
Supplementary Material

A A dual problem: proof of Lemma 1 and Lemma 2

Our goal in this section is to gain an understanding of v in solutions of (2.3), culminating in the proof
of Lemma 1. This understanding will come from considering optimization problems equivalent to
a particular dual problem of the weight setting problem (2.3), and properties of the projection onto
the probability simplex.

Theorem 5. Denote

g (λ) = min
v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

+ k−1
k
∑

j=1

min
i

(lj + λ)
i
.

Then the problem maxλ∈Rn g (λ) is a dual to (2.3). Strong duality holds.

We proceed to prove the following relations between v, λ and the dual problem (optimal values
denoted with ·∗):

1. argminv∈△n

(

α ‖u− v‖22 − λ⊤
v

)

= P△n

(

u+ λ
2α

)

, then v
∗ = P△n

(

u+ λ∗

2α

)

.

2. ▽λ minv∈△n

(

α ‖u− v‖22 − λ⊤
v

)

= −P△n

(

u+ λ
2α

)

.

3. Denoting tj = min
i
(lj + λ∗)

i
, an optimal λ∗ exists that can be written as λ∗ =

maxj (tj1n − lj). In particular maxλ∈Rn g(λ) = maxt∈Rk h(t) where

h(t) = min
v∈△n

(

α ‖u− v‖22 −
(

max
j

(tj1n − lj)

)⊤

v

)

+ k−1
k
∑

j=1

tj . (A.1)

4. Invariance: g(λ) = g (λ+ a · 1n) and h(t) = h (t+ a · 1k).

5. Dual maximizers λ∗ derived from t fulfill: maxi λ
∗
i −mini λ

∗
i ≤ maxj,i lj,i −minj,i lj,i.

6. Norm of u− v∗: ‖u− v∗‖2
∞

≤ n (maxλ∗ −minλ∗)
2
/
(

16α2
)

. If losses are in [0, B]
and α ≥ nB/4, then we have

‖v∗‖22 ≤ 2/n.

We begin with the dual problem, and point to further lemmas for its properties. Properties 1 and 2
are proved in Lemma 3. Properties 3, 5 and 6 are treated in the next subsection, and property 4 is
easy to verify.

Proof. In the primal optimization problem (2.3) we maintain the simplex constraints on wj and on

v implicitly using the domain and can express the constraint 1
k

∑k
j=1 wj,i = vi (for i ∈ [n]) as

hi (W,v) =
(

k−1
∑k

j=1 wj

)

i
− vi = 0, with the corresponding variable λ ∈ R

n.

Taking the Lagrangian with respect to hi we have for v,wj ∈ △n, λ ∈ R
n:

L
(

(wj)
k

j=1 ,v, λ
)

= α ‖u− v‖22 + k−1
k
∑

j=1

l
⊤
j wj + λ⊤



k−1





k
∑

j=1

wj



− v




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The dual objective is highly separable:

g (λ) = min
wj ,v∈△n

L
(

(wj)
k

j=1 ,v, λ
)

= min
wj ,v∈△n

α ‖u− v‖22 + k−1
k
∑

j=1

l
⊤
j wj +

n
∑

i=1

λihi (W,v) (A.2)

= min
v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

+ k−1
k
∑

j=1

min
wj∈△n

(

(lj + λ)
⊤
wj

)

= min
v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

+ k−1
k
∑

j=1

min
i

(lj + λ)
i
. (A.3)

Strong duality holds by Slater’s condition, witnessed by v = wj = u.

Lemma 3.

v
∗ = arg min

v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

= P△n

(

u+
λ

2α

)

∈ −∂λ min
v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

.

Next we consider the minimization subproblem argminv∈△n

(

α ‖u− v‖22 − λ⊤
v

)

. We note that

minimizing a standard (isotropic) convex quadratic over a convex set is equivalent to projecting the
unconstrained minimum onto the convex set under the l2 norm. We note further that a minimum of
convex functions at a point includes in its sub-differential any subgradients of the functions achieve
the minimum at that point.

The consequence in our case is

v
∗ = arg min

v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

= P△n

(

u+
λ

2α

)

∈ −∂λ min
v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

.

Thus the computation of g and its gradients is dominated by the second term
∑k

j=1 min
i
(lj + λ)

i
.

