm is sim-
pler and more efficient than ELP, which requires solving a linear program at each step. Moreover,
unlike ELP, Exp-SET does not require prior knowledge of the observation system {Si,t}i∈V at the
beginning of each step.

We now turn to the directed setting. We start by considering a setting in which the observation
system is stochastically generated. Then, we turn to the harder adversarial setting.

The Erdős-Renyi model is a standard model for random directed graphs G = (V,D), where we are
given a density parameter r ∈ [0, 1] and, for any pair i, j ∈ V , arc (i, j) ∈ D with independent
probability r.7 We have the following result.

Corollary 3 Let Gt be generated according to the Erdős-Renyi model with parameter r ∈ [0, 1].
Then the regret of Exp3-SET satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η T

2r
(
1− (1− r)K

)
.

In the above, the expectations E[·] are w.r.t. both the algorithm’s randomization and the random

generation of Gt occurring at each round. In particular, setting η =
√

2r lnK
T (1−(1−r)K)

, gives

max
k∈V

E
[
LA,T − Lk,T

]
≤
√

2(lnK)T (1− (1− r)K)
r

.

Note that as r ranges in [0, 1] we interpolate between the bandit (r = 0)8 and the expert (r = 1)
regret bounds.

When the observation system is generated by an adversary, we have the following result.

Corollary 4 In the directed setting, the regret of Exp3-SET satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[mas(Gt)] .

6 All proofs are given in the supplementary material to this paper.
7 Self loops, i.e., arcs (i, i) are included by default here.
8 Observe that limr→0+

1−(1−r)K

r
= K.
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In particular, if for constants m1, . . . ,mT we have mas(Gt) ≤ mt, t = 1, . . . , T , then setting

η =
√

(2 lnK)
/∑T

t=1mt, gives

max
k∈V

E
[
LA,T − Lk,T

]
≤

√√√√2(lnK)
T∑
t=1

mt .

Observe that Corollary 4 is a strict generalization of Corollary 2 because, as we pointed out in
Section 2, mas(Gt) ≥ α(Gt), with equality holding when Gt is an undirected graph.

As far as lower bounds are concerned, in the symmetric setting, the authors of [14] derive a lower
bound of Ω

(√
α(G)T

)
in the case when Gt = G for all t. We remark that similar to the symmetric

setting, we can derive a lower bound of Ω
(√

α(G)T
)
. The simple observation is that given a

directed graphG, we can define a new graphG′ which is made undirected just by reciprocating arcs;
namely, if there is an arc (i, j) in G we add arcs (i, j) and (j, i) in G′. Note that α(G) = α(G′).
Since in G′ the learner can only receive more information than in G, any lower bound on G also
applies to G′. Therefore we derive the following corollary to the lower bound of [14] (Theorem 4
therein).

Corollary 5 Fix a directed graphG, and supposeGt = G for all t. Then there exists a (randomized)
adversarial strategy such that for any T = Ω

(
α(G)3

)
and for any learning strategy, the expected

regret of the learner is Ω
(√

α(G)T
)
.

Moreover, standard results in the theory of Erdős-Renyi graphs, at least in the symmetric case (e.g.,
[11]), show that, when the density parameter r is constant, the independence number of the resulting
graph has an inverse dependence on r. This fact, combined with the abovementioned lower bound

of [14] gives a lower bound of the form
√

T
r , matching (up to logarithmic factors) the upper bound

of Corollary 3.

One may wonder whether a sharper lower bound argument exists which applies to the general di-
rected adversarial setting and involves the larger quantity mas(G). Unfortunately, the above mea-
sure does not seem to be related to the optimal regret: Using Claim 1 in the appendix (see proof of
Theorem 3) one can exhibit a sequence of graphs each having a large acyclic subgraph, on which
the regret of Exp3-SET is still small.

The lack of a lower bound matching the upper bound provided by Corollary 4 is a good indication
that something more sophisticated has to be done in order to upper bound Qt in (1). This leads us
to consider more refined ways of allocating probabilities pi,t to nodes. In the next section, we show
an allocation strategy that delivers optimal (to within logarithmic factors) regret bounds using prior
knowledge of the graphs Gt.

4 Algorithms with Explicit Exploration: The Informed Setting

We are still in the general scenario where graphs Gt are adversarially generated and directed, but
now Gt is made available before prediction. We start by showing a simple example where our
analysis of Exp3-SET inherently fails. This is due to the fact that, when the graph induced by the
observation system is directed, the key quantity Qt defined in (1) cannot be nonvacuously upper
bounded independent of the choice of probabilities pi,t. A way around it is to introduce a new
algorithm, called Exp3-DOM, which controls probabilities pi,t by adding an exploration term to the
distribution pt. This exploration term is supported on a dominating set of the current graph Gt. For
this reason, Exp3-DOM requires prior access to a dominating set Rt at each time step t which, in
turn, requires prior knowledge of the entire observation system {Si,t}i∈V .

