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Abstract

Inspired by real-time ad exchanges for online display dthirg, we consider the
problem of inferring a buyer’s value distribution for a goathen the buyer is
repeatedly interacting with a seller through a postedepmechanism. We model
the buyer as a strategic agent, whose goal is to maximizeohgrterm surplus,
and we are interested in mechanisms that maximize the’'sédleg-term revenue.
We define the natural notion afrategic regret — the lost revenue as measured
against a truthful (non-strategic) buyer. We present saltgporithms that are no-
(strategic)-regret when the buyer discounts her futurplsar— i.e. the buyer
prefers showing advertisements to users sooner rathedtean We also give a
lower bound on strategic regret that increases as the sugiscounting weakens
and shows, in particular, that any seller algorithm willfeufinear strategic regret
if there is no discounting.

1 Introduction

Online display advertising inventory — e.g., space for learads on web pages — is often sold via
automated transactions on real-time ad exchanges. Whem asitea web page whose advertising
inventory is managed by an ad exchange, a description of ¢éfeepage, the user, and other relevant
properties of thémpression, along with areserve price for the impression, is transmitted to bidding
servers operating on behalf of advertisers. These servecg$s the data about the impression and
respond to the exchange with a bid. The highest bidder wiasitfint to display an advertisement
on the web page to the user, provided that the bid is abovesieve price. The amount charged
the winner, if there is one, is settled according to a seqoiwe auction. The winner is charged the
maximum of the second-highest bid and the reserve price.

Ad exchanges have been a boon for advertisers, since ricmeafdtime data about impressions
allow them to target their bids to only those impressiong thay value. However, this precise
targeting has an unfortunate side effect for web page phéatss A nontrivial fraction of ad exchange
auctions involve only aingle bidder. Without competitive pressure from other bidddre,task of
maximizing the publisher’s revenue falls entirely to theawe price setting mechanism. Second-
price auctions with a single bidder are equivalenpasted-price auctions. The seller offers a price
for a good, and a buyer decides whether to accept or rejegrite (i.e., whether to bid above or
below the reserve price).

In this paper, we consider online learning algorithms fatiisg prices in posted-price auctions where
the seller repeatedly interacts with tb@me buyer over a number of rounds, a common occurrence
in ad exchanges where the same buyer might be interestegiimgtilnousands of user impressions
daily. In each round, the seller offers a good to a buyer for prige The buyer’s value), for the
good is drawn independently from a fixed value distributiBoth v; and the value distribution are
known to the buyer, but neither is observed by the sellerhdftiuyer accepts prige, the seller
receives revenug;, and the buyer receivesirplus v; — p;. Since the same buyer participates in



the auction in each round, the seller has the opportunitsarm about the buyer’s value distribution
and set prices accordingly. Notice that in worst-case itegleauctions there is no such opportunity
to learn, while standard Bayesian auctions assume knowlefl@ value distribution, but avoid
addressing how or why the auctioneer was ever able to estitmiatdistribution.

Taken as an online learning problem, we can view this as adibgwroblem [18, 16], since the
revenue for any price not offered is not observed (e.g., évarbuyer rejects a price, she may
well have accepted a lower price). The seller’s goal is toimee his expected revenue over all
T rounds. One straightforward way for the seller to set priwesld therefore be to use reo-
regret bandit algorithm, which minimizes the difference betweehes’'s revenue and the revenue
that would have been earned by offering the best fixed price hindsight for all7" rounds; for

a no-regret algorithm (such as UCB [3] or EXP3 [4]), this eiiffnce iso(T"). However, we argue
that traditional no-regret algorithms are inadequatetts problem. Consider the motivations of a
buyer interacting with an ad exchange where the prices atg/seno-regret algorithm, and suppose
for simplicity that the buyer has a fixed valug = v for all . The goal of the buyer is to acquire
the most valuable advertising inventory for the least totat, i.e., to maximize her total surplus
>, v — p+, Where the sum is over rounds where the buyer accepts tiee'sgltice. A naive buyer
might simply accept the seller’s prigg if and only if v; > p;; a buyer who behaves this way
is calledtruthful. Against a truthful buyer any no-regret algorithm will eteally learn to offer
pricesp, ~ v on nearly all rounds. But a more savvy buyer will notice thiathie rejects prices in
earlier rounds, then she will tend to see lower prices irr latends. Indeed, suppose the buyer only
accepts prices below some small amoaniThen any no-regret algorithm will learn that offering
prices above results in zero revenue, and will eventually offer pricelowehat threshold on nearly
all rounds. In fact, the smaller the learner’s regret, tis¢efiathis convergence occurswlfs e then
the deceptive buyer strategy results in a large gain in satgblus for the buyer, and a large loss
in total revenue for the seller, relative to the truthful buyWhile the no-regret guarantee certainly
holds — in hindsight, the best price is indeed- it seems fairly useless.

In this paper, we propose a definitiongbfategic regret that accounts for the buyer’s incentives, and
give algorithms that are no-regret with respect to this @&im In our setting, the seller chooses a
learning algorithm for selecting prices and announcesdlgsrithm to the buyer. We assume that
the buyer will examine this algorithm and adopt whateveatstyy maximizes her expected surplus
over allT rounds. We define the seller’s strategic regret to be therdiffce between his expected
revenue and the expected revenue he would have earneddy than using his chosen algorithm
to set prices, he had instead offered the best fixed pricen all roundsand the buyer had been
truthful. As we have seen, this revenue can be much higher than theueeé the best fixed price

in hindsight (in the example abovg; = v). Unless noted otherwise, throughout the remainder of
the paper the term “regret” will refer to strategic regret.

We make one further assumption about buyer behavior, wkittased on the observation that in
many important real-world markets — and particularly ininaladvertising — sellers are far more
willing to wait for revenue than buyers are willing to waitrfgoods. For example, advertisers are
often interested in showing ads to users who have recemyed their products online (this practice
is called ‘retargeting’), and the value of these user imgicess decays rapidly over time. Or consider
an advertising campaign that is tied to a product launch. & impression that is purchased long
after the launch (such as the release of a movie) is almoshigss. To model this phenomenon we
multiply the buyer’s surplus in each round bgliacount factor: If the buyer accepts the seller’s price
p¢ in roundt, she receives surplug(v; — p;), where{~;} is a nonincreasing sequence contained in

the interval(0, 1]. We callT, = Zthl ~;¢ the buyer’s ‘*horizon’, since it is analogous to the seller’'s
horizonT'. The buyer’s horizon plays a central role in our analysis.

