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Abstract

Psychologists are interested in developing instructional policies that boost
student learning. An instructional policy specifies the manner and content
of instruction. For example, in the domain of concept learning, a policy
might specify the nature of exemplars chosen over a training sequence. Tra-
ditional psychological studies compare several hand-selected policies, e.g.,
contrasting a policy that selects only difficult-to-classify exemplars with a
policy that gradually progresses over the training sequence from easy ex-
emplars to more difficult (known as fading). We propose an alternative to
the traditional methodology in which we define a parameterized space of
policies and search this space to identify the optimal policy. For example,
in concept learning, policies might be described by a fading function that
specifies exemplar difficulty over time. We propose an experimental tech-
nique for searching policy spaces using Gaussian process surrogate-based
optimization and a generative model of student performance. Instead of
evaluating a few experimental conditions each with many human subjects,
as the traditional methodology does, our technique evaluates many exper-
imental conditions each with a few subjects. Even though individual sub-
jects provide only a noisy estimate of the population mean, the optimization
method allows us to determine the shape of the policy space and to identify
the global optimum, and is as efficient in its subject budget as a traditional
A-B comparison. We evaluate the method via two behavioral studies, and
suggest that the method has broad applicability to optimization problems
involving humans outside the educational arena.

1 Introduction

What makes a teacher effective? A critical factor is their instructional policy, which specifies
the manner and content of instruction. Electronic tutoring systems have been constructed
that implement domain-specific instructional policies (e.g., J. R. Anderson, Conrad, & Cor-
bett, 1989; Koedinger & Corbett, 2006; Martin & VanLehn, 1995). A tutoring system
decides at every point in a session whether to present some new material, provide a de-
tailed example to illustrate a concept, pose new problems or questions, or lead the student
step-by-step to discover an answer. Prior efforts have focused on higher cognitive domains
(e.g., algebra) in which policies result from an expert-systems approach involving careful
handcrafted analysis and design followed by iterative evaluation and refinement. As a com-
plement to these efforts, we are interested in addressing fundamental questions in the design
of instructional policies that pertain to basic cognitive skills.

Consider a concrete example: training individuals to discriminate between two perceptual
or conceptual categories, such as determining whether mammogram x-ray images are neg-
ative or positive for an abnormality. In training from examples, should the instructor tend
to alternate between categories—as in pnpnpnpn for positive and negative examples—or
present a series of instances from the same category—ppppnnnn (Goldstone & Steyvers,
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2001)? Both of these strategies—interleaving and blocking, respectively—are adopted by
human instructors (Khan, Zhu, & Mutlu, 2011). Reliable advantages between strategies has
been observed (Kang & Pashler, 2011; Kornell & Bjork, 2008) and factors influencing the
relative effectiveness of each have been explored (Carvalho & Goldstone, 2011).

Empirical evaluation of blocking and interleaving policies involves training a set of human
subjects with a fixed-length sequence of exemplars drawn from one policy or the other.
During training, exemplars are presented one at a time, and typically subjects are asked
to guess the category label associated with the exemplar, after which they are told the
correct label. Following training, mean classification accuracy is evaluated over a set of test
exemplars. Such an experiment yields an intrinsically noisy evaluation of the two policies,
limited by the number of subjects and inter-individual variability. Consequently, the goal
of a typical psychological experiment is to find a statistically reliable difference between the
training conditions, allowing the experimenter to conclude that one policy is superior.

Blocking and interleaving are but two points in a space of policies that could be param-
eterized by the probability, ρ, that the exemplar presented on trial t + 1 is drawn from
the same category as the exemplar on trial t. Blocking and interleaving correspond to ρ
near 1 and 0, respectively. (There are many more interesting ways of constructing a policy
space that includes blocking and interleaving, e.g., ρ might vary with t or with a student’s
running-average classification accuracy, but we will use the simple fixed-ρ policy space for
illustration.) Although one would ideally like to explore the policy space exhaustively, limits
on the availability of experimental subjects and laboratory resources make it challenging to
conduct studies evaluating more than a few candidate policies to the degree necessary to
obtain statistically significant differences.