As announced, the next result shows that, even for simple directed graphs, there exist distributions
pt on the vertices such that Qt is linear in the number of nodes while the independence number is
1.9 Hence, nontrivial bounds on Qt can be found only by imposing conditions on distribution pt.

9 In this specific example, the maximum acyclic subgraph has size K, which confirms the looseness of
Corollary 4.
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Algorithm 2: Exp3-DOM algorithm (for the uninformed setting)

Input: Exploration parameters γ(b) ∈ (0, 1] for b ∈
{

0, 1, . . . , blog2Kc
}

Initialization: w(b)
i,1 = 1 for all i ∈ V and b ∈

{
0, 1, . . . , blog2Kc

}
For t = 1, 2, . . . :

1. Observation system {Si,t}i∈V is generated and disclosed ;
2. Compute a dominating set Rt ⊆ V for Gt associated with {Si,t}i∈V ;

3. Let bt be such that |Rt| ∈
[
2bt , 2bt+1 − 1

]
;

4. Set W (bt)
t =

∑
i∈V w

(bt)
i,t ;

5. Set p(bt)
i,t =

(
1− γ(bt)

) w(bt)
i,t

W
(bt)
t

+
γ(bt)

|Rt|
I{i ∈ Rt};

6. Play action It drawn according to distribution p(bt)
t =

(
p
(bt)
1,t , . . . , p

(bt)
V,t

)
;

7. Observe pairs (i, `i,t) for all i ∈ SIt,t;

8. For any i ∈ V set w(bt)
i,t+1 = w

(bt)
i,t exp

(
−γ(bt) ̂̀(bt)

i,t /2
bt
)
, where

̂̀(bt)
i,t =

`i,t

q
(bt)
i,t

I{i ∈ SIt,t} and q
(bt)
i,t =

∑
j : j

t−→i

p
(bt)
j,t .

Fact 6 Let G = (V,D) be a total order on V = {1, . . . ,K}, i.e., such that for all i ∈ V , arc
(j, i) ∈ D for all j = i+1, . . . ,K. Let p = (p1, . . . , pK) be a distribution on V such that pi = 2−i,
for i < K and pk = 2−K+1. Then

Q =
K∑
i=1

pi
pi +

∑
j : j−→i pj

=
K∑
i=1

pi∑K
j=i pj

=
K + 1

2
.

We are now ready to introduce and analyze the new algorithm Exp3-DOM for the informed and
directed setting. Exp3-DOM (see Algorithm 2) runs O(logK) variants of Exp3 indexed by b =
0, 1, . . . , blog2Kc. At time t the algorithm is given observation system {Si,t}i∈V , and computes
a dominating set Rt of the directed graph Gt induced by {Si,t}i∈V . Based on the size |Rt| of Rt,
the algorithm uses instance bt = blog2 |Rt|c to pick action It. We use a superscript b to denote the
quantities relevant to the variant of Exp3 indexed by b. Similarly to the analysis of Exp3-SET, the
key quantities are

q
(b)
i,t =

∑
j : i∈Sj,t

p
(b)
j,t =

∑
j : j

t−→i

p
(b)
j,t and Q

(b)
t =

∑
i∈V

p
(b)
i,t

q
(b)
i,t

, b = 0, 1, . . . , blog2Kc .

Let T (b) =
{
t = 1, . . . , T : |Rt| ∈ [2b, 2b+1 − 1]

}
. Clearly, the sets T (b) are a partition of the time

steps {1, . . . , T}, so that
∑
b |T (b)| = T . Since the adversary adaptively chooses the dominating

sets Rt, the sets T (b) are random. This causes a problem in tuning the parameters γ(b). For this
reason, we do not prove a regret bound for Exp3-DOM, where each instance uses a fixed γ(b), but
for a slight variant (described in the proof of Theorem 7 —see the appendix) where each γ(b) is set
through a doubling trick.

Theorem 7 In the directed case, the regret of Exp3-DOM satisfies

max
k∈V

E
[
LA,T − Lk,T

]
≤
blog2Kc∑
b=0

2b lnK
γ(b)

+ γ(b)E

 ∑
t∈T (b)

(
1 +

Q
(b)
t

2b+1

) . (2)
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Moreover, if we use a doubling trick to choose γ(b) for each b = 0, . . . , blog2Kc, then

max
k∈V

E
[
LA,T − Lk,T

]
= O

(lnK) E


√√√√ T∑

t=1

(
4|Rt|+Q

(bt)
t

)+ (lnK) ln(KT )

 . (3)

Importantly, the next result shows how bound (3) of Theorem 7 can be expressed in terms of the se-
quence α(Gt) of independence numbers of graphs Gt whenever the Greedy Set Cover algorithm [9]
(see Section 2) is used to compute the dominating set Rt of the observation system at time t.

