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Abstract

We consider the problem of selecting non-zero entries of a matrix A in order to
produce a sparse sketch of it, B, that minimizes }A�B}2. For large m�n matri-
ces, such that n " m (for example, representing n observations over m attributes)
we give sampling distributions that exhibit four important properties. First, they
have closed forms computable from minimal information regarding A. Second,
they allow sketching of matrices whose non-zeros are presented to the algorithm
in arbitrary order as a stream, with Op1q computation per non-zero. Third, the
resulting sketch matrices are not only sparse, but their non-zero entries are highly
compressible. Lastly, and most importantly, under mild assumptions, our distri-
butions are provably competitive with the optimal offline distribution. Note that
the probabilities in the optimal offline distribution may be complex functions of
all the entries in the matrix. Therefore, regardless of computational complexity,
the optimal distribution might be impossible to compute in the streaming model.

1 Introduction

Given an m � n matrix A, it is often desirable to find a sparser matrix B that is a good proxy
for A. Besides being a natural mathematical question, such sparsification has become a ubiqui-
tous preprocessing step in a number of data analysis operations including approximate eigenvector
computations [AM01, AHK06, AM07], semi-definite programming [AHK05, d’A08], and matrix
completion problems [CR09, CT10].

A fruitful measure for the approximation of A by B is the spectral norm of A � B, where for any
matrix C its spectral norm is defined as }C}2 � max}x}2�1 }Cx}2. Randomization has been central
in the context of matrix approximations and the overall problem is typically cast as follows: given a
matrix A and a budget s, devise a distribution over matrices B such that the (expected) number of
non-zero entries in B is at most s and }A�B}2 is as small as possible.

Our work is motivated by big data matrices that are generated by measurement processes. Each
of the n matrix columns correspond to an observation of m attributes. Thus, we expect n " m.
Also we expect the total number of non-zero entries in A to exceed available memory. We assume
that the original data matrix A is accessed in the streaming model where we know only very basic
features of A a priori and the actual non-zero entries are presented to us one at a time in an arbitrary
order. The streaming model is especially important for tasks like recommendation engines where
user-item preferences become available one by one in an arbitrary order. But, it is also important in
cases when A exists in durable storage and random access of its entries is prohibitively expensive.

We establish that for such matrices the following approach gives provably near-optimal sparsifica-
tion. Assign to each element Aij of the matrix a weight that depends only on the elements in its
row qij � |Aij |{}Apiq}1. Take ρ to be an (appropriate) distribution over the rows. Sample s i.i.d.
locations from A using the distribution pij � ρiqij . Return B which is the mean of s matrices, each
containing a single non zero entry Aij{pij in the corresponding selected location pi, jq.
As we will see, this simple form of the probabilities pij falls out naturally from generic optimization
considerations. The fact that each entry is kept with probability proportional to its magnitude, be-
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sides being interesting on its own right, has a remarkably practical implication. Every non-zero in the
i-th row ofB will take the form kijp}Apiq}1{sρiqwhere |kij | is the number of times location pi, jq of
A was selected. Note that since we sample with replacement |kij | may be more than 1 but, typically,
|kij | P t0, 1u. The result is a matrix B which is representable in Opm logpnq � s logpn{sqq bits.
This is because there is no reason to store floating point matrix entry values. We use Opm logpnqq
bits to store1 all values }Apiq}1{sρi and Ops logpn{sqq bits to store the non zero index offsets. Note
that

° |kij | � s and that some of the offsets may be zero. In a simple experiment we measured
the average number of bits per sample resulting from this approach (total size of the sketch divided
by the number of samples s). The results were between 5 and 22 bits per sample depending on the
matrix and s. It is important to note that the number of bits per sample was usually less than even
log2pnq � log2pmq, the minimal number of bits required to represent a pair pi, jq. Our experiments
show a reduction of disc space by a factor of between 2 and 5 relative to the compressed size of the
file representing the sample matrix B in the standard row-column-value list format.

Another insight of our work is that the distributions we propose are combinations of two L1-based
distributions and and which distribution is more dominant depends on the sampling budget. When
the number of samples s is small, ρi is nearly linear in }Apiq}1 resulting in pij9|Aij |. However, as
the number of samples grows, ρi tends towards }Apiq}21 resulting in pij9|Aij |�}Apiq}1, a distribution
we refer to as Row-L1 sampling. The dependence of the preferred distribution on the sample budget
is also borne out in experiments, with sampling based on appropriately mixed distributions being
consistently best. This highlights that the need to adapt the sampling distribution to the sample
budget is a genuine phenomenon.

