
Supplementary material for: Multiresolution
dictionary learning for conditional distributions

1 Partition Tree Schematic
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(iii) f(yi|xi) = p11f11 + p22f22 + p33f33 + . . .

Figure 1: (i) Multiscale partition of the data. (ii) Path through the tree for xi ∈ Rp. (iii) Conditional
density of yi given xi defined as a convex combination of densities along the path.

2 Predictions

Consider the case we want to predict the response y∗ for a future observation based on predictors x∗

and previous observations (x(n), y(n)) with x(n) = (x1, . . . , xn) and y(n) = (y1, . . . , yn). Because
the partitioning strategy that we adopted lacks an elegant out-of-sample embedding function (unlike
other paritioning strategies), we adopt a Voronoi expansion procedure by which the new predictors
x∗ are allocated toCj,k’s having the closest centers with respect to ρW (we considered the Euclidean
distance). Summaries of the predictive density of y∗ will be computed as follows:

(i) allocate predictors x∗ to Cj,k’s having the closest centers with respect to ρW

(ii) run the Gibbs sampler for S iterations, and at the sth iteration:

a) sample parameters {σ(s)
j,kj

, µ
(s)
j,kj

, π
(s)
j,kj
}j∈Z,kj∈Kj

from the posterior, i.e. p(.|x(n), y(n))

b) sample ŷ∗s from ∑
j∈Z

π
(s)
j,kj(x∗)N

(
µ
(s)
j,kj(x∗), σ

(s)
j,kj(x∗)

)

(iii) given the sequence {ŷ∗s}
S
s=1, summaries of the predictive density such as mean, variance and

quantiles can be computed.
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3 Graph partitioning algorithm: METIS

An overview on METIS can be found in [1]. Basically, METIS is an algorithm used to partition
graphs operating on a dissimilarity matrix. We construct the graph adding an edge between each
pair of data points and assigning weight depending on the distance between the two data points
[2]. Consider the case we want to clusters points based on covariates information and let xj ∈ Rp
the vector of covariates measured for the jth sample. The weighted graph construction follows via
computing all pairwise distances using ρ(xu, xv) = ‖x̃u − x̃v‖2, where x̃ is the whitened x (i.e.,
mean subtracted and variance normalized). We let there be an edge between xu and xv whenever
e−ρ(xu,xv)

2

> t, where t is some threshold chosen to elicit the desired sparsity level. In all our
examples we used the Euclidean distance as metric. Given the weighted graph, the tree is constructed
recursively applying METIS. Specifically, starting from the coarse scale, subsets were split into
two disjoint subsets using METIS. This process continued until the number of observations in the
subsets located at the finest scale dropped below some chosen threshold γ. We chose γ = 5 in all
our applications.

4 Synthetic examples

4.1 Competitor Algorithms

As we are unaware of other methods that estimate posteriors with such high-dimensional predictors,
we compare point estimates of our approach with other regression algorithms. In particular, we
elected to compare against lasso, classification and regression trees (CART), Random Forest (RF)
and principal component (PC) regression. The lasso regularization parameter and the number of
principal components for PC regression were chosen based on the Akaike information criterion
(AIC). For all algorithms, standard Matlab packages were utilized.

4.2 Additional results

Tables 1, 2 and 3 show results concerning example 2, 3, and 4 in §4.4. Each Table reports mean
squared errors and the mean of amount of time necessary to obtain one point predictions. In partic-
ular, Table 1 shows results concerning example 3 (linear subspace) for different number of factors
(d = 5, 10), Table 2 shows results concerning example 4 (union of linear subspaces) for different
number of mixture components (G = 5, 10), while Table 3 shows results for example 2 (swissroll).
As shown, in almost all simulated scenarios, our model is able to perform as well as or better than
the model associated to the lowest mean squared error and scales substantially better than others to
high dimensional predictors.
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Table 1: Linear subspace: Mean and standard deviations of squared errors under multiscale stick-
breaking (MSB), CART and Lasso for sample size 50 and 100 for different simulation scenarios.