Corollary 8 If Step 2 of Exp3-DOM uses the Greedy Set Cover algorithm to compute the dominating
sets Rt, then the regret of Exp-DOM with doubling trick satisfies

max
k∈V

E
[
LA,T − Lk,T

]
= O

ln(K)

√√√√ln(KT )
T∑
t=1

α(Gt) + ln(K) ln(KT )


where, for each t, α(Gt) is the independence number of the graphGt induced by observation system
{Si,t}i∈V .

Comparing Corollary 8 to Corollary 5 delivers the announced characherization in the general ad-
versarial and directed setting. Moreover, a quick comparison between Corollary 2 and Corollary 8
reveals that a symmetric observation system overcomes the advantage of working in an informed
setting: The bound we obtained for the uninformed symmetric setting (Corollary 2) is sharper by
logarithmic factors than the one we derived for the informed —but more general, i.e., directed—
setting (Corollary 8).

5 Conclusions and work in progress
We have investigated online prediction problems in partial information regimes that interpolate be-
tween the classical bandit and expert settings. We have shown a number of results characterizing
prediction performance in terms of: the structure of the observation system, the amount of informa-
tion available before prediction, the nature (adversarial or fully random) of the process generating
the observation system. Our results are substantial improvements over the paper [14] that initi-
ated this interesting line of research. Our improvements are diverse, and range from considering
both informed and uninformed settings to delivering more refined graph-theoretic characterizations,
from providing more efficient algorithmic solutions to relying on simpler (and often more general)
analytical tools.
Some research directions we are currently pursuing are the following: (1) We are currently inves-
tigating the extent to which our results could be applied to the case when the observation system
{Si,t}i∈V may depend on the loss `It,t of player’s action It. Note that this would prevent a di-
rect construction of an unbiased estimator for unobserved losses, which many worst-case bandit
algorithms (including ours —see the appendix) hinge upon. (2) The upper bound contained in
Corollary 4 and expressed in terms of mas(·) is almost certainly suboptimal, even in the uninformed
setting, and we are trying to see if more adequate graph complexity measures can be used instead.
(3) Our lower bound in Corollary 5 heavily relies on the corresponding lower bound in [14] which,
in turn, refers to a constant graph sequence. We would like to provide a more complete charecteriza-
tion applying to sequences of adversarially-generated graphs G1, G2, . . . , GT in terms of sequences
of their corresponding independence numbers α(G1), α(G2), . . . , α(GT ) (or variants thereof), in
both the uninformed and the informed settings. (4) All our upper bounds rely on parameters to be
tuned as a function of sequences of observation system quantities (e.g., the sequence of indepen-
dence numbers). We are trying to see if an adaptive learning rate strategy à la [4], based on the
observable quantities Qt, could give similar results without such a prior knowledge.
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A Technical lemmas and proofs

This section contains the proofs of all technical results occurring in the main text, along with ancil-
lary graph-theoretic lemmas. Throughout this appendix, Et[·] is a shorthand for E

[
· | I1, . . . , It−1

]
.

Proof of Theorem 1
Following the proof of Exp3 [3], we have

Wt+1

Wt
=
∑
i∈V

wi,t+1

Wt

=
∑
i∈V

wi,t exp(−η ̂̀i,t)
Wt

=
∑
i∈V

pi,t exp(−η ̂̀i,t)
≤
∑
i∈V

pi,t

(
1− η̂̀i,t +

1
2
η2(̂̀i,t)2) using e−x ≤ 1− x+ x2/2 for all x ≥ 0

≤ 1− η
∑
i∈V

pi,t ̂̀i,t +
η2

2

∑
i∈V

pi,t(̂̀i,t)2 .
Taking logs, using ln(1− x) ≤ −x for all x ≥ 0, and summing over t = 1, . . . , T yields

ln
WT+1

W1
≤ −η

T∑
t=1

∑
i∈V

pi,t ̂̀i,t +
η2

2

T∑
t=1

∑
i∈V

pi,t(̂̀i,t)2 .
Moreover, for any fixed comparison action k, we also have

ln
WT+1

W1
≥ ln

wk,T+1

W1
= −η

T∑
t=1

̂̀
k,t − lnK .

Putting together and rearranging gives
T∑
t=1

∑
i∈V

pi,t ̂̀i,t ≤ T∑
t=1

̂̀
k,t +

lnK
η

+
η

2

T∑
t=1

∑
i∈V

pi,t(̂̀i,t)2 . (4)

Note that, for all i ∈ V ,

Et[̂̀i,t] =
∑

j : i∈Sj,t

pj,t
`i,t
qi,t

=
∑

j : j
t−→i

pj,t
`i,t
qi,t

=
`i,t
qi,t

∑
j : j

t−→i

pj,t = `i,t .

Moreover,

Et
[
(̂̀i,t)2] =

∑
j : i∈Sj,t

pj,t
`2i,t
q2i,t

=
`2i,t
q2i,t

∑
j : j

t−→i

pj,t ≤
1
q2i,t

∑
j : j

t−→i

pj,t =
1
qi,t

.