2 Measure of Error and Related Work

We measure the difference between A and B with respect to the L2 (spectral) norm as it is highly
revealing in the context of data analysis. Let us define a linear trend in the data ofA as any tendency
of the rows to align with a particular unit vector x. To examine the presence of such a trend, we need
only multiply A with x: the ith coordinate of Ax is the projection of the ith row of A onto x. Thus,
}Ax}2 measures the strength of linear trend x in A, and }A}2 measures the strongest linear trend in
A. Thus, minimizing }A�B}2 minimizes the strength of the strongest linear trend ofA not captured
by B. In contrast, measuring the difference using an entry-wise norm, e.g., the Frobenius norm, can
be completely uninformative. This is because the best strategy would be to always pick the largest
s matrix entries from A, a strategy that can easily be “fooled”. As a stark example, when the matrix
entries are Aij P t0, 1u, the quality of approximation of A by B is completely independent of which
elements of A we keep. This is clearly bad; as long as A contains even a modicum of structure
certain approximations will be far better than others.

By using the spectral norm to measure error we get a natural and sophisticated target: to minimize
}A�B}2 is to makeE � A�B a near-rotation, having only small variations in the amount by which
it stretches different vectors. This idea that the error matrix E should be isotropic, thus packing as
much Frobenius norm as possible for its L2 norm, motivated the first work on element-wise matrix
sampling by Achlioptas and McSherry [AM07]. Concretely, to minimize }E}2 it is natural to aim
for a matrix E that is both zero-mean, i.e., an unbiased estimator ofA, and whose entries are formed
by sampling the entries of A (and, thus, of E) independently. In the work of [AM07], E is a matrix
of i.i.d. zero-mean random variables. The study of the spectral characteristics of such matrices
goes back all the way to Wigner’s famous semi-circle law [Wig58]. Specifically, to bound }E}2
in [AM07] a bound due to Alon Krivelevich and Vu [AKV02] was used, a refinement of a bound
by Juhász [Juh81] and Füredi and Komlós [FK81]. The most salient feature of that bound is that it
depends on the maximum entry-wise variance σ2 ofA�B, and therefore the distribution optimizing
the bound is the one in which the variance of all entries in E is the same. In turn, this means keeping
each entry of A independently with probability pij9A2

ij (up to a small wrinkle discussed below).

Several papers have since analyzed L2-sampling and variants [NDT09, NDT10, DZ11, GT09,
AM07]. An inherent difficulty of L2-sampling based strategies is the need for special handling
of small entries. This is because when each item Aij is kept with probability pij9A2

ij , the result-

1It is harmless to assume any value in the matrix is kept using Oplogpnqq bits of precision. Otherwise,
truncating the trailing bits can be shown to be negligible.
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ing entry Bij in the sample matrix has magnitude |Aij{pij |9|Aij |�1. Thus, if an extremely small
element Aij is accidentally picked, the largest entry of the sample matrix “blows up”. In [AM07]
this was addressed by sampling small entries with probability proportional to |Aij | rather than A2

ij .
In the work of Gittens and Tropp [GT09], small entries are not handled separately and the bound
derived depends on the ratio between the largest and the smallest non-zero magnitude.

Random matrix theory has witnessed dramatic progress in the last few years and [AW02, RV07,
Tro12a, Rec11] provide a good overview of the results. This progress motivated Drineas and Zouzias
in [DZ11] to revisit L2-sampling using concentration results for sums of random matrices [Rec11],
as we do here. This is somewhat different from the original setting of [AM07] since now B is not
a random matrix with independent entries, but a sum of many single-element independent matrices,
each such matrix resulting by choosing a location of A with replacement. Their work improved
upon all previous L2-based sampling results and also upon the L1-sampling result of Arora, Hazan
and Kale [AHK06], discussed below, while admitting a remarkably compact proof. The issue of
small entries was handled in [DZ11] by deterministically discarding all sufficiently small entries, a
strategy that gives a strong mathematical guarantee (but see the discussion regarding deterministic
truncation in the experimental section).