d = 5 d = 10
p n MSB CART LASSO MSB CART LASSO

50k 50
MSE 0.18 0.31 0.25 0.22 0.58 0.22
STD 0.32 0.30 0.42 0.24 0.54 0.30
TIME 3 2 1 3 3 1

50k 100
MSE 0.18 0.27 0.26 0.20 0.41 0.52
STD 0.26 0.42 0.46 0.23 0.46 0.78
TIME 5 5 2 5 5 1

100k 50
MSE 0.35 0.45 0.89 0.16 0.33 0.20
STD 0.53 0.77 1.04 0.21 0.46 0.31
TIME 3 25 2 3 27 2

100k 100
MSE 0.43 0.88 0.52 0.17 0.50 0.31
STD 0.59 1.29 0.70 0.24 0.75 0.49
TIME 7 50 5 7 51 5

500k 50
MSE 0.11 0.16 0.15 0.83 2.26 0.92
STD 0.15 0.24 0.19 1.01 2.60 3.69
TIME 5 90 11 5 121 10

500k 100
MSE 0.003 0.17 0.08 0.13 1.37 1.06
STD 0.16 0.23 0.13 1.12 1.81 1.50
TIME 10 214 43 8 227 42

700k 50
MSE 1.70 1.48 1.47 0.66 1.65 1.07
STD 2.18 2.47 1.63 0.87 1.49 0.95
TIME 6 121 12 7 151 13

700k 100
MSE 0.69 1.36 0.82 0.78 1.52 1.43
STD 0.94 1.47 1.28 1.03 1.34 2.11
TIME 13 321 41 12 325 44
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Table 2: Union of linear subspaces: Mean and standard deviations of squared errors under multiscale
stick-breaking (MSB), CART and Lasso for different sample sizes for different simulations sampled
from a mixture of factor analyzers

G = 10 G = 5
p n SIM MSB CART LASSO MSB CART LASSO

50k 100
MSE 0.23 0.42 0.36 0.17 0.43 0.22
STD 0.34 0.59 0.43 0.18 0.69 0.23
TIME 5 24 3 7 27 3

50k 200
MSE 0.23 0.42 0.27 0.17 0.22 0.20
STD 0.33 0.56 0.23 0.19 0.38 0.25
TIME 10 51 8 12 56 7

100k 100
MSE 0.67 1.35 1.32 0.15 0.17 0.22
STD 1.04 2.26 1.36 0.23 0.19 0.23
TIME 9 47 6 6 44 5

100k 200
MSE 0.64 1.37 0.85 0.15 0.26 0.15
STD 0.95 1.77 1.29 0.24 0.42 0.24
TIME 15 99 15 11 89 15

300k 100
MSE 0.26 0.39 0.31 0.63 1.40 1.01
STD 0.39 0.51 0.52 0.80 1.24 1.46
TIME 9.28 125 18 9 145 17

300k 200
MSE 0.25 0.47 0.26 0.63 1.17 0.92
STD 0.36 0.88 0.43 0.80 2.11 1.04
TIME 15 262 40 13 283 43

300k 300
MSE 0.25 0.30 0.30 0.62 1.42 0.70
STD 0.36 0.41 0.48 0.89 1.85 0.94
TIME 15 463 73 16 465 89

Table 3: Swissroll: Mean and standard deviations of squared errors under multiscale stick-breaking
(MSB), CART and Lasso for different sample sizes for different simulation scenarios.

p n MSB CART LASSO

100k 50
MSE 0.24 0.44 0.25
STD 0.24 0.42 0.29
TIME 3 22 2

100k 100
MSE 0.24 0.43 0.17
STD 0.26 0.55 0.22
TIME 6 48 7

200k 50
MSE 0.24 0.67 0.29
STD 0.23 0.50 0.29
TIME 4 38 5

200k 100
MSE 0.25 0.78 0.33
STD 0.26 0.74 0.36
TIME 6 96 13

500k 50
MSE 0.17 0.47 0.23
STD 0.23 0.43 0.22
TIME 5 126 10

500k 100
MSE 0.17 0.33 0.19
STD 0.21 0.46 0.23
TIME 11 230 25

4


	Partition Tree Schematic
	Predictions
	Graph partitioning algorithm: METIS
	Synthetic examples
	Competitor Algorithms
	Additional results