A.1 An equivalent problem

We introduce the slack variables t ∈ R
k:

max
λ



min
v∈△n

(

α ‖u− v‖22 − λ⊤v
)

+ k−1
k
∑

j=1

min
i

(lj + λ)
i



 ≡

maxt∈Rk,λ∈Rn minv∈△n

(

α ‖u− v‖22 − λ⊤v
)

+ k−1
∑k

j=1 tj

s.t. tj ≤ min
i
(lj + λ)

i

(A.4)

Lemma 4. Any optimal solutions of A.4 must fulfill tj = min
i
(lj + λ)

i
.

Due to the term
∑k

j=1 tj and the constraint. So the constraint is sharp w.r.t. t. Another way to read

the constraint is that for all i, j, tj ≤ (lj,i + λi) ⇐⇒ tj − lj,i ≤ λi. So we can also ask is the
constraint sharp w.r.t. λ?

Lemma 5. For any {lj}kj=1 , α, there exists an optimal solution of Problem A.4 such that λi =

maxj tj − lj,i.

After the proof of this lemma, we assume without loss of generality that the optimal λ∗ we refer to
are of this type.
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Proof. As we noted before this lemma, λi ≥ maxj tj−lj,i is a direct consequence of the constraints,
then we need prove only the other direction λi ≤ maxj tj − lj,i ⇐⇒ (∃j)λi ≤ tj − lj,i.

Due to Lemma 4 we can assume without loss of generality that tj = min
i
(lj + λ)

i
, then we are

considering maxima of

g(λ) = min
v∈△n

(

α ‖u− v‖22 − λ⊤
v

)

+ k−1
k
∑

j=1

min
i

(lj + λ)
i

If i /∈ ⋃j∈[k] argmin
i
(lj + λ)

i
, then ∂

∂λi
g (λ) = −vi ≤ 0, so that decreasing λi can only improve

the solution.

Now we prove Lemma 2.

Proof. The first part is implied by Lemma 5. Now recall that strong duality holds in Theorem 5.

As a consequence, any solution
(

(wj)
k

j=1 ,v, λ
∗

)

must minimize the Lagrangian w.r.t. λ∗ and the

implicit constraints.

In particular, for any j, wj ∈ △n should minimize k−1 (lj + λ∗)
⊤
wj , which occurs if the support

of wj is a subset of I = argmin (lj,i + λ∗
i ).

Recalling Lemma 4, on i ∈ I we have tj = lj,i + λi. Comparing to λi = minj (tj − lj,i) which we
assume due to 5 completes the proof.

Corollary 1. Let losses be bounded in the interval [b, B], then maxi λi −mini λi ≤ B − b.

Proof. From Lemma 5 we have λmax ≤ tmax − b. Applying Lemma 4, we find tmax ≤ B +
λmin.

A.2 Generic bound on ‖u− v‖
∞

when losses are in [b, B].

Lemma 6. Let losses be bounded in [b, B]. Then the following always holds:
∣

∣vi − n−1
∣

∣ ≤ (B − b) / (2α)

Proof. From Corollary 1, we know that maxi λi −mini λi ≤ B − b, and v = P△n (u+ λ/2α), so

vi =
[

n−1 + λi/2α+ a
]

+
for some a. First we will show that |vi − vi′ | ≤ (B − b) / (2α). The

bound clearly holds for |λi/2α− λi′/2α|, and adding n−1 + a does not change this. Similarly, [·]+
is a contraction.

The maximal value for any vi ∈ △n under this constraint is achieved when v1 = (B − b) / (2α) +
vi for every i 6= 0. Then from the simplex constraint, we have: 1 = nv1 − (n− 1) (B − b) / (2α)
thus

v1 = n−1 + (n− 1)n−1 (B − b) / (2α) .

A similar proof holds for the minimal value vi can achieve.

B Robustness in subspace clustering

To demonstrate empirically the robustness properties of solutions to (2.2), we apply it to the problem
of subspace clustering, on data well described by subspaces before we add fat tailed noise. We then
report the median distance (MD) of data points from the models found; higher MDs correspond to
models more strongly affected by the few high noise points.

We apply our algorithm to the better balanced 80 datasets in the Hopkins155 video motion segmenta-
tion database [22]. Each data-set in this database consists of a set of vectors, each vector originating
from one of two or three objects moving in the scene. The vectors corresponding to each object are
all approximately on a subspace of dimension at most 4 (known in advance). We preprocess each
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data-set by PCA to a dimension equal to the sums of dimensions of the original subspaces. We seek
subspaces of dimension greater than most original subspaces in that data-set.