A completely different tack at the problem, avoiding random matrix theory altogether, was taken
by Arora et al. [AHK06]. Their approximation keeps the largest entries in A deterministically
(specifically all Aij ¥ ε{?n where the threshold ε needs be known a priori) and randomly rounds
the remaining smaller entries to signpAijqε{

?
n or 0. They exploit the simple fact }A � B} �

sup}x}�1,}y}�1 x
T pA� Bqy by noting that, as a scalar quantity, its concentration around its expec-

tation can be established by standard Bernstein-Bennet type inequalities. A union bound then allows
them to prove that with high probability, xT pA�Bqy ¤ ε for every x and y. The result of [AHK06]
admits a relatively simple proof. However, it also requires a truncation that depends on the desired
approximation ε. Rather interestingly, this time the truncation amounts to keeping every entry larger
than some threshold.

3 Our Approach

Following the discussion in Section 2 and in line with previous works, we: (i) measure the quality
of B by }A�B}2, (ii) sample the entries of A independently, and (iii) require B to be an unbiased
estimator of A. We are therefore left with the task of determining a good probability distribution pij
from which to sample the entries of A in order to get B. As discussed in Section 2 prior art makes
heavy use of beautiful results in the theory of random matrices. Specifically, each work proposes a
specific sampling distribution and then uses results from random matrix theory to demonstrate that it
has good properties. In this work we reverse the approach, aiming for its logical conclusion. We start
from a cornerstone result in random matrix theory and work backwards to reverse-engineer near-
optimal distributions with respect to the notion of probabilistic deviations captured by the inequality.
The inequality we use is the Matrix-Bernstein inequality for sums of independent random matrices
(see e.g., [Tro12b], Theorem 1.6). In the following, we often denote }A}2 as }A} to lighten notation.

Theorem 3.1 (Matrix Bernstein inequality). Consider a finite sequence tXiu of i.i.d. randomm�n
matrices, where ErX1s � 0 and }X1} ¤ R. Let σ2 � max

 }ErX1X
T
1 s}, }ErXT

1 X1s}
(

.

For some fixed s ¥ 1, let X � pX1 � � � � �Xsq{s. For all ε ¥ 0,

Prr}X} ¥ εs ¤ pm� nq exp

�
� sε2

σ2 �Rε{3



.

To get a feeling for our approach, fix any probability distribution p over the non-zero elements of
A. Let B be a random m � n matrix with exactly one non-zero element, formed by sampling an
element Aij of A according to p and letting Bij � Aij{pij . Observe that for every pi, jq, regardless
of the choice of p, we have ErBijs � Aij , and thusB is always an unbiased estimator ofA. Clearly,
the same is true if we repeat this s times, taking i.i.d. samples B1, . . . , Bs, and let our matrix B
be their average. With this approach in mind, the goal is now to find a distribution p minimizing
}E} � }A�pB1�� � ��Bsq{s}. Writing sE � pA�B1q� � � �� pA�Bsq we see that }sE} is the
operator norm of a sum of i.i.d. zero-mean random matrices Xi � A � Bi, i.e., exactly the setting
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of Theorem 3.1. The relevant parameters are

σ2 � max
 }ErpA�B1qpA�B1qT s}, }ErpA�B1qT pA�B1qs}

(
(1)

R � max }A�B1} over all possible realizations of B1 . (2)

Equations (1) and (2) mark the starting point of our work. Our goal is to find probability distributions
over the elements of A that optimize (1) and (2) simultaneously with respect to their functional form
in Theorem 3.1, thus yielding the strongest possible bound on }A� B}. A conceptual contribution
of our work is the discovery that good distributions depend on the sample budget s, a fact also borne
out in experiments. The fact that minimizing the deviation metric of Theorem 3.1, i.e., σ2 � Rε{3,
suffices to bring out this dependence can be viewed as testament to the theorem’s sharpness.

Theorem 3.1 is stated as a bound on the probability that the norm of the error matrix is greater than
some target error ε given the number of samples s. In practice, the target error ε is typically not
known in advance, but rather is the quantity to minimize, given the matrix A, the number of samples
s, and the target confidence δ. Specifically, for any given distribution p on the elements of A, define

ε1ppq � inf

"
ε : pm� nq exp

�
� sε2

σppq2 �Rppqε{3


¤ δ

*
. (3)

Our goal in the rest of the paper is to seek the distribution p� minimizing ε1. Our result is an easily
computable distribution p which comes within a factor of 3 of ε1pp�q and, as a result, within a factor
of 9 in terms of sample complexity (in practice we expect this to be even smaller, as the factor of
3 comes from consolidating bounds for a number of different worst-case matrices). To put this in
perspective note that the definition of p� does not place any restriction either on the access model
for A while computing p�, or on the amount of time needed to compute p�. In other words, we are
competing against an oracle which in order to determine p� has all of A in its purview at once and
can spend an unbounded amount of computation to determine it.