2 Optimizing an instructional policy

Our goal is to discover the optimum in policy space—the policy that maximizes mean
accuracy or another measure of performance over a population of students. (We focus on
optimizing for a population but later discuss how our approach might be used to address
individual differences.) Our challenge is performing optimization on a budget: each subject
tested imposes a time or financial cost. Evaluating a single policy with a degree of certainty
requires testing many subjects to reduce sampling variance due to individual differences,
factors outside of experimental control (e.g., alertness), and imprecise measurement obtained
from brief evaluations and discrete (e.g., correct or incorrect) responses. Consequently,
exhaustive search over the set of distinguishable policies is not feasible.

Past research on optimal teaching (Chi, VanLehn, Litman, & Jordan, 2011; Rafferty, Brun-
skill, Griffiths, & Shafto, 2011; Whitehill & Movellan, 2010) has investigated reinforcement
learning and POMDP approaches. These approaches are intriguing but are not typically
touted for their data efficiency. To avoid exceeding a subject budget, the flexibility of the
POMDP framework demands additional bias, imposed via restrictions on the class of can-
didate policies and strong assumptions about the learner. The approach we will propose
likewise requires specification of a constrained policy space, but does not make assumptions
about the internal state of the learner or the temporal dynamics of learning. In contrast
to POMDP approaches, the cognitive agnosticism of our approach allows it to be readily
applied to arbitrary policy optimization problems. Direct optimization methods that accom-
modate noisy function evaluations have also been proposed, but experimentation with one
such technique (E. J. Anderson & Ferris, 2001) convinced us that the method we propose
here is orders of magnitude more efficient in its required subject budget.

Neither POMDP nor direct-optimization approaches models the policy space explicitly.
In contrast, we propose an approach based on function approximation. From a function-
approximation perspective, the goal is to determine the shape and optimum of the function
that maps policies to performance—call this the policy performance function or PPF. What
sort of experimental design should be used to approximate the PPF? Traditional experi-
mental design—which aims to show a statistically reliable difference between two alternative
policies—requires testing many subjects for each policy. However, if our goal is to determine
the shape of the PPF, we may get better value from data collection by evaluating a large
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Figure 1: A hypothetical 1D instructional policy space. The
solid black line represents an (unknown) policy performance
function. The grey disks indicate the noisy outcome of single-
subject experiments conducted at specified points in policy
space. (The diameter of the disk represents the number of
data points occuring at the disk’s location.) The dashed black
line depicts the GP posterior mean, and the coloring of each
vertical strip represents the cumulative density function for
the posterior.

number of points in policy space each with few subjects instead of a small number of points
each with many subjects. This possibility suggests a new paradigm for experimental design
in psychological science. Our vision is a completely automated system that selects points
in policy space to evaluate, runs an experiment—an evaluation of some policy with one or
a small number of subjects—and repeats until a budget for data collection is exhausted.

2.1 Surrogate-based optimization using Gaussian process regression

In surrogate-based optimization (e.g., Forrester & Keane, 2009), experimental observations
serve to constrain a surrogate model that approximates the function being optimized. This
surrogate is used both to select additional experiments to run and to estimate the opti-
mum. Gaussian process regression (GPR) has long been used as the surrogate for solving
low-dimensional stochastic optimization problems in engineering fields (Forrester & Keane,
2009; Sacks, Welch, Mitchell, & Wynn, 1989). Like other Bayesian models, GPR makes effi-
cient use of limited data, which is particularly critical to us because our budget is expressed
in terms of the number of subjects required. Further, GPR provides a principled approach
to handling measurement uncertainty, which is a problem any experimental context but is
particularly striking in human experimentation due to the range of factors influencing per-
formance. The primary constraint imposed by the Gaussian Process prior—that of function
smoothness—can readily be ensured with the appropriate design of policy spaces. To illus-
trate GPR in surrogate-based optimization, Figure 1 depicts a hypothetical 1D instructional
policy space, along with the true PPF and the GPR posterior conditioned on the outcome
of a set of single-subject experiments at various points in policy space.

2.2 Generative model of student performance

Each instructional policy is presumed to have an inherent effectiveness for a population of
individuals. However, a policy’s effectiveness can be observed only indirectly through mea-
surements of subject performance such as the number of correct responses. To determine the
most effective policy from noisy observations, we must specify a generative model of student
performance which relates the inherent effectiveness of instruction to observed performance.