Summary of results: In Sections 4 and 5 we assume that discount rates decreasewieally:

v = ~'~! for somey € (0,1]. In Section 4 we consider the special case that the buyer fixeda
valuev, = v for all roundst, and give an algorithm with regret at maB(TV\/T). In Section 5 we
allow thew; to be drawn from any distribution that satisfies a certainamoess assumption, and

give an algorithm with regret at mo&\(T* + Tyl/“) wherea € (0, 1) is a user-selected parameter.
Note that for either algorithm to be no-regret (i.e., fomeddo beo(T")), we need thal’, = o(T'). In
Section 6 we prove that this requirement is necessary foegret: any seller algorithm has regret at
least(T’,). The lower bound is proved via a reduction to a non-repeaiedjngle-shot’, auction.
That our regret bounds should depend so cruciallf pis foreshadowed by the example above, in



which a deceptive buyer foregoes surplus in early roundbtaiio even more surplus is later rounds.
A buyer with a short horizoff’, will be unable to execute this strategy, as she will not bebbgpof
bearing the short-term costs required to manipulate thersel

2 Reated work

Kleinberg and Leighton study a posted price repeated auetith goods sold sequentially 0 bid-
ders who either all have the same fixed private value, privaiges drawn from a fixed distribution,
or private values that are chosen by an oblivious adversaradversary that acts independently of
observed seller behavior) [15] (see also [7, 8, 14]). Cesadi et al. study a related problem of
setting the reserve price in a second price auction withiptel{but not repeated) bidders at each
round [9]. Note that none of these previous works allow fer plossibility of a strategic buyer, i.e.
one that acts non-truthfully in order to maximize its sugpliihis is because a new buyer is consid-
ered at each time step and if the seller behavior dependsoonpyevious buyers, then the setting
immediately becomestrategyproof.

Contrary to what is studied in these previous theoretidéihggs, electronic exchanges in practice see
the same buyer appearing in multiple auctions and, thuyuher has incentive to act strategically.
In fact, [12] finds empirical evidence of buyers’ stratega&hhvior in sponsored search auctions,
which in turn negatively affects the seller’'s revenue. mdiconomics literature, ‘intertemporal price
discrimination’ refers to the practice of using a buyer'stgaurchasing behavior to set future prices.
Previous work [1, 13] has shown, as we do in Section 6, thdter sannot benefit from conditioning
prices on past behavior if the buyer is not myopic and caromes$ptrategically. However, in contrast
to our work, these results assume that the seller knows er’bwalue distribution.

Our setting can be modeled as a nonzero sum repeated gancemiglete information, and there is
extensive literature on this topic. However, most previsosk has focused only on characterizing
the equilibria of these games. Further, our game has a plantistructure that allows us to design
seller algorithms that are much more efficient than gendgiorithms for solving repeated games.

Two settings that are distinct from what we consider in tlasiper, but where mechanism design and
learning are combined, are the multi-armed bandit mechadissign problem [6, 5, 11] and the
incentive compatible regression/classification problé® [L7]. The former problem is motivated
by sponsored search auctions, where the challenge is tbtelthful values from multiple bidding
advertisers while also efficiently estimating the clicketiigh rate of the set of ads that are to be
allocated. The latter problem involves learning a disanative classifier or regression function
in the batch setting with training examples that are labéledelfish agents. The goal is then to
minimize error with respect to the truthful labels.

Finally, Arora et al. proposed a notion of regret for onlirarhning algorithms, called policy regret,
that accounts for the possibility that the adversary maytattathe learning algorithm’s behavior
[2]. This resembles the ability, in our setting, of a striatdmiyer to adapt to the seller algorithm’s
behavior. However, even this stronger definition of regseinadequate for our setting. This is
because policy regret is equivalent to standard regret winemdversary is oblivious, and as we
explained in the previous section, there is an obliviousbgyrategy such that the seller’s standard
regret is small, but his regret with respect to the best fixégzk@mgainst a truthful buyer is large.

3 Preliminariesand Model

We consider a posted-price model for a single buyer repbgtedchasing items from a single seller.
Associated with the buyer is a fixed distributi@hover the interval0, 1], which is known only to
the buyer. On each rountdthe buyer receives a valug € V C [0, 1] from the distributiorD. The
seller, without observing this value, then posts a pricee P C [0,1]. Finally, the buyer selects
an allocation decision; € {0,1}. On each round, the buyer receives a@nstantaneous surplus of
a(vy — p), and the seller receives amstantaneous revenue of a;p;.

We will be primarily interested in designing the selldgarning algorithm, which we will denoteA.
Let v1.; denote the sequence of values observed on the fiegtnds,(vy, ..., v¢), definingp;., and
a1, analogously.A is an algorithm that selects each prigeas a (possibly randomized) function
of (p1.t—1,a1..—1). As is common in mechanism design, we assume that the sal@uaces his



choice of algorithmA in advance. The buyer then selects Bkocation strategy in response. The
buyer’s allocation strateg§ generates allocation decisioasas a (possibly randomized) function
of (D7 V1:ts P1:t, al:t—l)-

Notice that a choice ofd, 5 andD fixes a distribution over the sequenegsr andp;.7. This in
turn defines the seller’s total expected revenue:

SellerRevenue(A, B,D,T) = E {Zthl aipy | A,B,D] .

In the most general setting, we will consider a buyer whosglgsimay be discounted through time.
In fact, our lower bounds will demonstrate that a sufficigdiécaying discount rate is necessary for
a no-regret learning algorithm. We will imagine therefdrattthere exists a nonincreasing sequence
{v € (0,1]} for the buyer. For a choice df, we will define the effective “time-horizon” for the

buyer asl’, = Zle ~¢. The buyer’s expected total discounted surplus is given by:
BuyerSurplus(A,B,D,T) = £ Z?:l Year(ve —py) | A,B,D} .