Hence, taking expectations Et on both sides of (4), and recalling the definition of Qt, we can write
T∑
t=1

∑
i∈V

pi,t `i,t ≤
T∑
t=1

`k,t +
lnK
η

+
η

2

T∑
t=1

Qt . (5)

Finally, taking expectations to remove conditioning gives

E
[
LA,T − Lk,T

]
≤ lnK

η
+
η

2

T∑
t=1

E[Qt] ,

as claimed. �

Proof of Corollary 3
Fix round t, and let G = (V,D) be the Erdős-Renyi random graph generated at time t, N−i be
the in-neighborhood of node i, i.e., the set of nodes j such that (j, i) ∈ D, and denote by d−i the
indegree of i.
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Claim 1 Let p1, . . . , pK be an arbitrary probability distribution defined over V , f : V → V be an
arbitrary permutation of V , and Ef denote the expectation w.r.t. permutation f when f is drawn
uniformly at random. Then, for any i ∈ V , we have

Ef

[
pf(i)

pf(i) +
∑
j : f(j)∈N−

f(i)
pf(j)

]
=

1
1 + d−i

.

Proof. Consider selecting a subset S ⊂ V of 1 + d−i nodes. We shall consider the contribution to
the expectation when S = N−f(i) ∪ {f(i)}. Since there are K(K − 1) · · · (K − d−i + 1) terms (out
of K!) contributing to the expectation, we can write

Ef

[
pf(i)

pf(i) +
∑
j : f(j)∈N−

f(i)
pf(j)

]
=

1(
K
d−i

) ∑
S⊂V,|S|=d−i

1
1 + d−i

∑
i∈S

pi
pi +

∑
j∈S,j 6=i pj

=
1(
K
d−i

) ∑
S⊂V,|S|=d−i

1
1 + d−i

=
1

1 + d−i
.

�

Claim 2 Let p1, . . . , pK be an arbitrary probability distribution defined over V , and E denote the
expectation w.r.t. the Erdős-Renyi random draw of arcs at time t. Then, for any fixed i ∈ V , we have

E

[
pi

pi +
∑
j : j

t−→i
pj

]
=

1
rK

(
1− (1− r)K

)
.

Proof. For the given i ∈ V and time t, consider the Bernoulli random variablesXj , j ∈ V \{i}, and

denote by Ej : j 6=i the expectation w.r.t. all of them. We symmetrize E
[

pi

pi+
P

j : j
t−→i

pj

]
by means of

a random permutation f , as in Claim 1. We can write

E

[
pi

pi +
∑
j : j

t−→i
pj

]
= Ej : j 6=i

[
pi

pi +
∑
j : j 6=iXjpj

]

= Ej : j 6=iEf

[
pf(i)

pf(i) +
∑
j : j 6=iXf(j)pf(j)

]
(by symmetry)

= Ej : j 6=i

[
1

1 +
∑
j : j 6=iXj

]
(from Claim 1)

=
K−1∑
i=0

(
K − 1
i

)
ri(1− r)K−1−i 1

i+ 1

=
1
rK

K−1∑
i=0

(
K

i+ 1

)
ri+1(1− r)K−1−i

=
1
rK

(
1− (1− r)K

)
.

�

At this point, we follow the proof of Theorem 1 up until (5). We take an expectation EG1,...,GT

w.r.t. the randomness in generating the sequence of graphs G1, . . . , GT . This yields
T∑
t=1

EG1,...,GT

[∑
i∈V

pi,t `i,t

]
≤

T∑
t=1

`k,t +
lnK
η

+
η

2

T∑
t=1

EG1,...,GT
[Qt] .

11



We use Claim 2 to upper bound EG1,...,GT
[Qt] by 1

r

(
1− (1− r)K

)
, and take the outer expectation

to remove conditioning, as in the proof of Theorem 1. This concludes the proof. �

The following lemma can be seen as a generalization of Lemma 3 in [14].

Lemma 9 Let G = (V,D) be a directed graph with vertex set V = {1, . . . ,K}, and arc set D. Let
N−i be the in-neighborhood of node i, i.e., the set of nodes j such that (j, i) ∈ D. Then

K∑
i=1

pi
pi +

∑
j∈N−i

pj
≤ mas(G) .

Proof. We will show that there is a subset of vertices V ′ such that the induced graph is acyclic and
|V ′| ≥

∑K
i=1

pi

pi+
P

j∈N
−
i

pj
.

We prove the lemma by growing set V ′ starting off from V ′ = ∅. Let

Φ0 =
K∑
i=1

pi
pi +

∑
j∈N−i

pj
,

and i1 be the vertex which minimizes pi +
∑
j∈N−i

pj over i ∈ V . We are going to delete i1 from
the graph, along with all its incoming neighbors (set N−i1 ), and all edges which are incident (both
departing and incoming) to these nodes, and then iterating on the remaining graph. Let us denote
the in-neighborhoods of the shrunken graph from the first step by N−i,1.