Formally, each subject s is trained under a policy xs and then tested to evaluate their
performance. We posit that each training policy x has a latent population-wide effectiveness
fx ∈ R and that how well a subject performs on the test is a noisy function of fxs

. We
are interested in predicting the effectiveness of a policy x′ across a population of students
given the observed test scores of S subjects trained under the policies x1:S. Conceptually,
this involves first inferring the effectiveness f of policies x1:S from the noisy test data, then
interpolating from f to fx′ .

Using a standard Bayesian nonparametric approach, we place a mean-zero Gaussian Process
prior over the function fx. For the finite set of S observations, this corresponds to the
multivariate normal distribution f ∼ MVN(0,Σ), where Σ is a covariance matrix prescribing
how smoothly varying we expect f to be across policies. We use the squared-exponential

covariance function, so that Σs,s′ = σ2 exp(− ||xs−xs′ ||2
2`2 ), and σ2 and ` as free parameters.

Having specified a prior over policy effectiveness, we turn to specifying a distribution over
observable measures of subject learning conditioned on effectiveness. In this paper, we
measure learning by administering a multiple-choice test to each subject s and observing
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the number of correct responses s made, cs, out of ns questions. We assume the probability
that subject s answers any question correctly is a random variable µs whose expected value
is related to the policy’s effectiveness via the logistic transform: E [µs] = logistic(o + fxs

)
where o is a constant. This is consistent with the observation model

µs | fxs , o, γ ∼ Beta(γ, γe−(o+fxs )) cs | µs ∼ Binomial(g + (1− g)µs; ns) (1)

where γ controls inter-subject variability in µs and g is the probability of answering a
question correctly by random guessing. In this paper, we assume g = .5. For this special
case, the analytic marginalization over µs yields

P (cs | fxs
, γ, o, g = .5) = 2−ns

(
ns
cs

) cs∑
i=0

(
cs
i

)
B(γ + i, ns − cs + γe−(o+fxs ))

B(γ, γe−(o+fxs ))
(2)

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the beta function.

Parameters θ ≡
{
γ, o, σ2, `

}
are given vague uniform priors. The effectiveness of a policy x′

is estimated via p(fx′ | c) ≈ 1
M

∑M
m=1 p(fx′ | f (m),θ(m)), where p(fx′ | f (m),θ(m)) is Gaussian

with mean and variance determined by the mth sample from the posterior p(f ,θ | c).
Posterior samples are drawn via elliptical slice sampling, a technique well-suited for models
with highly correlated latent Gaussian variables (Murray, Adams, & MacKay, 2010).

We have also explored a more general framework that relaxes the relationship between
chance-guessing and test performance and allows for multiple policies to be evaluated per
subject. With regard to the latter, subjects may undergo multiple randomly ordered blocks
of trials where in each block b a subject s is trained under a policy fxb

s
and then tested. The

observation model is altered so that the score in a block is given by cbs ∼ Binomial(µbs;n
b
s)

where µbs ≡ logistic(o′ + αs + fxb
s
), the factor αs ∼ Normal(0, τ−1α ) represents the ability of

subject s across blocks, and the constant o′ subsumes the role of o and g from the original
model. In the spirit of item-response theory (Boeck & Wilson, 2004), the model could be
extended further to include factors that represent the difficulty of individual test questions
and interactions between subject ability and question difficulty.

2.3 Active selection

GP optimization requires a strategy for actively selecting the next experiment. (We refer
to this as a ‘strategy’ instead of as a ‘policy’ to avoid confusion with instructional policies.)
Many heuristic strategies have been proposed (Forrester & Keane, 2009), including: grid
sampling over the policy space; expanding or contracting a trust region; and goal-setting
approaches that identify regions of policy space where performance is likely to attain some
target level or beat out the current best experiment result. In addition, greedy versus k-step
predictive planning has been considered (Osborne, Garnett, & Roberts, 2009).

Every strategy faces an exploration/exploitation trade off. Exploration involves searching
regions of the function with the maximum uncertainty; exploitation involves concentrating
on the regions of the function that currently appear to be most promising. Each has a
cost. A focus on exploration rapidly exhausts the subject budget for subjects. A focus on
exploitation leads to selection of local optima.