Each of a Lloyd-like algorithm and Algorithm 1 are restarted 40 times with random subspaces.
Values for α are chosen randomly according to n · 10y with y ∼ Unif([−2, 1]). For each algorithm
and data-set, we report the result with lowest MD, alongside that from the ground truth association.
Our formulation produces lower MD quite consistently, especially in the higher noise setting.

Hopkins dataset (sorted for plot readability)
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Hopkins dataset (sorted for plot readability)
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Figure B.1: On the 80 most class-balanced of the Hopkins 155 subspace clustering datasets, Algo-
rithm 1 achieves generally better approximation without outliers, and significantly better approxi-
mation when fat tailed noise is introduced, both compared to an algorithm based on Lloyd’s and
compared to subspaces fit according to the ground truth segmentation.

C Robustness: proof of Theorem 2

Throughout this section the data set X is a union of outliers about which no assumptions are made
except that they number exactly ηn and inliers.

C.1 Loss of an outlier ignoring solution

We begin by calculating our loss when inliers behave nicely, and outliers are ignored. This will
allow us to reject some undesired situations as being suboptimal in comparison.

Below we denote by φ−1(x) the inverse image of x, that is the set y : φ(x) = y, and by |·| the
cardinality of a set.

Lemma 7. We have that

min
M

Lα (X,M) ≤ αn−1 + r2

if the following conditions hold:

1. The inliers can be explained well: there exists a model-set M = {mj}kj=1 ⊂ M and a

mapping φ : X → M such that for every inlier xi we have ℓ (xi, φ (xi)) ≤ r2.

2. Each model explains sufficient inliers:
∣

∣φ−1 (mj)
∣

∣ ≥ n/(2k).

Proof. Take the solution M , and distribute the weights wj for model j uniformly over Dj =
φ−1 (mj).

First we bound the regularization term. The average vector v = 1
k

∑k
j=1 wj is a distribution, zero

on xi /∈ ⋃3
j=1 Dj , so |ui − vi| = n−1 there.

To prove |ui − vi| ≤ n−1 elsewhere, it is enough to show that vi ≤ 2n−1. Because Di are

disjoint, vi = k−1 |Dj |−1
for some particular j. Then it is enough that k−1 |Dj |−1 ≤ 2n−1 ⇐⇒

n2−1k−1 ≤ |Dj |, as we assume. Then α ‖u− v‖22 ≤ α
∑n

i=1 n
−2 ≤ αn−1.
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By construction, we give weight only where losses are bounded above by r2, then the bound is
preserved by the weighted and unweighted means.

Corollary 2. For α = b2n with b ≥ r under the conditions of the lemma above, the loss is upper
bounded by 2b2.

C.2 Lower bound on loss when a model is far from data, and outliers are sufficiently few

Lemma 8. Under the assumptions of Lemma 7 and α ≥ n · r2 and also η < k−2/22, for any model

mj in an optimal solution M = {mj}kj=1, any ηn points receive a total weight of less than 1/3 in
wj .

We show that the regularization term itself is sufficient to exclude such concentration of weight in
the outliers.

Proof. In the regularization term, the part of the sum corresponding to outliers and wj alone is
minimized by distributing the total weight p they are assigned from wj uniformly among the (at
most) ηn outliers. Then the loss is bounded below by

α
∑

i∈outliers

(

ui − k−1p/ (ηn)
)2

=α (ηn)
(

n−1 − pk−1/ (ηn)
)2

=αηn−1
(

1− pk−1/η
)2

=αn−1η−1
(

η − pk−1
)2

Then if we show that η−1
(

η − pk−1
)2

> 2 we have αn−1η−1
(

η − pk−1
)2

> 2αn−1 ≥ αn−1+r2

since α ≥ n · r2, then by Lemma 7 M is suboptimal.

η−1
(

η − pk−1
)2

=η−1
(

η2 − 2ηpk−1 + p2k−2
)

(η ≥ 0) ≥η−1p2k−2 − 2pk−1

(assumption about η) ≥
(

k−2/22
)−1

p2k−2 − 2pk−1

=22p2 − 2pk−1

(k ≥ 2) ≥22p2 − p

The quadratic is larger than 2 at p = 1/3 because 22/9−1/3 = 19/9 > 2, and because it is positive
and its derivative is positive there 22 · 2p− 1 = 44/3− 1 > 0, and only increases with p.

We proceed to the proof of Theorem 2.