The contribution of all the deleted vertices to Φ0 is∑
r∈N−i1∪{i1}

pr
pr +

∑
j∈N−r pj

≤
∑

r∈N−i1∪{i1}

pr
pi1 +

∑
j∈N−i1

pj
= 1 ,

where the inequality follows from the minimality of i1.

Let V ′ ← V ′ ∪ {i1}, and V1 = V − (N−i1 ∪ {i1}). Then from the first step we have

Φ1 =
∑
i∈V1

pi
pi +

∑
j∈N−i,1

pj
≥
∑
i∈V1

pi
pi +

∑
j∈N−i

pj
≥ Φ0 − 1 .

We apply the very same argument to Φ1 with node i2 (minimizing pi +
∑
j∈N−i,1

pj over i ∈ V1),
to Φ2 with node i3, . . . , to Φs−1 with node is, up until Φs = 0, i.e., up until no nodes are left in the
shrunken graph. This gives Φ0 ≤ s = |V ′|, where V ′ = {i1, i2, . . . , is}. Moreover, since in each
step r = 1, . . . , s we remore all remaining arcs incoming to ir, the graph induced by set V ′ cannot
contain cycles. �

Proof of Corollary 4
The claim follows from a direct combination of Theorem 1 with Lemma 9. �

Proof of Fact 6
Using standard properties of geometric sums, one can immediately see that

K∑
i=1

pi∑K
j=i pj

=
K−1∑
i=1

2−i

2−i+1
+

2−K+1

2−K+1
=
K − 1

2
+ 1 =

K + 1
2

,

hence the claimed result. �

The following graph-theoretic lemma turns out to be fairly useful for analyzing directed settings. It
is a directed-graph counterpart to a well-known result [5, 17] holding for undirected graphs.

Lemma 10 Let G = (V,D) be a directed graph, with V = {1, . . . ,K}. Let d−i be the indegree of
node i, and α = α(G) be the independence number of G. Then

K∑
i=1

1
1 + d−i

≤ 2α ln
(

1 +
K

α

)
.
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Proof. We will proceed by induction, starting off from the original K-node graph G = GK with
indegrees {d−i }Ki=1 = {d−i,K}Ki=1, and independence number α = αK , and then progressively shrink
G by eliminating nodes and incident (both departing and incoming) arcs, thereby obtaining a se-
quence of smaller and smaller graphs GK , GK−1, GK−2, . . ., and associated indegrees {d−i,K}Ki=1,
{d−i,K−1}

K−1
i=1 , {d−i,K−2}

K−2
i=1 , . . . , and independence numbers αK , αK−1, αK−2, . . .. Specifically,

in step s we sort nodes i = 1, . . . , s of Gs in nonincreasing value of d−i,s, and obtain Gs−1 from Gs
by eliminating node 1 (i.e., one having the largest indegree among the nodes of Gs), along with its
incident arcs. On all such graphs, we will use the classical Turan’s theorem (e.g., [1]) stating that
any undirected graph with ns nodes and ms edges has an independent set of size at least ns

2ms
ns

+1
.

This implies that if Gs = (Vs, Ds), then αs satisfies10

|Ds|
|Vs|

≥ |Vs|
2αs
− 1

2
. (6)

We then start from GK . We can write

d−1,K = max
i=1...K

d−i,K ≥
1
K

K∑
i=1

d−i,K =
|DK |
|VK |

≥ |VK |
2αK

− 1
2
.

Hence,

K∑
i=1

1
1 + d−i,K

=
1

1 + d−1,K
+

K∑
i=2

1
1 + d−i,K

≤ 2αK
αK +K

+
K∑
i=2

1
1 + d−i,K

≤ 2αK
αK +K

+
K−1∑
i=1

1
1 + d−i,K−1

,

where the last inequality follows from d−i+1,K ≥ d
−
i,K−1, i = 1, . . .K−1, due to the arc elimination

turning GK into GK−1. Recursively applying the very same argument to GK−1 (i.e., to the sum∑K−1
i=1

1
1+d−i,K−1

), and then iterating all the way to G1 yields the upper bound

K∑
i=1

1
1 + d−i,K

≤
K∑
i=1

2αi
αi + i

.

Combining with αi ≤ αK = α, and
∑K
i=1

1
α+i ≤ ln

(
1 + K

α

)
concludes the proof. �

The next lemma relates the size |Rt| of the dominating set Rt computed by the Greedy Set Cover
algorithm of [9] operating on the time-t observation system {Si,t}i∈V to the independence number
α(Gt) and the domination number γ(Gt) of Gt.

Lemma 11 Let {Si}i∈V be an observation system, and G = (V,D) be the induced directed graph,
with vertex set V = {1, . . . ,K}, independence number α = α(G), and domination number γ =
γ(G). Then the dominating set R constructed by the Greedy Set Cover algorithm (see Section 2)
satisfies

|R| ≤ min
{
γ(1 + lnK), d2α lnKe+ 1

}
.