In contrast, the only global information regarding A we require are the ratios between the L1 norms
of the rows of the matrix. Trivially, the exact L1 norms of the rows (and therefore their ratios) can
be computed in a single pass over the matrix, yielding a 2-pass algorithm. Slightly less trivially,
standard concentration arguments imply that these ratios can be estimated very well by sampling
only a small number of columns. In the setting of data analysis, though, it is in fact reasonable
to expect that good estimates of these ratios are available a priori. This is because different rows
correspond to different attributes and the ratios between the row norms reflect the ratios between the
average absolute values of the features. For example, if the matrix corresponds to text documents,
knowing the ratios amounts to knowing global word frequencies. Moreover these ratios do not need
to be known exactly to apply the algorithm, as even rough estimates of them give highly competitive
results. Indeed, even disregarding this issue completely and simply assuming that all ratios equal 1,
yields an algorithm that appears quite competitive in practice, as demonstrated by our experiments.

4 Data Matrices and Statement of Results

Throughout Apiq and Apjq will denote the i-th row and j-th column of A, respectively. Also, we
use the notation }A}1 �

°
i,j |Aij | and }A}2F � °

i,j A
2
ij . Before we formally state our result we

introduce a definition that expresses the class of matrices for which our results hold.

Definition 4.1. An m� n matrix A is a Data matrix if:

1. mini }Apiq}1 ¥ maxj }Apjq}1.
2. }A}21{}A}22 ¥ 30m.
3. m ¥ 30.

Regarding Condition 1, recall that we think of A as being generated by a measurement process
of a fixed number of attributes (rows), each column corresponding to an observation. As a result,
columns have bounded L1 norm, i.e., }Apjq}1 ¤ constant. While this constant may depend on
the type of object and its dimensionality, it is independent of the number of objects. On the other
hand, }Apiq}1 grows linearly with the number of columns (objects). As a result, we can expect
Definition 4.1 to hold for all large enough data sets. Regarding Condition 2, it is easy to verify that
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unless the values of the entries of A exhibit unbounded variance as n grows, the ratio }A}21{}A}22
grows as Ωpnq and Condition 2 follows from n " m. Condition 3 is trivial. All in all, out of the
three conditions the essential one is Condition 1. The other two are merely technical and hold in all
non-trivial cases where Condition 1 applies.

One last point is that to apply Theorem 3.1, the entries of A must be sampled with replacement.
A simple way to achieve this in the streaming model was presented in [DKM06] that uses Opsq
operations per matrix element and Opsq active memory. In Section D we discuss how to implement
sampling with replacement far more efficiently, using Oplog sq active memory, Õpsq space, and
Op1q operations per element. To simplify the exposition of our algorithm, below, we describe it in
the non-streaming setting. That is, we assume we know m and n and that we can compute numbers
zi9}Apiq}1 as well as repeatedly sample entries from the matrix. We stress, however, that these
conditions are not required and that the algorithm can be implemented efficiently in the streaming
model as discussed in Section D.

Algorithm 1 Construct a sketch B of a data matrix A
1: Input: Data matrix A P Rm�n, sampling budget s, acceptable failure probability δ
2: Set ρÐ COMPUTEROWDISTRIBUTION(A, s, δ)
3: Sample s elements of A with replacement, each Aij having probability pij � ρi � |Aij |{}Apiq}1
4: For each sample xi, j, Aijy`, let B` be the matrix with B`pi, jq � Aij{pij and zero elsewhere.
5: Output: B � 1

s

°s
`�1B`.

6: function COMPUTEROWDISTRIBUTION(A, s, δ)
7: Obtain z such that zi9}Apiq}1 for i P rms
8: Set αÐa

logppm� nq{δq{s and β Ð logppm� nq{δq{p3sq
9: Define ρipζq �

�
αzi{2ζ �

b
pαzi{2ζq2 � βzi{ζ


2

10: Find ζ1 such that
°m
i�1 ρipζ1q � 1

11: return ρ such that ρi � ρipζ1q for i P rms

Steps 6–11 compute a distribution ρ over the rows. Assuming step 7 can be implemented effi-
ciently (or skipped altogether in the case z are known a priori), we see that the running time of
ComputeRowDistribution is independent of n. Specifically, finding ζ1 in step 10 can be done
efficiently by binary search because the function

°
i ρipζq is strictly decreasing in ζ. Conceptually,

we see that the probability assigned to each element Aij in Step 3 is simply the probability ρi of its
row times its intra-row weight |Aij |{}Apiq}1.