The upper-confidence bound (UCB) strategy (Forrester & Keane, 2009; Srinivas, Krause,
Kakade, & Seeger, 2010) attempts to avoid these two costs by starting in an exploratory
mode and shifting to exploitation. This strategy chooses the most-promising experiment
from an upper-confidence bound on the GPR: xt = argmaxx µ̂t−1(x) + ηtσ̂t−1(x), where t
is a time index, µ̂ and σ̂ are the mean and standard deviation of the GPR, and ηt controls the
exploration/exploitation trade off. Large ηt focus on regions with the greatest uncertainty,
but as ηt → 0, the focus shifts to exploitation in the neighborhood of the current best policy.
Annealing ηt as a function of t will yield exploration initially shifting toward exploitation.

We adapt the UCB strategy by transforming the UCB based on the GPR to an expression
based on the the population accuracy (proportion correct) via xt = argmaxxP ( csns

> νt | fx),

where νt is an accuracy level determining the exploration/exploitation trade off. In simula-
tions, we found that setting νt = .999 was effective. Note that in applying the UCB selection
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Figure 2: (a) Some objects and their graspability ratings: 1 means not graspable and 5
means highly graspable; choosing the category of training examplars over a sequence of
trials; (b) Examples of fading policies drawn from the 1D fading policy space used in our
study

red line depicts the GP posterior mean, µ(x) for policy x, and the pink shading is ±2σ(x),
where σ(x) is the GP posterior standard deviation.

GP optimization requires a strategy for selecting the next experiment. (We refer to this
as a ’strategy’ instead of a ’policy’ to avoid confusion with instructional policies.) Many
heuristic strategies have been proposed (Forrester & Keane, 2009), including: grid sampling
over the policy space; expanding or contracting a trust region; and goal-setting approaches
that identify regions of policy space where performance is likely to attain some target level
or beat out the current best experiment result. In addition, greedy versus k-step predictive
planning has been considered (Osborne, Garnett, & Roberts, 2009).

Every strategy faces an exploration/exploitation trade off. Exploration involves searching
regions of the function with the maximum uncertainty; exploitation involves concentrating
on the regions of the function that currently appear to be most promising. Each has a cost.
A focus on exploration rapidly exhausts the budget for participants. A focus on exploitation
leads to selection of local optima.

The upper-confidence bound (UCB) strategy (Forrester & Keane, 2009; Srinivas, Krause,
Kakade, & Seeger, 2010) attempts to avoid these two costs by starting in an exploratory
mode and shifting to exploitation. This strategy chooses the most-promising experiment
from an upper-confidence bound on the function

xt = argmaxx µt−1(x) + ηtσt−1(x),

where t is an index over time and ηt controls the exploration/exploitation trade off. Large ηt

focus on regions with the greatest uncertainty, but as ηt → 0, the focus shifts to exploitation
in the neighborhood of the current best policy. Annealing ηt as a function of t will yield
exploration initially shifting toward exploitation.

3 Experimental task

To test our approach to optimization of instructional policies, we use a challenging problem
in the domain of concept or category learning. Salmon, McMullen, and Filliter (2010)
have obtained rating norms for a set of 320 objects in terms of their graspability, i.e., how
manipulable an object is according to how easy it is to grasp and use the object with one
hand. They polled 57 individuals, each of whom rated each of the objects multiple times
using a 1–5 scale, where 1 means not graspable and 5 means highly graspable. Figure 2a
shows several objects and their ratings.

We divided the objects into two groups by their mean rating, with the not-glopnor group
having ratings in [1, 2.75] and the glopnor group having ratings in [3.25, 5]. (We discarded
objects with ratings in [2.75, 3.25]). Our goal was to teach the concept of glopnor, using
the following instructions:
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strategy, we must search over a set of candidate policies. We applied a fine uniform grid
search over policy space to perform this selection.

3 Experiment 1: Optimizing presentation rate

de Jonge, Tabbers, Pecher, and Zeelenberg (2012) studied the effect of presentation rate on
word-pair learning. During training, each pair was viewed for a total of 16 sec. Viewing was
divided into 16/d trials each with a duration of d sec, where d ranged from 1 sec (viewing the
pair 16 times) to 16 sec (viewing the pair once). de Jong et al. found that an intermediate
duration yielded better cued recall performance both immediately and following a delay.

