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Abstract

Analytic shrinkage is a statistical technique that offers a fast alternative to cross-
validation for the regularization of covariance matrices and has appealing con-
sistency properties. We show that the proof of consistency requires bounds on
the growth rates of eigenvalues and their dispersion, which are often violated in
data. We prove consistency under assumptions which do not restrict the covariance
structure and therefore better match real world data. In addition, we propose an
extension of analytic shrinkage –orthogonal complement shrinkage– which adapts
to the covariance structure. Finally we demonstrate the superior performance of
our novel approach on data from the domains of finance, spoken letter and optical
character recognition, and neuroscience.

1 Introduction

The estimation of covariance matrices is the basis of many machine learning algorithms and estima-
tion procedures in statistics. The standard estimator is the sample covariance matrix: its entries are
unbiased and consistent [1]. A well-known shortcoming of the sample covariance is the systematic
error in the spectrum. In particular for high dimensional data, where dimensionality p and number
of observations n are often of the same order, large eigenvalues are over- und small eigenvalues
underestimated. A form of regularization which can alleviate this bias is shrinkage [2]: the convex
combination of the sample covariance matrix S and a multiple of the identity T = p−1trace(S)I,

Csh = (1− λ)S + λT, (1)
has potentially lower mean squared error and lower bias in the spectrum [3]. The standard procedure
for chosing an optimal regularization for shrinkage is cross-validation [4], which is known to be
time consuming. For online settings CV can become unfeasible and a faster model selection method
is required. Recently, analytic shrinkage [3] which provides a consistent analytic formula for the
above regularization parameter λ has become increasingly popular. It minimizes the expected mean
squared error of the convex combination with a computational cost of O(p2), which is negligible
when used for algorithms like Linear Discriminant Analysis (LDA) which are O(p3).

The consistency of analytic shrinkage relies on assumptions which are rarely tested in practice [5].
This paper will therefore aim to render the analytic shrinkage framework more practical and usable
for real world data. We contribute in three aspects: first, we derive simple tests for the applicability
of the analytic shrinkage framework and observe that for many data sets of practical relevance the
assumptions which underly consistency are not fullfilled. Second, we design assumptions which
better fit the statistical properties observed in real world data which typically has a low dimen-
sional structure. Under these new assumptions, we prove consistency of analytic shrinkage. We
show a counter-intuitive result: for typical covariance structures, no shrinkage –and therefore no
regularization– takes place in the limit of high dimensionality and number of observations. In prac-
tice, this leads to weak shrinkage and degrading performance. Therefore, third, we propose an ex-
tension of the shrinkage framework: automatic orthogonal complement shrinkage (aoc-shrinkage)
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takes the covariance structure into account and outperforms standard shrinkage on real world data at
a moderate increase in computation time. Note that proofs of all theorems in this paper can be found
in the supplemental material.

2 Overview of analytic shrinkage

To derive analytic shrinkage, the expected mean squared error of the shrinkage covariance matrix
eq. (1) as an estimator of the true covariance matrix C is minimized:

λ? = arg min
λ
R(λ) := arg min

λ
E
[∥∥∥C− (1− λ)S− λT

∥∥∥2
]

(2)
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λ
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The analytic shrinkage estimator λ̂ is obtained by replacing expectations with sample estimates:
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Ĉov
(
Sii, Tii

)
=

1

(n− 1)np

∑
k

{∑
s

x2
isx

2
ks −

1

n

∑
t

x2
it

∑
t′

x2
it′

}
Ê
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Theoretical results on the estimator λ̂ are based on analysis of a sequence of statistical models
indexed by n. Xn denotes a pn × n matrix of n iid observations of pn variables with mean zero
and covariance matrix Σn. Yn = ΓT

nXn denotes the same observations in their eigenbasis, having
diagonal covariance Λn = ΓT

nΣnΓn. Lower case letters xnit and ynit denote the entries of Xn and
Yn, respectively1. The main theoretical result on the estimator λ̂ is its consistency in the large n, p
limit [3]. A decisive role is played by an assumption on the eighth moments2 in the eigenbasis:
Assumption 2 (A2, Ledoit/Wolf 2004 [3]). There exists a constant K2 independent of n such that

p−1
n

pn∑
i=1

E[(yni1)8] ≤ K2.