We assume that the seller is faced with a strategic buyer whpta to the choice ofl. Thus, let
B*(A, D) be a surplus-maximizing buyer for seller algoritbtrand value distribution i®. In other
words, for all strategie8 we have

BuyerSurplus(A, B*(A, D), D, T) > BuyerSurplus(A, B, D, T).

We are now prepared to define the seller’s regretptiet arg max,cp p Prp[v > p|, the revenue-
maximizing choice of price for a seller thiows the distributionD, and simply posts a price of
p* on every round. Against such a pricing strategy, it is in thgd's best interest to beeuthful,
accepting if and only i, > p*, and the seller would receive a revenu€lgf* Pr,.p[v > p*].
Informally, a no-regret algorithm is able to leafnfrom previous interactions with the buyer, and
converge to selecting a price closepto We therefore define regret as:

Regret(A,D,T) = Tp* Pryplv > p*| — SellerRevenue(A, B*(A, D), D, T).

Finally, we will be interested in algorithms that attai7’) regret (meaning the averaged re-
gret goes to zero a8 — oo) for the worst-caséD. In other words, we say is no-regret if
supp Regret(A, D, T) = o(T'). Note that this definition of worst-case regret only assurhasNa-
ture’s behavior (i.e., the value distribution) is worsteathe buyer’s behavior is always presumed
to be surplus maximizing.

4 Fixed Value Setting

In this section we consider the case of a single unknown fixgetbvalue, that i3’ = {v} for
somev € (0,1]. We show that in this setting a very simple pricing algoritiuith monotonically

decreasing price offerings is able to achi@/@y\/f) when the buyer discount i = ~*~!. Due
to space constraints many of the proofs for this sectionappeAppendix A.

Monotone algorithm: Choose paramete? € (0, 1), and initializea; = 1 and
po = 1. Ineach round > 1 letp, = B~ %-1p,_;.

In the Monot one algorithm, the seller starts at the maximum pricel pnd decreases the price
by a factor of 3 whenever the buyer rejects the price, and otherwise leawgschanged. Since
Monotone is deterministic and the buyer’s valués fixed, the surplus-maximizing buyer algorithm
B*(Monotone, v) is characterized by a deterministic allocation sequerice € {0,1}7.

The following lemma partially characterizes the optimayéwuallocation sequence.
Lemma 1. Thesequenceayj, ..., a’ ismonotonically nondecreasing.

1If there are multiple optimal sequences, the buyer can then choosedmmize over the set of sequences.
In such a case, the worst case distribution (for the seller) is the oneleisaselects the revenue minimizing
optimal sequence. In that case, d§t denote the revenue-minimizing buyer-optimal sequence.



In other words, once a buyer decides to start accepting fleesdfprice at a certain time step, she
will keep accepting from that point on. The main idea behhalroof is to show that if there does
exist some time ste wherea;, = 1 anday, ., = 0, then swapping the values so thgt = 0 and
a1 = 1 (as well potentially swapping another pair of values) velbult in a sequence with strictly
better surplus, thereby contradicting the optimality:pf.. The full proof is shown in Section A.1.

Now, to finish characterizing the optimal allocation seqesnve provide the following lemma,
which describes time steps where the buyer has with ceytaggun to accept the offered price.
log( 5 )

Lemma2. Letcs, =1+ (1 BT, and dsy = 15757

* —
ajy 1 = 1.

then for any ¢t > dg ., we have

A detailed proof is presented in Section A.2. These lemmadyitine following regret bound.
Theorem 1. Regret(Monotone, v, T) < vT (1 — Bi) +vf3 (% + L )

CB.y €8y €.y

Proof. By Lemmas 1 and 2 we receive no revenue until at most rgdpd, | + 1, and from that
round onwards we receive at least revepil& .~ per round. Thus

T
Regret(Monotone, v, T') = vT — Z Bldsnl <oT — (T —dg ., — 1)g% T
t=[dg 5 ]+1
Noting that39s.» = # and rearranging proves the theorem. O
"Ry

Tuning the learning parameter simplifies the bound furtimer arovides aO(TVﬁ) regret bound.
Note that this tuning parameter does not assume knowledife @fuyer’s discount parameter

Corollary 1. If 5 = 1;/;? then Regret(Monotone, v, T) < \/T(ZlvT7 + 2vlog (%)) +uv.

The computation used to derive this corollary are found icti8e A.3. This corollary shows that it
is indeed possible to achieve no-regret against a strabegier with a unknown fixed value as long
asT, = o(v/T). That s, the effective buyer horizon must be more than atean$actor smaller
than the square-root of the game’s finite horizon.

5 Stochastic Value Setting

We next give a seller algorithm that attains no-regret wienset of prices is finite, the buyer’s
discount isy; = v*~1, and the buyer’s value, for each round is drawn from a fixed distributih
that satistfies a certain continuity assumption, detaikddva

Phased algorithm: Choose parameter € (0,1). DefineT; = 2/ and S, =

min (I?’il , Tf). For each phase= 1,2, 3, ... of lengthT} rounds:

Offer each price» € P for S; rounds, in some fixed order; these aredkgore
rounds. Let4, ; = Number of explore rounds in phasehere pricey was offered

and the buyer accepted. For the remairiihg |P|.S; rounds of phasg offer price

D; = arg maxpeppAS";" in each round; these are thgloit rounds.

ThePhased algorithm proceeds across a number of phases. Each phasistsai explore rounds
followed by exploit rounds. During explore rounds, the aithon selects each price in some fixed
order. During exploit rounds, the algorithm repeatedlyest the price that realized the greatest
revenue during the immediately preceding explore rounds.

First notice that a strategic buyer has no incentive to lignduexploit rounds (i.e. it will accept any
pricep; < v; and reject any pricg: > v;), since its decisions there do not affect any of its future
prices. Thus, the exploit rounds are the time at which tHersean exploit what it has learned from
the buyer during exploration. Alternatively, if the buyershsuccessfully manipulated the seller into
offering a low price, we can view the buyer as “exploitingétseller.