We explored a variant of this experiment in which subjects were asked to learn the favorite
sporting team of six individuals. During training, each individual’s face was shown along
with their favorite team—either Jets or Sharks (Figure 2a). The training policy specifies
the duration d of each face-team pair. Training was over a 30 second period, with a total of
30/d trials and an average of 5/d presentations per face-team pair. Presentation sequences
were blocked, where a block consists of all six individuals in random order. Immediately
following training, subjects were tested on each of the six faces in random order and were
asked to select the corresponding team. The training/testing procedure was repeated for
eight rounds each using different faces. In total, each subject responded to 48 faces. The
faces were balanced across ethnicity, age, and gender (provided by Minear & Park, 2004).

Using Mechanical Turk, we recruited 100 subjects who were paid $0.30 for their participa-
tion. The policy space was defined to be in the logarithm of the duration, i.e., d = ex, where
x ∈ [ln(.25) ln(5)]. The space included only values of x such that 30/d is an integer; i.e., we
ensured that no trials were cut short by the 30 second time limit. Subject 1’s training policy,
x1, was set to the median of the range of admissable values (857 ms). After each subject
t completed the experiment, the PPF posterior was reestimated, and the upper-confidence
bound strategy was used to select the policy for subject t+ 1, xt+1.

Figure 3a shows the PPF posterior based on 100 subjects. (We include a movie showing
the evolution of the PPF over subjects in the Supplementary Materials.) The diameter of
the grey disks indicate the number of data points observed at that location in the space.
The optimum of the PPF mean is at 1.15 sec, at which duration each face-team pair will be
shown on expectation 4.33 times during training. Though the result seems intuitive, we’ve
polled colleagues, and predictions for the peak ranged from below 1 sec to 2.5 sec. Figure 3b
uses the PPF mean to estimate the optimum duration, and this duration is plotted against
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Figure 2: (a) Some objects and their graspability ratings: 1 means not graspable and 5
means highly graspable; choosing the category of training examplars over a sequence of
trials; (b) Examples of fading policies drawn from the 1D fading policy space used in our
study

red line depicts the GP posterior mean, µ(x) for policy x, and the pink shading is ±2σ(x),
where σ(x) is the GP posterior standard deviation.

GP optimization requires a strategy for selecting the next experiment. (We refer to this
as a ’strategy’ instead of a ’policy’ to avoid confusion with instructional policies.) Many
heuristic strategies have been proposed (Forrester & Keane, 2009), including: grid sampling
over the policy space; expanding or contracting a trust region; and goal-setting approaches
that identify regions of policy space where performance is likely to attain some target level
or beat out the current best experiment result. In addition, greedy versus k-step predictive
planning has been considered (Osborne, Garnett, & Roberts, 2009).

Every strategy faces an exploration/exploitation trade off. Exploration involves searching
regions of the function with the maximum uncertainty; exploitation involves concentrating
on the regions of the function that currently appear to be most promising. Each has a cost.
A focus on exploration rapidly exhausts the budget for participants. A focus on exploitation
leads to selection of local optima.

The upper-confidence bound (UCB) strategy (Forrester & Keane, 2009; Srinivas, Krause,
Kakade, & Seeger, 2010) attempts to avoid these two costs by starting in an exploratory
mode and shifting to exploitation. This strategy chooses the most-promising experiment
from an upper-confidence bound on the function

xt = argmaxx µt−1(x) + ηtσt−1(x),

where t is an index over time and ηt controls the exploration/exploitation trade off. Large ηt

focus on regions with the greatest uncertainty, but as ηt → 0, the focus shifts to exploitation
in the neighborhood of the current best policy. Annealing ηt as a function of t will yield
exploration initially shifting toward exploitation.

3 Experimental task

To test our approach to optimization of instructional policies, we use a challenging problem
in the domain of concept or category learning. Salmon, McMullen, and Filliter (2010)
have obtained rating norms for a set of 320 objects in terms of their graspability, i.e., how
manipulable an object is according to how easy it is to grasp and use the object with one
hand. They polled 57 individuals, each of whom rated each of the objects multiple times
using a 1–5 scale, where 1 means not graspable and 5 means highly graspable. Figure 2a
shows several objects and their ratings.

We divided the objects into two groups by their mean rating, with the not-glopnor group
having ratings in [1, 2.75] and the glopnor group having ratings in [3.25, 5]. (We discarded
objects with ratings in [2.75, 3.25]). Our goal was to teach the concept of glopnor, using
the following instructions:
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the number of subjects. Our procedure yields an estimate for the optimum duration that is
quite stable after about 40 subjects.