Proof. As recalled in Section 2, the Greedy Set Cover algorithm of [9] achieves |R| ≤ γ(1 + lnK).
In order to prove the other bound, consider the sequence of graphs G = G1, G2, . . . , where each
Gs+1 = (Vs+1, Ds+1) is obtained by removing from Gs the vertex is selected by the Greedy Set

10 Notice that |Ds| is at least as large as the number of edges of the undirected version of Gs which the
independence number αs actually refers to.
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Cover algorithm, together with all the vertices inGs that are dominated by is, and all arcs incident to
these vertices. By definition of the algorithm, the outdegree d+

s of is in Gs is largest in Gs. Hence,

d+
s ≥

|Ds|
|Vs|

≥ |Vs|
2αs
− 1

2
≥ |Vs|

2α
− 1

2

by Turan’s theorem (e.g., [1]), where αs is the independence number of Gs and α ≥ αs. This shows
that

|Vs+1| = |Vs| − d+
s − 1 ≤ |Vs|

(
1− 1

2α

)
≤ |Vs|e−1/(2α) .

Iterating, we obtain |Vs| ≤ K e−s/(2α). Choosing s = d2α lnKe + 1 gives |Vs| < 1, thereby
covering all nodes. Hence the dominating set R = {i1, . . . , is} so constructed satisfies |R| ≤
d2α lnKe+ 1. �

Lemma 12 If a, b ≥ 0, and a+ b ≥ B > A > 0, then

a

a+ b−A
≤ a

a+ b
+

A

B −A
.

Proof.
a

a+ b−A
− a

a+ b
=

aA

(a+ b)(a+ b−A)
≤ A

a+ b−A
≤ A

B −A
.

�

We now lift Lemma 10 to a more general statement.

Lemma 13 Let G = (V,D) be a directed graph, with vertex set V = {1, . . . ,K}, and arc set D.
Let N−i be the in-neighborhood of node i, i.e., the set of nodes j such that (j, i) ∈ D. Let α be the
independence number of G, R ⊆ V be a dominating set for G of size r = |R|, and p1, . . . , pK be a
probability distribution defined over V , such that pi ≥ β > 0, for i ∈ R. Then

K∑
i=1

pi
pi +

∑
j∈N−i

pj
≤ 2α ln

(
1 +
dK

2

rβ e+K

α

)
+ 2r .

Proof. The idea is to appropriately discretize the probability values pi, and then upper bound
the discretized counterpart of

∑K
i=1

pi

pi+
P

j∈N
−
i

pj
by reducing to an expression that can be han-

dled by Lemma 10. In order to make this discretization effective, we need to single out the terms
pi

pi+
P

j∈N
−
i

pj
corresponding to nodes i ∈ R. We first write

K∑
i=1

pi
pi +

∑
j∈N−i

pj
=

∑
i∈R

pi
pi +

∑
j∈N−i

pj
+
∑
i/∈R

pi
pi +

∑
j∈N−i

pj

≤ r +
∑
i/∈R

pi
pi +

∑
j∈N−i

pj
, (7)

and then focus on (7).

Let us discretize the unit interval11 (0, 1] into subintervals ( j−1
M , jM ], j = 1, . . . ,M , where M =

dK
2

rβ e. Let p̂i = j/M be the discretized version of pi, being j the unique integer such that

p̂i − 1/M < pi ≤ p̂i .
11 The zero value won’t be of our concern here, because if pi = 0, the corresponding term in (7) can be

disregarded.
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Let us focus on a single node i /∈ R with indegree d−i = |N−i |, and introduce the shorthand notation
Pi =

∑
j∈N−i

pj , and P̂i =
∑
j∈N−i

p̂j . We have that P̂i ≥ Pi ≥ β, since i is dominated by some

node j ∈ R ∩ N−i such that pj ≥ β. Moreover, Pi > P̂i −
d−i
M ≥ β − d−i

M > 0, and p̂i + P̂i ≥ β.
Hence, for any fixed node i /∈ R, we can write

pi
pi + Pi

≤ p̂i
p̂i + Pi

<
p̂i

p̂i + P̂i −
d−i
M

≤ p̂i

p̂i + P̂i
+

d−i /M

β − d−i /M

=
p̂i

p̂i + P̂i
+

d−i
βM − d−i

<
p̂i

p̂i + P̂i
+

r

K − r
,

where in the second-last inequality we used Lemma 12 with a = p̂i, b = P̂i, A = d−i /M , and
B = β > d−i /M . Recalling (7), and summing over i then gives

K∑
i=1

pi
pi + Pi

≤ r +
∑
i/∈R

p̂i

p̂i + P̂i
+ r =

∑
i/∈R

p̂i

p̂i + P̂i
+ 2r . (8)

Therefore, we continue by bounding from above the right-hand side of (8). We first observe that∑
i/∈R

p̂i

p̂i + P̂i
=
∑
i/∈R

ŝi

ŝi + Ŝi
, Ŝi =

∑
j∈N−i

ŝj , (9)

where ŝi = Mp̂i, i = 1, . . . ,K, are integers. Based on the original graph G, we construct a new
graph Ĝ made up of connected cliques. In particular:

• Each node i of G is replaced in Ĝ by a clique Ci of size ŝi; nodes within Ci are connected
by length-two cycles.