3 Implicit assumptions on the covariance structure

From the assumption on the eighth moments in the eigenbasis, we derive requirements on the eigen-
values which facilitate an empirical check:
Theorem 1 (largest eigenvalue growth rate). Let A2 hold. Then, there exists a limit on the growth
rate of the largest eigenvalue

γn1 = max
i

Var(yni ) = O
(
p1/4
n

)
.

Theorem 2 (dispersion growth rate). Let A2 hold. Then, there exists a limit on the growth rate of
the normalized eigenvalue dispersion

dn = p−1
n

∑
i

(γi − p−1
n

∑
j

γj)
2 = O (1) .

1We shall often drop the sequence index n and the observation index t to improve readability of formulas.
2eighth moments arise because Var(Sij), the variance of the sample covariance, is of fourth order and has

to converge. Nevertheless, even for for non-Gaussian data convergence is fast.
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Figure 1: Covariance matrices and dependency of the largest eigenvalue/dispersion on the dimen-
sionality. Average over 100 repetitions.
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Figure 2: Dependency of the largest eigenvalue/dispersion on the dimensionality. Average over 100
random subsets.

The theorems restrict the covariance structure of the sequence of models when the dimensionality
increases. To illustrate this, we design two sequences of models A and B indexed by their dimen-
sionality p, in which dimensions xpi are correlated with a signal sp:

xpi =

{
(0.5 + bpi ) · ε

p
i + αcpi s

p, with probability PsA/B
(i),

(0.5 + bpi ) · ε
p
i , else.

(4)

where bpi and cpi are uniform random from [0, 1], sp and εpi are standard normal, α = 1, PsB (i) = 0.2

and PsA(i) = (i/10 + 1)−7/8 (power law decay). To avoid systematic errors, we hold the ratio of
observations to dimensions fixed: np/p = 2.

To the left in Figure 1, covariance matrices are shown: For model A, the matrix is dense in the
upper left corner, the more dimensions we add the more sparse the matrix gets. For model B,
correlations are spread out evenly. To the right, normalized sample dispersion and largest eigenvalue
are shown. For model A, we see the behaviour from the theorems: the dispersion is bounded, the
largest eigenvalue grows with the fourth root. For model B, there is a linear dependency of both
dispersion and largest eigenvalue: A2 is violated.

For real world data, we measure the dependency of the largest eigenvalue/dispersion on the dimen-
sionality by averaging over random subsets. Figure 2 shows the results for four data sets3: (1) New
York Stock Exchange, (2) USPS hand-written digits, (3) ISOLET spoken letters and (4) a Brain
Computer Interface EEG data set. The largest eigenvalues and the normalized dispersions (see Fig-
ure 2) closely resemble model B; a linear dependence on the dimensionality which violates A2 is
visible.

3for details on the data sets, see section 5.
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4 Analytic shrinkage for arbitrary covariance structures

We replace A2 by a weaker assumption on the moments in the basis of the observations X which
does not impose any constraints on the covariance structure4:

Assumption 2′ (A2′). There exists a constant K2 independent of p such that

p−1

p∑
i=1

E[(xpi1)8] ≤ K2.

Standard assumptions For the proof of consistency, the relationship between dimensionality and
number of observations has to be defined and a weak restriction on the correlation of the products
of uncorrelated variables is necessary. We use slightly modified versions of the original assump-
tions [3].

Assumption 1′ (A1′, Kolmogorov asymptotics). There exists a constant K1, 0 ≤ K1 ≤ ∞ inde-
pendent of p such that

lim
p→∞

p/np = K1.

Assumption 3′ (A3′).

lim
p→∞

∑
i,j,kl,l∈Qp

(
Cov[ypi1y

p
j1, y

p
k1y

p
l1]
)2

|Qp|
= 0

where Qp is the set of all quadruples consisting of distinct integers between 1 and p.