Ideally, one would like to compare the PPF posterior to ground truth. However, obtaining
ground truth requires a massive data collection effort. As an alternative, we contrast our
result with a more traditional experimental study based on the same number of subjects.
We ran 100 additional subjects in a standard experimental design involving evaluation of
five alternative policies, d ∈ {1, 1.25, 1.667, 2.5, 5}, 20 subjects per policy. (These durations
correspond to 1-5 presentations of each face-team pair during training.) The mean score for
each policy is plotted in Figure 3a as light grey squares with bars indicating ±2 standard
errors of the mean. The result of the traditional experiment is coarsely consistent with the
PPF posterior, but the budget of 100 subjects places a limitation on the interpretability
of the results. When matched on budget, the optimization procedure appears to produce
results that are more interpretable and less sensitive to noise in the data. Note that we have
biased this comparison in favor of the traditional design by restricting the exploration of
the policy space to the region 1 sec ≤ d ≤ 5 sec. Nonetheless, no clear pattern emerges in
the shape of the PPF based on the outcome of the traditional design.

4 Experiment 2: Optimizing training example sequence

In Experiment 2, we study concept learning from examples. Subjects are told that martians
will teach them the meaning of a martian adjective, glopnor, by presenting a series of
example objects, some of which have the property glopnor and others do not. During a
training phase, objects are presented one at a time and subjects must classify the object
as glopnor or not-glopnor. They then receive feedback as to the correctness of their
response. On each trial, the object from the previous trial is shown in the corner of the
display along with its correct classification, the reason for which is to facilitate comparison
and contrasting of objects. Following 25 training trials, 24 test trials are administered in
which the subject makes a classification but receives no feedback. The training and test
trials are roughly balanced in number of positive and negative examples.

The stimuli in this experiment are drawn from a set of 320 objects normed by Salmon,
McMullen, and Filliter (2010) for graspability, i.e., how manipulable an object is according
to how easy it is to grasp and use the object with one hand. They polled 57 individuals,
each of whom rated each of the objects multiple times using a 1–5 scale, where 1 means
not graspable and 5 means highly graspable. Figure 2b shows several objects and their
ratings. We divided the objects into two groups by their mean rating, with the not-
glopnor group having ratings in [1, 2.75] and the glopnor group having ratings in [3.25,
5]. (We discarded objects with ratings in [2.75, 3.25] because they are too difficult even
if one knows the concept). The classification task is easy if one knows that the concept is
graspability. However, the challenge of inferring the concept is extremely difficult because
there are many dimensions along which these objects vary and any one—or more—could be
the classification dimension(s).

We defined an instructional policy space characterized by two dimensions: fading and block-
ing. Fading refers to the notion from the animal learning literature that learning is facilitated
by presenting exemplars far from the category boundary initially, and gradually transition-
ing toward more difficult exemplars over time. Exemplars far from the boundary may help
individuals to attend to the dimension of interest; exemplars near the boundary may help
individuals determine where the boundary lies (Pashler & Mozer, in press). Theorists have
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also made computational arguments for the benefit of fading (Bengio, Louradour, Collobert,
& Weston, 2009; Khan et al., 2011). Blocking refers to the issue discussed in the Introduc-
tion concerning the sequence of category labels: Should training exemplars be blocked or
interleaved? That is, should the category label on one trial tend to be the same as or
different than the label on the previous trial?

For fading, we considered a family of trial-dependent functions that specify the distance
of the chosen exemplar to the category boundary (left panel of Figure 4). This family is
parameterized by a single policy variable x2, 0 ≤ x2 ≤ 1 that relates to the distance of an
exemplar to the category boundary, d, as follows: d(t, x2) = min(1, 2x2)−(1−|2x2−1|) t−1T−1 ,
where T is the total number of training trials and t is the current trial. For blocking, we
also considered a family of trial-dependent functions that vary the probability of a category
label repetition over trials (right panel of Figure 4). This family is parameterized by the
policy variable x1, 0 ≤ x1 ≤ 1, that relates to the probability of repeating the category label
of the previous trial, r, as follows: r(t, x1) = x1 + (1− 2x1) t−1T−1 .