During explore rounds, on the other hand, the strategic oceme benefit by telling lies which will
cause it to witness better prices during the correspondiptpit rounds. However, the value of
these lies to the buyer will depend on the fraction of the plamsisting of explore rounds. Taken
to the extreme, if the entire phase consists of explore reuthe buyer is not interested in lying.
In general, the more explore rounds, the more revenue has $adrificed by a buyer that is lying
during the explore rounds. For the myopic buyer, the lossnouigh immediate revenue at some
point ceases to justify her potential gains in the futurd@xpounds.

Thus, while traditional algorithms like UCB balance expliton and exploitation to ensure confi-
dence in the observed payoffs of sampled arms Paased algorithm explores for two purposes:
to ensure accurate estimates, and to dampen the buyertiuect mislead the seller. The seller’s
balancing act is to explore for long enough to learn the Beyalue distribution, but leave enough
exploit rounds to benefit from the knowledge.

Continuity of the value distribution The preceding argument required that the distribufibn
does not exhibit a certain pathology. There cannot be tweepn, p’ that are very close but
pPry~plv > p] andp’ Pr,p[v > p| are very different. Otherwise, the buyer is largely indif-
ferent to being offered pricgsor p’, but distinguishing between the two prices is essentiattfer
seller during exploit rounds. Thus, we assume that the \dilsteéibutionD is K-Lipschitz, which
eliminates this problem: Defining(p) = Pr,.p[v > p|, we assume there exist§ > 0 such that
|F(p) — F(p')| < Kl|p —p'| for all p,p’ € [0,1]. This assumption is quite mild, as oPkased
algorithm does not need to knal/, and the dependence of the regret ratéwowill be logarithmic.
Theorem 2. Assume F(p) = Pryoplv > p| is K-Lipschitz. Let A = min,ep\ (3 " F(p*) —
pF(p), where p* = argmax,cp pF'(p). For any parameter o € (0, 1) of the Phased algorithm
there exist constants c1, ¢s, ¢3, ¢4 such that

Regret(Phased, D, T) < ¢1|P|T* + ¢ A|7;/|(’ (log )"/

Pl /e o
+03A1/QT“}/ (log T 4 log(K /A + ¢4|P|

= O(T*+T)/).

The complete proof of Theorem 2 is rather technical, andasiged in Appendix B.

To gain further intuition about the upper bounds proved ia fection and the previous section, it
helps to parametrize the buyer’s horizBpas a function of’, e.9.7, = T for 0 < ¢ < 1. Writing

it in this fashion, we see that thisnotone algorithm has regret at mo§t(7°*2), and thePhased

algorithm has regret at mo&t(7'v°) if we choosea = /c. The lower bound proved in the next
section states that, in the worst case, any seller algorithinmcur a regret of at leas® (7).

6 Lower Bound

In this section we state the main lower bound, which estabsisa connection between the regret of
any seller algorithm and the buyer’s discounting. Spedificae prove that the regret of any seller
algorithm isQ)(7,). Note that wheri” = T', — i.e., the buyer does not discount her future surplus
— our lower bound proves that no-regret seller algorithmaateexist, and thus it ismpossible for

the seller to take advantage of learned information. For example, consider the seller algorithm that
uniformly selects prices; from [0, 1]. The optimal buyer algorithm is truthful, acceptingif < v,

as the seller algorithm is non-adaptive, and the buyer doegain any advantage by being more
strategic. In such a scenario the seller would quickly leagood estimate of the value distribution
D. What is surprising is that a seller canmse this information if the buyer does not discount her
future surplus. If the seller attempts to leverage inforamatearned through interactions with the
buyer, the buyer can react accordingly to negate this adgant

The lower bound further relates regret in the repeatedngetti regret in a particular single-shot
game between the buyer and the seller. This demonstratesifaénst a non-discounted buyer, the
seller is no better off in the repeated setting than he woelthyorepeatedly implementing such a
single-shot mechanism (ignoring previous interactiorth wie buyer). In the following section we
describe the simple single-shot game.



6.1 Single-Shot Auction

We call the following game theingle-shot auction. A seller selects a family of distributionS
indexed byb € [0, 1], where eacts, is a distribution orf0, 1] x {0,1}. The familyS is revealed to
a buyer with unknown value < [0, 1], who then must select a bide [0, 1], and thenp, a) ~ S,
is drawn from the corresponding distribution.

As usual, the buyer gets a surplusadb — p), while the seller enjoys a revenue . We restrict
the set of seller strategies to distributions thatiacentive compatible andrational. S is incentive
compatible if for allb, v € [0, 1], B, qy~s, [a(v—p)] < E(p.a)~s, [a(v—p)]. Itisrational if for all v,
Ep,a)~s,[a(v—p)] > 0 (i.e. any buyer maximizing expected surplus is actuallgimivised to play
the game). Incentive compatible and rational strategiest:edrawingp from a fixed distribution
(i.e. all S, are the same), and letting= 1{b > p} suffices?

We define the regret in the single-shot setting of any ingertdbmpatible and rational strategy
with respect to value as
SSRegret(S,v) = v — Ep,q)~s, [ap].

The following loose lower bound ofSRegret(S,v) is straightforward, and establishes that a
seller’s revenue cannot be a constant fraction of the bsiyatte for allv. The full proof is provided
in the appendix (Section C.1).

Lemma 3. For any incentive compatible and rational strategy S there exists v € [0, 1] such that
SSRegret(S,v) > 1—12

6.2 Repeated Auction

Returning to the repeated setting, our main lower bound méke use of the following technical
lemma, the full proof of which is provided in the appendix ¢Ben C.1). Informally, the Lemma
states that the surplus enjoyed by an optimal buyer algorittould only increase if this surplus
were viewed without discounting.

Lemma 4. Let the buyer’s discount sequence {+:} be positive and nonincreasing. For any
seller algorithm A, value distribution D, and surplus-maximizing buyer algorithm B*(A, D),

E [ZL Year(vy — pt)] <E [Zle ar(vy — pt)}

Notice if a;(v; — p¢) > 0 for all ¢, then the Lemma 4 is trivial. This would occur if the buyeryonl
ever accepts prices less than its valug£€ 1 only if p, < v,;). However, Lemma 4 is interesting
in that it holds forany seller algorithmA. It's easy to imagine a seller algorithm that incentivizes
the buyer to sometimes accept a prige> v; with the promise that this will generate better prices
in the future (e.g. setting,, = 1 and offeringp, = 0 for all ¢ > t’ only if a, = 1 and otherwise
settingp, = 1 forall ¢ > t').