Additional Assumptions A1′ to A3′ subsume a wide range of dispersion and eigenvalue config-
urations. To investigate the role which this plays, we categorize sequences by adding an additional
parameter k. It will prove essential for the limit behavior of optimal shrinkage and the consistency
of analytic shrinkage:

Assumption 4 (A4, growth rate of the normalized dispersion). Let γi denote the eigenvalues of C.
Then, the limit behaviour of the normalized dispersion is parameterized by k:

p−1
∑
i

(γi − p−1
∑
j

γj)
2 = Θ

(
max(1, p2k−1)

)
,

where Θ is the Landau Theta.

In sequences of models with k ≤ 0.5 the normalized dispersion is bounded from above and below, as
in model A in the last section. For k > 0.5 the normalized dispersion grows with the dimensionality,
for k = 1 it is linear in p, as in model B.

We make two technical assumptions to rule out degenerate cases. First, we assume that, on average,
additional dimensions make a positive contribution to the mean variance:

Assumption 5 (A5). There exists a constant K3 such that

p−1

p∑
i=1

E[(xpi1)2] ≥ K3.

Second, we assume that limits on the relation between second, fourth and eighth moments exist:

Assumption 6 (A6, moment relation). ∃α4, α8, β4 and β8:

E[y8
i ] ≤ (1 + α8)E2[y4

i ] E[y4
i ] ≤ (1 + α4)E2[y2

i ]

E[y8
i ] ≥ (1 + β8)E2[y4

i ] E[y4
i ] ≥ (1 + β4)E2[y2

i ]

4For convenience, we index the sequence of statistical models by p instead of n.
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Figure 3: Illustration of orthogonal complement shrinkage.

Theoretical results on limit behaviour and consistency We are able to derive a novel theorem
which shows that under these wider assumptions, shrinkage remains consistent:

Theorem 3 (Consistency of Shrinkage). Let A1′, A2′, A3′, A4, A5, A6 hold and

m = E
[(

(λ∗ − λ̂)/λ∗
)2
]

denote the expected squared relative error of the estimate λ̂. Then, independently of k,

lim
p→∞

m = 0.

An unexpected caveat accompanying this result is the limit behaviour of the optimal shrinkage
strength λ∗:

Theorem 4 (Limit behaviour). Let A1′, A2′, A3′, A4, A5, A6 hold. Then, there exist 0 < bl <
bu < 1

k ≤ 0.5 ⇒ ∀n : bl ≤ λ∗ ≤ bu
k > 0.5 ⇒ lim

p→∞
λ∗ = 0

The theorem shows that there is a fundamental problem with analytic shrinkage: if k is larger
than 0.5 (all data sets in the last section had k = 1) there is no shrinkage in the limit.

5 Automatic orthogonal complement shrinkage

Orthogonal complement shrinkage To obtain a finite shrinkage strength, we propose an exten-
sion of shrinkage we call oc-shrinkage: it leaves the first eigendirection untouched and performs
shrinkage on the orthogonal complement oc of that direction. Figure 3 illustrates this approach. It
shows a three dimensional true covariance matrix with a high dispersion that makes it highly ellip-
soidal. The result is a high level of discrepancy between the spherical shrinkage target and the true
covariance. The best convex combination of target and sample covariance will put extremely low
weight on the target. The situation is different in the orthogonal complement of the first eigendirec-
tion of the sample covariance matrix: there, the discrepancy between sample covariance and target
is strongly reduced.

To simplify the theoretical analysis, let us consider the case where there is only a single growing
eigenvalue while the remainder stays bounded:
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Assumption 4′ (A4′ single large eigenvalue). Let us define
zi = yi, 2 ≤ i ≤ p,

z1 = p−k/2y1.

There exist constants Fl and Fu such that Fl ≤ E[z8
i ] ≤ Fu

A recent result from Random Matrix Theory [6] allows us to prove that the projection on the empir-
ical orthogonal complement ôc does not affect the consistency of the estimator λ̂ôc:
Theorem 5 (consistency of oc-shrinkage). Let A1′, A2′, A3′, A4′, A5, A6 hold. In addition, assume
that 16th moments5 of the yi exist and are bounded. Then, independently of k,

lim
p→∞

(
λ̂ôc − arg min

λ
Qôc(λ)

)2

= 0,

where Q denotes the mean squared error (MSE) of the convex combination (cmp. eq. (2)).