Figure 5a provides a visualization of sample training trial sequences for different points in
the 2D policy space. Each graph represents an instance of a specific (probabilistic) policy.
The abscissa of each graph is an index over the 25 training trials; the ordinate represents
the category label and its distance from the category boundary. Policies in the top and
bottom rows show sequences of all-easy and all-hard examples, respectively; intermediate
rows achieve fading in various forms. Policies in the leftmost column begin training with
many repetitions and end training with many alternations; policies in the rightmost column
begin with alternations and end with repetitions; policies in the middle column have a
time-invariant repetition probability of 0.5.

Regardless of the training sequence, the set of test objects was the same for all subjects.
The test objects spanned the spectrum of distances from the category boundary. During
test, subjects were required to make a forced choice glopnor/not-glopnor judgment.

We seeded the optimization process by running 10 subjects in each of four corners of policy
space as well as in the center point of the space. We then ran 150 additional subjects using
GP-based optimization. Figure 5 shows the PPF posterior mean over the 2D policy space,
along with the selection in policy space of the 200 subjects. Contour map colors indicate
the expected accuracy of the corresponding policy (in contrast to the earlier colored graphs
in which the coloring indicates the cdf). The optimal policy is located at x∗ = (1, .66).

To validate the outcome of this exploration, we ran 50 subjects at x∗ as well as policies in
the upper corners and the center of Figure 5. Consistent with the prediction of the PPF
posterior, mean accuracy at x∗ is 68.6%, compared to 60.9% for (0, 1), 65.7% for (1, 0),
and 66.6% for (.5, .5). Unfortunately, only one of the paired comparisons was statistically
reliable by a two-tailed Bonferroni corrected t-test: (0, 1) versus x∗ (p = .027). However,
post-hoc power computation revealed that with 50 subjects and the variability inherent in
the data, the odds of observing a reliable 2% difference in the mean is only .10. Running an
additional 50 subjects would raise the power to only .17. Thus, although we did not observe
a statistically significant improvement at the inferred optimum compared to sensible alter-
native policies, the results are consistent with our inferred optimum being an improvement
over the type of policies one might have proposed a priori.

5 Discussion

The traditional experimental paradigm in psychology involves comparing a few alternative
conditions by testing a large number of subjects in each condition. We’ve described a novel
paradigm in which a large number of conditions are evaluated, each with only one or a few
subjects. Our approach achieves an understanding of the functional relationship between
conditions and performance, and it lends itself to discovering the conditions that attain
optimal performance.

We’ve focused on the problem of optimizing instruction, but the method described here has
broad applicability across issues in the behavioral sciences. For example, one might attempt
to maximize a worker’s motivation by manipulating rewards, task difficulty, or time pressure.
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Figure 5: Experiment 2 (a) policy space and (b) policy performance function at 200 subjects

Motivation might be studied in an experimental context with voluntary time on task as a
measure of intrinsic interest level.

Consider problems in a quite different domain, human vision. Optimization approaches
might be used to determine optimal color combinations in a manner more efficient and fea-
sible than exhaustive search (Schloss & Palmer, 2011). Also in the vision domain, one might
search for optimal sequences and parameterizations of image transformations that would
support complex visual tasks performed by experts (e.g., x-ray mammography screening) or
ordinary visual tasks performed by the visually impaired.

From a more applied angle, A-B testing has become an extremely popular technique for fine
tuning web site layout, marketing, and sales (Christian, 2012). With a large web population,
two competing alternatives can quickly be evaluated. Our approach offers a more systematic
alternative in which a space of alternatives can be explored efficiently, leading to discovery
of solutions that might not have been conceived of as candidates a priori.

The present work did not address individual differences or high-dimensional policy spaces,
but our framework can readily be extended. Individual differences can be accommodated
via policies that are parameterized by individual variables (e.g., age, education level, perfor-
mance on related tasks, recent performance on the present task). For example, one might
adopt a fading policy in which the rate of fading depends in a parametric manner on a run-
ning average of performance. High dimensional spaces are in principle no challenge for GPR
given a sensible distance metric. The challenge of high-dimensional spaces comes primarily
from computational overhead in selecting the next policy to evaluate. However, this compu-
tational burden can be greatly relaxed by switching from a global optimization perspective
to a local perspective: instead of considering candidate policies in the entire space, active
selection might consider only policies in the neighborhood of previously explored policies.
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