
Supplementary Material

A Comparison with the Translation Invariant Occlusive Model

The generative model of invariant and occlusive image components can be formulated into a layered
structure. An image patch ~y = (y1, . . . , yD2) contains a couple of layers, and each layer is associated
with a component (in total H components). A component in the layer closer to the camera occludes
the components in the layers further away. The layer assignment φh defines the layer number that
the component h is assigned. The larger the value of φh is, the closer it is from the camera, and the
value “0” indicates that the component is not in the image. Therefore, occlusion for a local feature
at dimension d can be defined as:

md = arg max
h
{(Txh

~vh)dφh} (10)

where md gives the index of the component responsible for generating the feature at the dimension
d, and the binary variable ~vh defines the transparency of the component h. The value of ~vd is
determined according to a prior distribution:

p(~vh) =

D2∏
d=1

αvhd

hd (1− αhd)(1−vhd) (11)

where αhd defines the prior probability of the dimension d of the component h to be not transparent.
Following the same definition of translation, the observation probability can be defined as:

p(~y | ~m, ~x,Θ) =

D∏
d=1

p(yd |md, ~x,Θ) (12)

p(yd |md = h, ~x,Θ) =

{
B(yd) md = 0,

N (yd ; (Txh
~wh)d, σ

2) otherwise.
(13)

Therefore, the probability distribution of md in the exact occlusive model is a marginal distribution
over a big space: the space of φh (the factorial of H) times the space of (Txh

~vh)d.

The exclusive component analysis model can be considered as an approximation to the exact occlu-
sive model, where the probability distribution of md is approximated by a mixture model. To make
learning tractable, we applied a new variational approximation scheme (Expectation Truncation, see
Sec. 3) for the posterior computation.

B Morphological Analysis of Receptive Fields

We pursue a better understanding of the learned receptive fields by matching them against Gabor
G(x, y) and difference-of-GaussiansD(x, y) functions. For each receptive fieldRh(x, y), we sought
the eight parameters which minimized the mean squared error between the field and the Gabor-
wavelet G(x, y ; µx, µy,Ψ, σx, σy, k0, τ, A). Where µx and µy are the center coordinates of the
Gabor-wavelet, Ψ is its spatial rotation, σx and σy parameterize the shape of the Gaussian envelope,
k0 is a measure of the frequency of the planar wave component, τ is its phase shift and A is the
overall amplitude of the Gabor-wavelet:

G(x, y) = A cos [x′k0 + τ ]×N
((

x′

y′

)
; µ =

(
0
0

)
,± =

(
σ2
x 0

0 σ2
y

))
(14)

= A cos [x′k0 + τ ]× 1

2πσxσy
exp

[
−1

2

(
x′

y′

)T(
σ2
x 0

0 σ2
y

)−1(
x′

y′

)]
,

where
(
x′

y′

)
=

(
cos Ψ sin Ψ
− sin Ψ cos Ψ

)(
x− µx

y − µy

)
are the translated and rotated coordinates of the

function.

Similarly, again for each receptive field Rh(x, y), we sought the eight parameters of the difference-
of-Gaussians kernel D(x, y ; µx, µy,Ψ, σx, σy, γ, A1, A2) which minimized the squared distance to
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Figure 1: The receptive fields of each latent. The Receptive Fields (A) were fitted with 2 dimensional
DoG (B) and Gabor (C) functions. The dotted lines mark receptive fields that were not approximated
very well by the fitted function. The dashed lines mark receptive fields that have a more globular
structure. The solid lines mark the receptive fields the were fitted accurately by a Gabor function.

each field. µx and µy are the center coordinate of the DoG kernel, Ψ its spatial rotation. σx and
σy parameterize the shape of the inner Gaussian, γ parameterizes the size difference between the
Gaussians and A1 and A2 specify the amplitudes of the Gaussians:
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2πσxσy
exp

[
−1

2

(
x′

y′

)T(
σ2
x 0

0 σ2
y

)−1(
x′

y′

)]
− A1

2πσxσyγ2
exp

[
−1

2

(
x′

y′

)T(
σ2
xγ

2 0
0 σ2

yγ
2

)−1(
x′

y′

)]

As a guideline for the classification of a receptive field as being globular we used the aspect ratio
(σx/σy ≤ 2) of the DoG fitted to it was smaller than 2.0 . Furthermore, if the absolute error of
the best matching DoG function was smaller than the absolute error of the best matching Gabor
wavelet the receptive field would more likely be treated as a globular. A small difference between
the errors of a match with DoG and a match with a Gabor function would result in treating the filter as
ambiguous. The functions were fitted using a standard least-square optimization method [37]. The
experimental data consisted of 100 receptive fields of 16× 16 pixels. As a result 15 receptive fields
were classified as globular fields, 58 Gabor-like and the remaining 27 were considered ambiguous.
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Figure 2: The different receptive fields estimated with different λ values.

C Additional details about estimated receptive fields

The experimental result in Sec. 5 shows the estimated receptive fields with a particular regularization
parameter (λ = 0.10). To visualize the influence of different regularization parameters, Fig. 2 shows
the estimated receptive fields with different regularization parameters. As can be seen, the estimated
receptive fields are insensitive to the changes of λ.

When estimating a receptive field, the input stimuli were shifted according to the estimated position
of the corresponding component (see Eqn. 8). Estimating the receptive fields shown in the main
text and above used the translation matrices T̄xh

without the cyclic boundary condition, which is
different from the translation matrices in the generative. In these translation matrices, the pixels that
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Figure 3: The estimated receptive fields with cyclic boundary conditions (λ = 0.10).

Figure 4: The learned model parameters and estimated receptive fields from the image patches with
ZCA-whitening. The heat maps are normalized for individual components. The receptive fields
were estimated with λ = 0.11.

are moved in from outside the image patch were set to zero. As a comparison, we also estimated
receptive fields with cyclic boundary condition, where the translation matrices from the generative
model was used. The estimated receptive fields are shown in Fig. 3.

D Learning with different pre-processing

We applied ZCA-whitening to the same set of image patches as mentioned in Sec. 5 (N = 100, 000
with a resolution 16 × 16), and ran our learning algorithm with the same parameter setting as in
Sec. 5. The learned model parameters and the inferred receptive fields are shown in Fig. 4. As a
comparison with the results in Sec. 5, this receptive fields contain more high frequency Gabors.

We also ran our learning algorithm with the same parameter setting as in Sec. 5 to the same set of
image patches without whitening. The learned model parameters and the inferred receptive fields
are shown in Fig. 5. Note that these simulations are some first preliminary results. We observed that
without withening parameter convergence is much slower.
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Figure 5: The learned model parameters and estimated receptive fields from the image patches
without whitening. The heat maps are normalized for individual components. The receptive fields
were estimated with λ = 0.56.
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