• If arc (i, j) is in G, then for each node of Ci draw an arc towards each node of Cj .

We would like to apply Lemma 10 to Ĝ. Notice that, by the above construction:

• The independence number of Ĝ is the same as that of G;

• The indegree d̂−k of each node k in clique Ci satisfies d̂−k = ŝi − 1 + Ŝi.

• The total number of nodes of Ĝ is
K∑
i=1

ŝi = M

K∑
i=1

p̂i < M

K∑
i=1

(
pi +

1
M

)
= M +K .

Hence, we are in a position to apply Lemma 10 to Ĝ with indegrees d̂−k , revealing that

∑
i/∈R

ŝi

ŝi + Ŝi
=
∑
i/∈R

∑
k∈Ci

1

1 + d̂−k
≤

K∑
i=1

∑
k∈Ci

1

1 + d̂−k
≤ 2α ln

(
1 +

M +K

α

)
.

Putting together as in (8) and (9), and recalling the value of M gives the claimed result. �

Proof of Theorem 7
We start to bound the contribution to the overall regret of an instance indexed by b. When clear from
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the context, we remove the superscript b from γ(b), w(b)
i,t , p(b)

i,t , and other related quantities. For any
t ∈ T (b) we have

Wt+1

Wt
=
∑
i∈V

wi,t+1

Wt

=
∑
i∈V

wi,t
Wt

exp
(
−(γ/2b) ̂̀i,t)

=
∑
i∈Rt

pi,t − γ/|Rt|
1− γ

exp
(
−(γ/2b) ̂̀i,t)+

∑
i 6∈Rt

pi,t
1− γ

exp
(
−(γ/2b) ̂̀i,t)

≤
∑
i∈Rt

pi,t − γ/|Rt|
1− γ

(
1− γ

2b
̂̀
i,t +

1
2

( γ
2b
̂̀
i,t

)2
)

+
∑
i6∈Rt

pi,t
1− γ

(
1− γ

2b
̂̀
i,t +

1
2

( γ
2b
̂̀
i,t

)2
)

(using e−x ≤ 1− x+ x2/2 for all x ≥ 0)

≤ 1− γ/2b

1− γ
∑
i∈V

pi,t ̂̀i,t +
γ2/2b

1− γ
∑
i∈Rt

̂̀
i,t

|Rt|
+

1
2

(γ/2b)2

1− γ
∑
i∈V

pi,t
(̂̀
i,t

)2
.

Taking logs, upper bounding, and summing over t ∈ T (b) yields

ln
W|T (b)|+1

W1
≤ − γ/2

b

1− γ
∑
t∈T (b)

∑
i∈V

pi,t ̂̀i,t+γ2/2b

1− γ
∑
t∈T (b)

∑
i∈Rt

̂̀
i,t

|Rt|
+

1
2

(γ/2b)2

1− γ
∑
t∈T (b)

∑
i∈V

pi,t
(̂̀
i,t

)2
.

Moreover, for any fixed comparison action k, we also have

ln
W|T (b)|+1

W1
≥ ln

wk,|T (b)|+1

W1
= − γ

2b
∑
t∈T (b)

̂̀
k,t − lnK .

Putting together, rearranging, and using 1− γ ≤ 1 gives

∑
t∈T (b)

∑
i∈V

pi,t ̂̀i,t ≤ ∑
t∈T (b)

̂̀
k,t +

2b lnK
γ

+ γ
∑
t∈T (b)

∑
i∈Rt

̂̀
i,t

|Rt|
+

γ

2b+1

∑
t∈T (b)

∑
i∈V

pi,t
(̂̀
i,t

)2
.

Reintroducing the notation γ(b) and summing over b = 0, 1, . . . , blog2Kc gives

T∑
t=1

(∑
i∈V

p
(bt)
i,t
̂̀(bt)
i,t − ̂̀k,t

)
≤
blog2Kc∑
b=0

2b lnK
γ(b)

+
T∑
t=1

∑
i∈Rt

γ(bt) ̂̀(bt)
i,t

|Rt|
+

T∑
t=1

γ(bt)

2bt+1

∑
i∈V

p
(bt)
i,t

(̂̀(bt)
i,t

)2
.