Lemmas 3 and 4 let us prove our main lower bound.

Theorem 3. Fix a positive, nonincreasing, discount sequence {~:;}. Let A be any seller algorithm
for the repeated setting. There exists a buyer value distribution D such that Regret(A, D, T) >
%TW. In particular, if T, = Q(T'), no-regret isimpossible.

Proof. Let {ay., s} be the sequence of prices and allocations generated bynpl&yi(A, b)
againstA. For eachh € [0,1] andp € [0,1) x {0,1}, let py(p,a) = 7 32, wl{ap; =
a}1{py+ = p}. Notice thatu,(p,a) > 0 for countably many(p,a) and letQ, = {(p,a) €
[0,1] x {0,1} : up(p,a) > 0}. We think of;, as being a distribution. It's in fact a random measure

since the{ay, ¢, py ¢ } are themselves random. One could imagine generaijiny playing5* (A, b)
againstA and observing the sequenée; ., p,+}. Every time we observe a prigg, = p and

allocationa, ; = a, we assignTl—ﬂt additional mass tp, a) in u. This is impossible in practice,
but the random measurg has a well-defined distribution.

Now consider the following strateg§ for the single-shot settingS, is induced by drawing @,
then drawing(p, a) ~ 1. Note that for any € [0, 1] and any measurable functigh

2This subclass of auctions is evenpost rational.



T
E(p,a)NSb [f(avp)} = E#bNSb [E(p,a)N/u, [f(aa b) | :ubH = %E{Zt=1 ’th(ab,t,pb,t) .
Thus the strategy is incentive compatible, since for ahyv € [0, 1]

= TiBuyerSurplus(A, B*(A,b),v,T)

ol

T
Z ’Ytab,t(v - pb,t)
t=1

1
Epay~s, [a(v—p)] = T7E

5
T

Z '-Ytav,t(v - pv,t)
t=1

where the inequality follows from the fact th&t (A4, v) is a surplus-maximizing algorithm for a
buyer whose value is. The strategys is also rational, since for anye€ [0, 1]

<

1
BuyerSurplus(A, B*(A,v),v,T) = T—E = Epay~s, [a(v —p)]
v

B

T
1 1
Ep.ay~s,a(v —p)] = T—E Z Yeay t(v — pv,t)‘| = T—BuyerSurpluS(.A, B*(A,v),v,T) >0
Y t=1 Y

where the inequality follows from the fact that a surplusximazing buyer algorithm cannot earn
negative surplus, as a buyer can always reject every prit@am zero surplus.

Letr;, =1 — v andT, = Zthl r¢. Note thatr; > 0. We have the following for any € [0, 1]:

T
Z ’Ytav,tpv,t‘| )

t=1

1
T,SSRegret(S,v) = T, (v — E(p a)s, lap]) = Ty <v - T—E
vy

=T,w—F =T-T,)w—F

T
E YtQu tPu t
t=1

T
Z(l - T‘t)av,tpv,t‘|
t=1

T T
=Tv—-F Z Ay, tPov,t +FE Z TtQytPo,t | — TTU
t=1 t=1
T
= Regret(A,v,T)+FE Z T4y 1Pyt | —Trv = Regret(A, v, T)+E Z (@, tPot — U)‘|
t=1 t=1

A closer look at the quantity {Zthl 74 (G Dot — v)}  tells us thatE {Zle re(ay Pos — v)} <

E [Zthl Ty 4 (Dot — v)] = -E [ZtT:l(l — V) 4 (v —pvyt)} < 0, where the last inequality

follows from Lemma 4. Therefor&, SSRegret(S,v) < Regret(A,v,T) and takingD to be the
point-mass on the value€ [0, 1] which realizes Lemma 3 proves the statement of the theorém.

7 Conclusion

In this work, we have analyzed the performance of revenuemiaixg algorithms in the setting of
a repeated posted-price auction witktrategic buyer. We show that if the buyer values inventory in
the present more than in the far future, no-regret (witheeso revenue gained against a truthful
buyer) learning is possible. Furthermore, we provide lol@unds that show such an assumption
is in fact necessary. These are the first bounds of this typthéopresented setting. Future direc-
tions of study include studying buyer behavior under wegadynomial discounting rates as well
understanding when existing “off-the-shelf” bandit-aigfum (UCB, or EXP3), perhaps with slight
modifications, are able to perform well against strategicels.
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A Upper Bound on the Regret of Monot one

A.1 Proof of Lemmal

Proof. For any sequence € {0,1}7 letlast(a) be the last round wherea; = 1 anda;,; = 0,

or last(a) = 0 if there is no such round. Let" = «f,...,a}, and assume for contradiction that
last(a*) > 0. Further, assume without loss of generality that(a*) > last(a*) for every optimal
sequenca*. Let ¢ = last(a*).

Suppose that; = O forallt > ¢+ 1. If v — p, > 0 then, sincepy1 = py, lettinga;,; = 1
does not decrease the buyer's total surplus and incréasi¢a*), violating the assumption that
last(a*) > last(a*) for every optimal sequencg‘. On the other hand, i#f — p, < 0 then letting
a; = 0 increases the buyer’s total surplus, contradicting theveity of a*.

Otherwise choose the smallést> 1 such thata; , = 0, andaj,, , = 1. Note thatp, ;41 =

BFp, andpei, = B 1p,. Swapping the values of; anday, ; does not affect the buyer’s surplus
in rounds other tha and ¢ + 1, and must not increase the buyer’s total surplus, whichigapl
vt (v—pe) = (v — Bpe). Likewise, swapping the values of, , anda}, ., does not affect the
buyer’s surplus in rounds other than- & and/ + k + 1, and increaselast(a*), so it must decrease
the buyer’s total surplus, which implie$** (v — pyy 1) > Y1 — peyr).