The geometric idea behind the proof is that because the outliers have smaller total weight than the
set of inliers, their weighted average will be farther than that of the inliers from every model. Being
far, the outliers have high loss, so decreasing their weight improves Lα as long as α is not too high.

Proof. Without loss of generality, we may assume the ball containing the inliers is centered at the
origin. The proof is by contraposition: we will assume a model at ‖mj‖ > 5R and show this implies

13R2 < αn−1. We will first estimate some losses and then pass to the corresponding weights.

The model mj has by Lemma 8 at least two thirds of weight at inliers denoted i. The aver-

age of inliers pi as weighted by wj must be in B (0, R), therefore at distance
∥

∥mj − pi
∥

∥ ≥
‖mj‖ −

∥

∥pi
∥

∥ ≥ 4R, then the average of outliers po as weighted by wj must be at distance

‖po −mj‖ ≥ 2
∥

∥pi −mj

∥

∥ ≥ ‖pi −mj‖ + 4R, and at least one outlier i′ with positive weight

must be at distance that is no smaller. With respect to any inlier i, mj has loss level ‖xi −mj‖2 ≤
(∥

∥mj − pi
∥

∥+
∥

∥pi − xi

∥

∥

)2 ≤
(∥

∥mj − pi
∥

∥+ 2R
)2

by the triangle inequality.
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By Lemma 2, v = [u−minj (lj − tj) / (2α) + a]+, and j is a minimizer at the outlier i′. This will

help us lower bound vi at inliers. Combined with the loss estimates above, we have:

Then

min
j′

(lj′,i − tj′) ≤ lj,i − tj ≤
(∥

∥mj − pi
∥

∥+ 2R
)2 − tj ≤

(∥

∥mj − pi
∥

∥+ 4R
)2 − tj ≤

lj,i′ − tj = min
j′

(lj′,i′ − tj′)

and in particular, estimating again:

28R2 ≤ −min
j′

(lj′,i − tj′)−
(

−min
j′

(lj′,i′ − tj′)

)

Then since vi′ > 0, every inlier i does receive weight under some model, and vi ≥ vi′ + 14R2/α.
There are n (1− η) inliers, and we cannot have the inliers weight sum to more than 1, we must have
n (1− η) 14R2/α ≤ 1 which implies 13R2 < (1− η) 14R2 ≤ αn−1.

D Sample complexity: proof of Theorem 3

Proof. By Lemma 1, ‖v‖
∞

≤ n−1 (1 + γ). First we show that Lα (X,M) is difference bounded

by Bn−1 (1 + γ) with regard to its first argument.

Let X,X ′ differ only at the ith element and let M be fixed. Take (wj)
k

j=1 = W ∈
argminW (Lα (X,M,W )) then

|Lα (X ′,M,W )− Lα (X,M)| =

∣

∣

∣

∣

∣

∣

k−1
k
∑

j=1

(

wj,i

(

lj,i − l
′
j,i

))

∣

∣

∣

∣

∣

∣

≤ Bk−1
k
∑

j=1

wj,i

≤ Bvi

≤ Bn−1 (1 + γ) .

Then by symmetry |Lα (X ′,M)− Lα (X,M)| ≤ Bn−1 (1 + γ) whenever X,X ′ differ by at most
one element.

Then by McDiarmid’s inequality and using our bound on ‖v‖, we have for every fixed M :

P (|Lα (X,M)− EX′∼DnLα (X ′,M)| > τ) ≤ 2e
− 2τ2

∑n
i=1(Bn−1(1+γ))2

= 2e
− 2nτ2

B2(1+γ)2

By applying a union bound over the ε covering Mk
ε of Mk we have

P
(

∃M ∈ Mk
ε such that |Lα (X,M)− EX′∼DnLα (X ′,M)| > τ

)

≤ 2

(

C

τ

)dk

e
− 2nτ2

B2(1+γ)2

= e
log 2+dk log(C

τ )−
2nτ2

B2(1+γ)2

≤ e
dk log( 2C

τ )− 2nτ2

B2(1+γ)2
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Then with probability at least 1−exp
{

dk log
(

2C
τ

)

− 2nτ2

B2(1+γ)2

}

, we have that for every M ∈ Mk,

and let M c be the nearest element to M in a τ cover of Mk,

|Lα (X,M)− EX′∼DnLα (X ′,M)| ≤ |Lα (X,M)− Lα (X,M c)|
+ |Lα (X,M c)− EX′∼DnLα (X ′,M c)|
+ |EX′∼DnLα (X ′,M c)− EX′∼DnLα (X ′,M)|
≤ 3τ,

using Lemma 9.