(10)
Now, similarly to the proof of Theorem 1, we have that, for any i and t, Et

[̂̀(bt)
i,t

]
= `i,t and

Et
[
(̂̀(bt)
i,t )2

]
≤ 1

q
(bt)
i,t

.Hence, taking expectations Et on both sides of (10) and recalling the definition

of Q(b)
t gives

T∑
t=1

(∑
i∈V

p
(bt)
i,t `i,t − `k,t

)
≤
blog2Kc∑
b=0

2b lnK
γ(b)

+
T∑
t=1

∑
i∈Rt

γ(bt)`i,t
|Rt|

+
T∑
t=1

γ(bt)

2bt+1
Q

(bt)
t . (11)

Moreover,
T∑
t=1

∑
i∈Rt

γ(bt)`i,t
|Rt|

≤
T∑
t=1

∑
i∈Rt

γ(bt)

|Rt|
=

T∑
t=1

γ(bt) =
blog2Kc∑
b=0

γ(b)|T (b)|

and
T∑
t=1

γ(bt)

2bt+1
Q

(bt)
t =

blog2Kc∑
b=0

γ(b)

2b+1

∑
t∈T (b)

Q
(b)
t .
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Hence, plugging back into (11), taking outer expectations on both sides and recalling that T (b) is
random (since the adversary adaptively decides which steps t fall into T (b)), we get

E
[
LA,T − Lk,T

]
≤
blog2Kc∑
b=0

E

2b lnK
γ(b)

+ γ(b)|T (b)|+ γ(b)

2b+1

∑
t∈T (b)

Q
(b)
t


=
blog2Kc∑
b=0

2b lnK
γ(b)

+ γ(b)E

 ∑
t∈T (b)

(
1 +

Q
(b)
t

2b+1

) . (12)

This establishes (2).

In order to prove inequality (3), we need to tune each γ(b) separately. However, a good choice of
γ(b) depends on the unknown random quantity

Q
(b)

=
∑
t∈T (b)

(
1 +

Q
(b)
t

2b+1

)
.

To overcome this problem, we slightly modify Exp3-DOM by applying a doubling trick12 to
guess Q

(b)
for each b. Specifically, for each b = 0, 1, . . . , blog2Kc, we use a sequence γ(b)

r =√
(2b lnK)/2r, for r = 0, 1, . . . . We initially run the algorithm with γ(b)

0 . Whenever the algorithm

is running with γ(b)
r and observes that

∑
sQ

(b)

s > 2r, where the sum is over all s so far in T (b),13

then we restart the algorithm with γ(b)
r+1. Because the contribution of instance b to (12) is

2b lnK
γ(b)

+ γ(b)
∑
t∈T (b)

(
1 +

Q
(b)
t

2b+1

)
,

the regret we pay when using any γ
(b)
r is at most 2

√
(2b lnK)2r. The largest r we need is⌈

log2Q
(b)⌉

and

dlog2Q
(b)e∑

r=0

2r/2 < 5
√
Q

(b)
.

Since we pay regret at most 1 for each restart, we get

E
[
LA,T − Lk,T

]
≤ c

blog2Kc∑
b=0

E


√√√√√(lnK)

2b|T (b)|+ 1
2

∑
t∈T (b)

Q
(b)
t

+
⌈
log2Q

(b)⌉ .

for some positive constant c. Taking into account that

blog2Kc∑
b=0

2b|T (b)| ≤ 2
T∑
t=1

|Rt|

blog2Kc∑
b=0

∑
t∈T (b)

Q
(b)
t =

T∑
t=1

Q
(bt)
t

blog2Kc∑
b=0

⌈
log2Q

(b)⌉
= O

(
(lnK) ln(KT )

)
,

12 The pseudo-code for the variant of Exp3-DOM using such a doubling trick is not displayed in this extended
abstract.

13 Notice that
P

s Q
(b)

s is an observable quantity.
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we obtain

E
[
LA,T − Lk,T

]
≤ c

blog2Kc∑
b=0

E


√√√√√(lnK)

2b|T (b)|+ 1
2

∑
t∈T (b)

Q
(b)
t


+O

(
(lnK) ln(KT )

)

≤ c blog2KcE


√√√√ lnK
blog2Kc

T∑
t=1

(
2|Rt|+

1
2
Q

(bt)
t

)+O
(
(lnK) ln(KT )

)

= O

(lnK) E


√√√√ T∑

t=1

(
4|Rt|+Q

(bt)
t

)+ (lnK) ln(KT )


as desired. �

Proof of Corollary 8
We start off from the upper bound (3) in the statement of Theorem 7. We want to bound the quantities
|Rt| and Q(bt)

t occurring therein at any step t in which a restart does not occur —the regret for the
time steps when a restart occurs is already accounted for by the term O

(
(lnK) ln(KT )

)
in (3).

Now, Lemma 11 gives
|Rt| = O

(
α(Gt) lnK

)
.

If γt = γ
(bt)
t for any time t when a restart does not occur, it is not hard to see that γt =

Ω
(√

(lnK)/(KT )
)
. Moreover, Lemma 13 states that

Qt = O
(
α(Gt) ln(K2/γt) + |Rt|

)
= O

(
α(Gt) ln(K/γt)

)
.

Hence,
Qt = O

(
α(Gt) ln(KT )

)
.

Putting together as in (3) gives the desired result. �
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