Automatic model selection Orthogonal complement shrinkage only yields an advantage if the first
eigenvalue is large enough. Starting from eq. (2), we can consistently estimate the error of standard
shrinkage and orthogonal complement shrinkage and only use oc-shrinkage when the difference
∆̂R,ôc is positive. In the supplemental material, we derive a formula of a conservative estimate:

∆̂R,cons.,ôc = ∆̂R,ôc −m∆σ̂∆̂R,ôc
−mE λ̂

2
ôcσ̂Ê .

Usage of m∆ = 0.45 corresponds to 75% probability of improvement under gaussianity and yields
good results in practice. The second term is relevant in small samples, settingmE = 0.1 is sufficient.
A dataset may have multiple large eigenvalues. It is straightforward to iterate the procedure and thus
automatically select the number of retained eigendirections r̂. We call this automatic orthogonal
complement shrinkage. An algorithm listing can be found in the supplemental.

The computational cost of aoc-shrinkage is larger than that of standard shrinkage as it additionally
requires an eigendecompositionO(p3) and some matrix multiplicationsO(r̂p2). In the applications
considered here, this additional cost is negligible: r̂ � p and the eigendecomposition can replace
matrix inversions for LDA, QDA or portfolio optimization.
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Figure 4: Automatic selection of the number of eigendirections. Average over 100 runs.

6 Empirical validation

Simulations To test the method, we extend model B (eq. (4), section 3) to three signals, Psi = (0.1,
0.25, 0.5). Figure 4 reports the percentage improvement in average loss over the sample covariance
matrix,

PRIAL
(
Csh/oc−sh/aoc−sh) =

E‖S−C‖ − E‖Csh/oc−sh/aoc−sh −C‖
E‖S−C‖

,

5The existence of 16th moments is needed because we bound the estimation error in each direction by the
maximum over all directions, an extremely conservative approximation.
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Table 1: Portfolio risk. Mean absolute deviations·103 (mean squared deviations·106) of the resulting
portfolios for the different covariance estimators and markets. † := aoc-shrinkage significantly
better than this model at the 5% level, tested by a randomization test.

US EU HK
sample covariance 8.56† (156.1†) 5.93† (78.9†) 6.57† (81.2†)
standard shrinkage 6.27† (86.4†) 4.43† (46.2†) 6.32† (76.2†)
λ̂ 0.09 0.12 0.10

shrinkage to a factor model 5.56† (69.6†) 4.00† (39.1†) 6.17† (72.9†)
λ̂ 0.41 0.44 0.42

aoc-shrinkage 5.41 (67.0) 3.83 (36.3) 6.11 (71.8)
λ̂ 0.75 0.79 0.75
average r̂ 1.64 1.17 1.41

Table 2: Accuracies for classification tasks on ISOLET and USPS data. ∗ := significantly better
than all compared methods at the 5% level, tested by a randomization test.

ISOLET USPS
ntrain 500 2000 5000 500 2000 5000
LDA 75.77% 92.29% 94.1% 72.31% 87.45% 89.56%
LDA (shrinkage) 88.92% 93.25% 94.3% 83.77% 88.37% 89.77%
LDA (aoc) 89.69%

∗
93.42%

∗
94.33%

∗
83.95%

∗ 88.37% 89.77%
QDA 2.783% 4.882% 14.09% 10.11% 49.45% 72.43%
QDA (shrinkage) 58.57% 75.4% 79.25% 82.2% 88.85% 89.67%
QDA (aoc) 59.51% 80.84% 87.35% 83.31% 89.4%

∗
90.07%

of standard shrinkage, oc-shrinkage for one to four eigendirections and aoc-shrinkage.

Standard shrinkage behaves as predicted by Theorem 4: λ̂ and therefore the PRIAL tend to zero in
the large n, p limit. The same holds for orders of oc-shrinkage –oc(1) and oc(2)– lower than the
number of signals, but performance degrades more slowly. For small dimensionalities eigenvalues
are small and therefore there is no advantage for oc-shrinkage. On the contrary, the higher the order
of oc-shrinkage, the larger the error by projecting out spurious large eigenvalues which should have
been subject to regularization. The automatic order selection aoc-shrinkage leads to close to optimal
PRIAL for all dimensionalities.