The following lemma relates the cover numbers discussed to our loss.

Lemma 9. For every α,

‖Lα (·,M)− Lα (·,M ′)‖
∞

≤ d∞ (M,M ′) .

Proof. Let X ∈ Xn and W ∈ argminW (Lα (X,M,W )). By Holder’s inequality we have
∣

∣w
⊤
j (l− l

′)
∣

∣ < ε because wj ∈ △n. In particular, Lα (X,M) + ε ≥ Lα (X,M ′,W ) ≥
Lα (X,M ′). This holds for every X ∈ Xn and also with M,M ′ exchanged.

E Computational complexity: proof of Theorem 4

Proof. The computational requirements of a FISTA iteration consist of calculating a gradient and
projecting a point onto the problem constraints. For these purposes we minimize (2.2) over W ∈
(△n)

k
. The constraints are separable in the sense that we can perform k projections into a simplex

of dimension n, which require O(n) time each[23]. The computation of the gradient also has time
and space cost of O(kn) (see Lemma 10 for details). We now prove the bounds on number of
iterations needed.

We use a bound from [21]. Using q to denote the number of iterations, and choosing their parameters
α = η = 2 it is enough to take the number of steps to be

q ≥ ‖x0 − x∗‖22

√

L

ε
where x0 is that starting point, x∗ is any optimal point and the function f being minimized to within
ε of its optimal value and assuming f has an L Lipschitz gradient.

In the current problem, we take x0 = U ∈ R
k×n to be the initial weight matrix with u in each row,

the gradient Lipschitz constant L is the weight parameter α, then the bound is:

q ≥ ‖U −W ∗‖2
√

α

ε
.

To obtain the first result in Theorem 4, we simply note that ‖U −W ∗‖22 =
∑k

j=1

∑n
i=1

(

ui −w
∗
i,j

)2 ≤∑k
j=1 ‖u− e1‖22 ≤ k.

To obtain the second result we bound:

‖U −W ∗‖22 =

k
∑

j=1

∥

∥u−w
∗
j

∥

∥

2

2

=
k
∑

j=1

(

∥

∥w
∗
j

∥

∥

2

2
− ‖u‖22

)

≤
k
∑

j=1

∥

∥w
∗
j

∥

∥

2

2

=

n
∑

i=1

k
∑

j=1

(

w
∗
j,i

)2
.
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Given that
∑k

j=1 wj,i = kvi and wj,i ≥ 0, the l2 norm of the column w·,i is bounded above by kvi.

Squaring both sides we have k2v2
i ≥ ∑k

j=1 w
2
j,i, then

∑n
i=1

∑k
j=1

(

w
∗
j,i

)2 ≤ k2
∑n

i=1 v
2
i . We

apply Lemma 1 to α = γnB/2 for γ > 1/2 and find vi ≤ n−1
(

1 + γ−1
)

, so the iteration bound is

‖U −W‖2
√

α/ε ≤ 3k
√

Bγ/ε. Then ‖U −W ∗‖2 ≤ 3k
√
n−1. Substituting that bound, using the

assumption on γ, and substituting γ back into the iteration bound formula gives ‖U −W‖2
√

α/ε ≤
3k
√

αn−1/ε as wanted.

Lemma 10. ▽

(

α ‖u− v‖22 + k−1
∑k

j=1 l
⊤
j wj

)

can be computed in O (kn) time and space.

Proof. Denote f (x) = α ‖x‖2, A = (In In · · · In) /k ∈ R
n×nk then we wish to find the

gradient of f
(

Aw
f − u

)

, where w
f is the flat concatenation of the vectors wj .

Then ▽

(

f
(

Awf − u
))

= A⊤
▽f
(

Aw
f − u

)

= A⊤
(

2α
(

Aw
f − u

))

, and

▽



α ‖u− v‖22 + k−1
k
∑

j=1

l
⊤
j wj



 = A⊤
(

2α
(

Aw
f − u

))

+ k−1
l
f

where l
f is to (lj)

k

i=1 as wf is to (wj)
k

j=1.

The non trivial part is A⊤
(

2α
(

Awf − u
))

. Note that Awf = v = k−1
∑k

j=1 wj , computable in

O (kn). Given the vector b = (2α (v − u)) ∈ R
n, A⊤b can be computed by the concatenation of k

copies of b/k requiring O (kn) time.
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