Cancellingy’s in each inequality, and substituting o, andpx+1 gives the following inequal-
ities:
v—pe >0 —7fpe  andyo — B p > v — 5 pg
Adding the two inequalities and rearranging gives us:
B pe+ ype(B — B*) > pe
Dividing through byp, gives us:
BB -8 > 1 1)

Letg(B) = B! + B — k. Sincep — p* is non-negative and < 1, g(B) is an upper bound on
the left hand side of equation 1. Giving:

B 448 - 6%) < 9(B) )

However,g—g =(k-1)B"2+1-kpF 1 = (1—-B*2)+k(BF=2 — g*~1), which is non-negative
forany 8 < 1. To see why, note that both terms in the last expression araagative wher > 1
and the entire expressionisvhenk = 1.

Therefore,g(-) is a non-decreasing function and for afly< 1, g(8) < g(1) = 1. This fact
combined with Eqg. (1) and Eq. (2) imply a contradiction. O

A.2 Proof of Lemma 2

Proof. Rearranging the inequality> dg . yields 5 (1 + (1 — 8)T) < v Subtracting@“rl from
both sides, multiplying both sides by, and applying the mequaIltEt, 1 bat'=1 < E - i

T, gives us
T—t—1 ,
~ <6t (1 +(1=-8) > A 1) - 5”1> <i(v - gt

t'=1
& Z P <A - Y
t'=t+1
Now substitute3!(1 — 8) = (v — g**1) — (v — %) and gather terms. We have
T
> =AY < Z P w8 (3)
t'=t+2 t'=t+1

10



Note thatZtT,:tJrl 7"1(@ —ﬂt) is the surp_lus ofa mo_notonic_ buyer that starts accepting(raa_ms
continues to accept) the price offered at timge 1. The inequality above, which holds for arbitrary
t > dg -, states that the surplus that is gained from starting tom@iteround: + 1 is greater than
the surplus gained from starting to accept at rousd2. Thus, it must be the casg, , = 1. O

A.3 Proof of Corollary 1

Before showing the proof to Corollary 1, we prove the follogitechnical lemma.
Lemmab. = > log(l+a)ifxz >0anda < 2log(l+z)if0 <z < 1.

oo

Proof. By Taylor's theoreme® = 3" f—, Thereforee® > 1 + z if 2 > 0, and sar > log(1 + x)
if > 0. Now leta,, = 27.1:1(—1)”1% and observe that for any positive even integer

2

2a, = 2 — x* + 2;(—1)”17

_ ) - i 1_ T
—:C—i—(x ac)+2 Z m(Z i+1)

i=3,5,7,...

>z

where the inequality follows because— 2> > 0if 0 <z < land{ — & > 0if 2 < 1 and

i > 1. Sincelim,,,+ a, = log(1 + z) (by Taylor's theorem) antimn_mo apn, = limy, s o0 1 eventn
(because all subsequences of a convergent sequence haeerthdimit), we have showhlog(1 +
z)>azfor0 <z <1 O

Now, the proof of Corollary 1.

Proof of Corollary 1. From the expression fgf we have

B VT B 1 _1+VT+T,
”1+<1 1+\/T>T71+(1+¢T)T7 (1+\/T) “

which implies
B, NT 14T
By 1+VT+T, 14+VT+T,

by ((++ )4 s (1 oy ) + o )

14T 1
log< Vi ) log(l—i—ﬁ)
By Lemma 5 we know that > log(1 + x)if z > 0andz < 2log(l + ) if 0 < z < 1. Since

T >1we haveﬁ > 0ando < f < 1 and therefore

We also have

ds < éi :/;) +2\F10g< ) < 2T, + 2VT log (i) . (5)

From the expression fats ., in Eq. (4) we havecﬁl—w < 1. Therefore

D55 < 2T, +2flog<1>

CB,y
Now plug the bounds oh — ﬁ’ fj = and from above into the upper bound from Theorem 1.
Noting that3 < 1 givesus

1+T 1
Regret(Monotone, v, T) < vT | ———="— | +v (2T +2VTlo <> + 1>
et ) <1+\/T+Ty> o\ &\

11



1
S\/T<4UT7+2vlog(v>)+v. O

B Upper Bound on Regret of Phased

Let A be a fixed positive constant, whose exact value will be sjgecléter. Defind/ * to be the
number of explore rounds in phasahere pricep was offered and the buyer’s valde in the round

vt
was at leasp + \. Let7 !, = p Sp *, and note that?[7, ;(A\)] = pF(p + A). Similarly, defineV
to be the number of explore rounds in phaséhere pricep was offered and the buyer’s vaIue |n the

round was at leagt— \. Letr, ; _p &+, and note thak’[, ;] = pF(p—A). Also, letr, ; = p4 &
be theobserved revenue of price in explore rounds in phase

In thePhased algorithm, the pricey; that maximizes, ; is offered in every exploit round of phase
So our strategy for proving Theorem 2 will be to show thiat= arg max, 7, ; with high probability
for all sufficiently largei. There are essentially only two ways this can fail to hapgether the
realized buyer values differ greatly from their expectagioor the buyer is untruthful about her
realized values. The first case is unlikely, and the lattseda costly to the buyer, provided the
number of explore rounds in the phase is sufficiently large.néiv quantify ‘sufficiently large’. Let
iy be the smallest nonnegative integer such that D for all ¢ > iy , Where

D7 = max <Ai log T, ZC’ >

andCs = T (log(1/d) 4 log(1/X)). Note thati; is well-defined becauss; is increasing ini. The
next Iemma uses a standard concentration inequality todthenprobability that certain random
variables are close to their expectations.

Lemma6. Fixpricep € P and phasei > 4. Wth probability 1 — 27"

- A X o A
Tpi SPF(p—A) + 7 and it >p Fp -5

Proof. Note thatr ", is an average of; independent random variables, since the variapjeme
chosen determrnrstlcally during the explore phase and eashalways drawn independently. Also

note thatt[7 ;] = pF'(p — A). Sincei > i) we have
logT = —— logT.
S_AQOg (A/4) og
Thus by Hoeffding's inequalityPr [#; <pF(p— )+ %] > 1 — T-'. Similarly 7%
is an average of5; independent random variables anE{r i = p"F(p* + )), and thus
Pr[ft > p*F(p*+)) — 4] >1—T"'. The lemma follows from the union bound. O

Let £, ; be the set of explore rounds in phasghere the seller offered prigeand the buyei-lied,
i.e., a round where either the buyer accepted pricand her value), < p — A, or rejected price
and her value, > p+ \. Let L, ; = |£,;|. The next lemma shows that, for any phasehere the
event from the previous lemma occurs, if the observed revefthe optimal price* is less than
the observed revenue of another price then the buyer musttblVmany\-lies during phase.