Real world data I: portfolio optimization Covariance estimates are needed for the minimization
of portfolio risk [7]. Table 1 shows portfolio risk for approximately eight years of daily return data
from 1200 US, 600 European and 100 Hong Kong stocks, aggregated from Reuters tick data [8].
Estimation of covariance matrices is based on short time windows (150 days) because of the data’s
nonstationarity. Despite the unfavorable ratio of observations to dimensionality, standard shrinkage
has very low values of λ̂: the stocks are highly correlated and the spherical target is highly inappro-
priate. Shrinkage to a financial factor model incorporating the market factor [9] provides a better
target; it leads to stronger shrinkage and better portfolios. Our proposed aoc-shrinkage yields even
stronger shrinkage and significantly outperforms all compared methods.

Table 3: Accuracies for classification tasks on BCI data. Artificially injected noise in one electrode.
∗ := significantly better than all compared methods at the 5% level, tested by a randomization test.
σnoise 0 10 30 100 300 1000
LDA 92.28% 92.28% 92.28% 92.28% 92.28% 92.28%
LDA (shrinkage) 92.39% 92.94% 92.18% 88.04% 82.15% 73.79%
LDA (aoc) 93.27%

∗
93.27%

∗
93.24%

∗
92.88%

∗
93.16%

∗
93.19%

∗

average r̂ 2.0836 3.0945 3.0891 3.0891 3.0891 3.09
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Figure 5: High variance components responsible for failure of shrinkage in BCI. σnoise = 10.
Subject 1.

Real world data II: USPS and ISOLET We applied Linear and Quadratic Discriminant Analysis
(LDA and QDA) to hand-written digit recognition (USPS, 1100 observations with 256 pixels for
each of the 10 digits [10]) and spoken letter recognition (ISOLET, 617 features, 7797 recordings of
26 spoken letters [11], obtained from the UCI ML Repository [12]) to assess the quality of standard
and aoc-shrinkage covariance estimates.

Table 2 shows that aoc-shrinkage outperforms standard shrinkage for QDA and LDA on both data
sets for different training set sizes. Only for LDA and large sample sizes on the relatively low
dimensional USPS data, there is no difference between standard and aoc-shrinkage: the automatic
procedure decides that shrinkage on the whole space is optimal.

Real world data III: Brain-Computer-Interface The BCI data was recorded in a study in which
11 subjects had to distinguish between noisy and noise-free phonemes [13, 14]. We applied LDA
on 427 standardized features calculated from event related potentials in 61 electrodes to classify two
conditions: correctly identified noise-free and correctly identified noisy phonemes (ntrain = 1000).

For Table 3, we simulated additive noise in a random electrode (100 repetitions). With and without
noise, our proposed aoc-shrinkage outperforms standard shrinkage LDA. Without noise, r̂ ≈ 2 high
variance directions –probably corresponding to ocular and facial muscle artefacts, depicted to the
left in Figure 5– are left untouched by aoc-shrinkage. With injected noise, the number of directions
increases to r̂ ≈ 3, as the procedure detects the additional high variance component –to the right
in Figure 5– and adapts the shrinkage procedure such that performance remains unaffected. For
standard shrinkage, noise affects the analytic regularization and performance degrades as a result.

7 Discussion

Analytic shrinkage is a fast and accurate alternative to cross-validation which yields comparable
performance, e.g. in prediction tasks and portfolio optimization. This paper has contributed by clar-
ifying the (limited) applicability of the analytic shrinkage formula. In particular we could show that
its assumptions are often violated in practice since real world data has complex structured depen-
dencies. We therefore introduced a set of more general assumptions to shrinkage theory, chosen
such that the appealing consistency properties of analytic shrinkage are preserved. We have shown
that for typcial structure in real world data, strong eigendirections adversely affect shrinkage by
driving the shrinkage strength to zero. Therefore, finally, we have proposed an algorithm which
automatically restricts shrinkage to the orthogonal complement of the strongest eigendirections if
appropriate. This leads to improved robustness and significant performance enhancement in sim-
ulations and on real world data from the domains of finance, spoken letter and optical character
recognition, and neuroscience.
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