Lemma7. Fix pricep € P and phasei. If 7, ; < 7, ,; and the event from Lemma 6 occurs then
) D s 4p

Proof. Assume for contradiction that, ; < (A%ZK’\) S;andL,-,; < (Aﬁf’\) S;. For any
pricep’ note thatd,, ; — V,,; < Ly ; andeTZ- — Ay i < Ly ;, sinceA, ; counts the number of

times the buyer accepted pripkin phase;. Combining these bounds and applying the definitions
of 7y i, e iy 7, @NAF . . proves

A
Fpi = s < 7 — KON (6)

12



. A
P = i < 7 KA (7)
Now observe
_ A
P < Pt — KON Eq. (6)
A
<pF(p—/\)+5—K)\ Lemma 6
A . . L
< pF(p) + 5 K-Lipschitz continuity
A _
<pF(p*) — 5 Definition of A
A . . L
SPFEETHA) -5 KA K-Lipschitz continuity
A
ot
STpes— 4 TEA Lemma 6
< Tpri Eq. (7)
which contradicts’,« ; < 7 ;. O

Next we show that the number aflies told by a surplus-maximizing buyer in any phase is latath
with high probability. This is the main technical lemma.

Lemma 8. Fix pricep € P, phase i, and suppose the buyer uses a surplus-maximizing algorithm
B*(Phased, D). For all 6 > 0 wehavePr[L, ; > Cs] <.

Proof. Let B¢ be a buyer algorithm that acts according6(Phased, D) during the firsti — 1
phases, and from phasenwards acts truthfully in every round, i.e,,= 1{v; > p,} for all rounds
tinphases,i+1,...,[log, T'|. AssumePr[L,; > C5] > §. We will show that this implies

BuyerSurplus(Phased, B*(Phased, D), D, T) < BuyerSurplus(Phased, B, D, T),
a contradiction.

Letpi,...,pr andaj,...,a} be the prices and accept decisions from all rounds when therbu
algorithm isB* (Phased, D), and letpi, ..., p% andal,.. ., a} be the price and accept decisions
from all rounds when the buyer algorithm®. Recall that the values,, ..., vr are drawn inde-
pendently of seller or buyer behavior. Lgt andtj be the first and last explore rounds in phase
respectively. We have

BuyerSurplus(Phased, B*(Phased, D), D, T)

t;—1

— BuyerSurplus(Phased, B, D,T)

Z’Y “Hag (ve —p}) —ag(ve —py)) | + E Z’Y “Hag (v = py) — ag(ve — )
+E Z 7N af (v — p;) — af(ve — p})) (8)

t=tf+1

T
=E Z'Y I (ai (ve —pf) — ag(v t*pi)) +E o4 1(af( -pi) — ( t*pi))
t=t}+1
)
T
=E ZV (af —ay)(ve —pi) | + E 7' ay (ve = py) — ai(ve — p})) (10)
t=tF+1

i

13



=E {Z 7 ag — ap)( t_pi)] +7t”'+T7 (11)

=Pr[Ly; > G| E Z”/ (a; _at(t_pi)’LP,iZCts
; +
+Pr[L,; < Cs5]E Zv 1at—at(t—pf§)|Lp7i<C’5 —|—7tiT7
; +
< Pr[L,; > Cs]E Z ~y* 1 (a; — at )(ve = pt) ‘ Ly = Cs +4% T, (12)
| teL,
<Pr(Lyi > GIE | Y 47N [ Lps > G5 | 495 T (13)
_teﬂp‘q‘,
t
<SPrL,i >G5l Y. AN+ T (14)
t=t] —Cs+1
tF
<6 Y AN AT (15)
t=t} —Cs+1
+_ 1—~Cs + A =6
= Gyt —Cs (1_7>+7‘3Ty<1_7 o + (=T ) <0 (16)

Eq. (8) follows from the definition of surplus and the lingaof expectation. Eq. (9) holds be-
causeB*(Phased, D) and B behave identically before phaseEq. (10) holds because the prices
offered during explore rounds are independent of the bsyagorithm, and thup; = p; for
te{t;,...,t;}. The fact thati = 1{v; > p} fort > t; impliesa} (v — p}) — ai(v, — pi) < 1
for ¢t > t;, which yields Eq. (11), and also impli¢s; — al)(v; — pi) < 0for¢ > t;, which yields
Eq. (12) (recall thatl, ; C {t;,...,t]}). The definition of\-lies and the fact thati = p; for
t € L,; implies Eq. (13). Eq. (14) holds becauge! is decreasing im. Eq. (15) follows from our
assumption thalr[L, ;, > Cs] > ¢. Eq. (16) follows from the definition of’s. O

We are ready to prove an upper bound on the regret dfiheed algorithm.

Proof of Theorem 2. Let 7,”?°"® and 7."°" be the set of explore and exploit rounds of phase
Note that for thePhased algorithm the behavior of a buyer during exploit rounds doesaffect
the prices offered in future rounds. Singgis the price offered in each exploit round of phasa
surplus-maximizing buyer will choose = 1{v; > p;} in any exploit round of phasei. So we
can upper bound the regret of tAeased algorithm in terms of the number of explore rounds and
the probability thap; # p* during exploit rounds. We have

ZPF _atpt]
= Z P EE) —ap)+ Y. Y. Ep FO) — ami]

Regret(Phased, D, T)

i te,Texplore i teT‘exploit
<Z\7>|s +Y° > Prp —|P|S))
i peP\{p*}
<SPS+ >0 Y T+ DY > Prlpi=pT (17
i peP\{p*}i<i} peP\{p*} i>i}
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where expectations and probabilities are with respect toevdistribution D, seller algorithm
Phased and buyer algorithn3*(Phased, D). We will now bound each term in Eq. (17). Let

A= Tk
Letn = [log, T]. Recall thatl; = 2¢ andS; = T/, which impliesY", S; = SI"/' 2. Since
n <log, T + 1 we have2™ < 27'. Thus

n—1

29 -1 (@2m*—-1 _20T* -1 2
= 9ot < = < < re. 18
ZS ; o201 20 -1 = 2¢—-1 T 2¢-1 (18)

where the first inequality follows from the formula for a gestnic series (this is just the standard
'doubling trick’).

By the definition ofS; andi; we haveT;. 1 < (Dp)'/*, which impliesT;: ;1 < 4(Dp)Y . Also
note thatz T < Tipa for all i, again becausg; = 2¢. Thus

o Y < > ADp)Ve (19)
pEP\{p*}i<iy pEP\{p*}

Finally, for anyp # p* andi > iy if p; = p thenr,. ; <7, ;, which by Lemma 7 implies that either
the event from Lemma 6 does not occur,

Ly;> A%im\&-, or (20)
Ly-i> %&-. (21)
Since)\ = 167 andp, p* < 1, Eq. (20) and Eq. (21) respectively imply
Ly; > %Sl-, or (22)
Ly > %Si. (23)

The event from Lemma 6 occurs with probability- 27!. And sinceS; > D > (8/A)C . for
all < > iy, we have that Eq. (22) and Eq. (23) imply eithey, > 01 of Ly« ; > (11 , which by

Lemma 8 each occur with probability at m@st!. Thus by the unlon bounBr[p; = p] <4771,
and therefore
> > Pripi=p T < 4P| (24)

peP\{p*} i>i;
Combining Egs. (18), (19) and (24) with Eq (17) yields

Regret(Phased, D, T) < + Z )Y + 4|P|
pEP\{p*}
Plugging in the definitiorD and\ = 16K’ we have
1/«
Regret(Phased, D, T) g |79|T°‘ + Z <1ogT)
pEP\{p*}

1/«
+ Z ( 5 (log T + log(16K/A) )> + 8|P.
pEP\{p*}
and simplifying yields the statement of the theorem. O

C Lower Bound Proofs

C.1 Proof of Lemma3

Proof. Fix a incentive compatible and rational stratejyLet SellerRevenue(b) = E(, 4)~s, [ap]
be the seller's expected revenue if the buyer bidand letBuyerSurplus(b, v) = E(,,q)~s, [a(v —
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p)] be the buyer's expected surplus if she bidsnd her value ig. It suffices to show that there
existsv € [0, 1] such thaty — SellerRevenue(v) > 5.

Before proceeding, we establish some propertieS.dhcentive compatibility ofS ensures that

BuyerSurplus(v,v) > BuyerSurplus(b, v) (25)
for all b, v € [0, 1], and rationality ofS ensures that
BuyerSurplus(v,v) > 0 (26)
forallv € [0,1]. Also
SellerRevenue(b) 4+ BuyerSurplus(b, v) = E(; q)~s, [a]v (27)

for all b, v € [0, 1], which follows directly from definitions, and
SellerRevenue(v) < E(; 4y, [a]v (28)

for all v € [0,1], which follows from rationality: By (27) we hav8uyerSurplus(v,v) =
Epa~s,[alv — SellerRevenue(v), and thus if (28) were false we would have
BuyerSurplus(v,v) < 0, which contradicts (26).

Now observe that for any, v € [0, 1]
v — SellerRevenue(v) > E, )~s, [aJv — SellerRevenue(v)
= BuyerSurplus(v, v) (29)
> BuyerSurplus(b, v) (30)
= Ep.ay~s,la(v —p)]
= Ep,a)~s,[a]v = E(p,a)~s, [ap]
= E(p,a)~s,[alv — SellerRevenue(b)

> (SeuerRe;zenue(b)) v — SellerRevenue(b) (31)
:@_w<&mm?mw@>

where (29) follows from (27), (30) follows from (25), and §3bllows from (28). Now leth = i
andv = 1. If v — SellerRevenue(v) > + we are done. Otherwise the first and last lines from the
above chain of inequalities and— SellerRevenue(v) < % imply

SellerRevenue(b) <V SellerRevenue(v) - 11 2
b - v—> 6v—>b 3
which can be rearranged inko- SellerRevenue(b) > b > 4. O

C.2 Proof of Lemma4

Proof. It will be convenient to define the following (all expectat®in these definitions are with
respect tad, D andB* (A, D)):

-
rev(ty,to) = F Z atpt]

Lt=t1

to
sur(ty,to) = F Z ~ear(ve pt)}

Lt=t1

t2
udsur(ty,te) = F Z a(vy — Pt)l

to
totval(ty, ta) = E Z atvt]



where ‘udsur” stands for “undiscounted surplus” antbtval” stands for “total value”. Note that
by definition

I'(%V(lfl7 t2) + udsur(tl, tQ) = tOtV&l(tl, tg). (32)
Also, sinceB*(A, D) is a surplus-maximizing buyer strategyy (¢, 7") > 0 for all roundst, because
otherwise the buyer could increase her surplus by followBigA, D) until roundt — 1 and then
selectinga;, = 0 for all roundst’ > ¢.

We will first prove thatsur(¢,7) < ~udsur(¢,7) for all roundst. The proof will proceed by
induction. For the base case, we have(T,T) = ~ypudsur(7,T) by definition. Now assume for
the inductive hypothesis thatir(¢t + 1,7) < 7:41udsur(t + 1,7T). Sincesur(t + 1,7) > 0 and
~ve+1 > 0, by the inductive hypothesis we havésur(t + 1,7) > 0. Therefore
sur(t,T) = sur(t,t) +sur(t + 1,7T)

= ypudsur(t, t) + sur(t + 1,7)

< ypudsur(t, t) + yppudsur(t + 1,7) (33)

< ypudsur(t, t) + yudsur(t + 1,7) (34)

= ~yyudsur(¢, T)
where Eq. (33) follows from the inductive hypothesis and(B4) follows becausedsur(t+1,T')
0 and~y; > vi41. Thussur(¢,T) < yudsur(t, T').
Sincesur(1,7) < ~yudsur(1,7) and~; < 1, by Eq. (32) we haveev(1,T) + sur(1,T)
totval(1,T"), which proves the lemma.

Y]
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