We are now able to state our main lemma. We defer its proof to Section 5 and subsequent details to
the appendices.

Theorem 4.2. If A is a Data matrix per Definition 4.1 and p is the probability distribution defined
in Algorithm 1, then ε1ppq ¤ 3 ε1pp�q, where p� is the minimizer of ε1.

To compare our result with previous ones we first define several matrix metrics. We then state the
bound implied by Theorem 4.2 on the minimal number of samples s0 needed by our algorithm to
achieve an approximation B to the matrix A such that }A�B} ¤ ε}A} with constant probability.

Stable rank: Denoted as sr and defined as }A}2F {}A}22. This is a smooth analog for the algebraic
rank, always bounded by it from above, and resilient to small perturbations of the matrix. For data
matrices we expect it is small, even constant, and that it captures the “inherent dimensionality” of
the data.

Numeric density: Denoted as nd and defined as }A}21{}A}2F , this is a smooth analog of the number
of non-zero entries nnzpAq. For 0-1 matrices it equals nnzpAq, but when there is variance in the
magnitude of the entries it is smaller.

Numeric row density: Denoted as nrd and defined as
°
i }Apiq}21{}A}2F ¤ n. In practice, it is often

close to the average numeric density of a single row, a quantity typically much smaller than n.
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Theorem 4.3. Let A be a Data Matrix per Definition 4.1 and let B be the matrix returned by
Algorithm 1 for δ � 1{10, ε ¡ 0 and any

s ¥ s0 � Θpnrd � sr {ε2 � log n� psr �nd {ε2 � log nq1{2q .
With probability at least 9{10, }A�B} ¤ ε}A} .

The proof of Theorem 4.3 is given in Appendix C.

The third column of the table below shows the number of samples needed to guarantee that
}A � B} ¤ ε}A} occurs with constant probability, in terms of the matrix metrics defined above.
The fourth column presents the ratio of the samples needed by previous results divided by the sam-
ples needed by our method. (To simplify the expressions, we present the ratio between our bound
and [AHK06] only when the result of [AHK06] gives superior bounds to [DZ11], i.e., we always
compare our bound to the stronger of the two bounds implied by these works). Holding ε and the
stable rank constant we readily see that our method requires roughly 1{?n the samples needed
by [AHK06]. In the comparison with [DZ11] we see that the key parameter is the ratio nrd {n, a
quantity typically much smaller than 1 for data matrices. As a point of reference for the assumptions,
in the experimental Section 6 we provide the values of all relevant matrix metrics for all the real data
matrices we worked with, wherein the ratio nrd {n is typically around 10�2. By this discussion, one
would expect that L2-sampling should fare better than L1-sampling in experiments. As we will see,
quite the opposite is true. A potential explanation for this phenomenon is the relative looseness of
the bound of [AHK06] for the performance of L1-sampling.

Citation Method Number of samples needed Improvement ratio of Theorem 4.3

[AM07] L1, L2 sr �pn{ε2q � n � polylogpnq
[DZ11] L2 sr �pn{ε2q logpnq nrd {n� p?nd{nq � pε{asr logpnqq

[AHK06] L1 pnd �n{ε2q1{2
a

sr � logpnq{n

This paper Bernstein
nrd � sr {ε2 � log n�
psr �nd {ε2 � log nq1{2

5 Proof outline

We start by iteratively replacing the objective functions (1) and (2) with simpler and simpler func-
tions. Each replacement will incur a (small) loss in accuracy but will bring us closer to a function
for which we can give a closed form solution. Recalling the definitions of α, β from Algorithm 1
and rewriting the requirement in (3) as a quadratic form in ε gives ε2 � εβR� pασq2 ¡ 0. Our first
step is to observe that for any c, d ¡ 0, the equation ε2 � ε � c � d � 0 has one negative and one
positive solution and that the latter is at least pc � ?

dq{?2 and at most c � ?
d. Therefore, if we

define2 ε2 :� ασ � βR we see that 1{?2 ¤ ε1{ε2 ¤ 1.

Our next simplification encompasses Conditions 2, 3 of Definition 4.1. Let ε3 :� ασ̃ � βR̃ where

σ̃2 :� max

#
max
i

¸
j

A2
ij{pij , max

j

¸
i

A2
ij{pij

+
and R̃ :� max

ij
|Aij |{pij .

Lemma 5.1. For every matrixA satisfying Conditions 2 and 3 of Definition 4.1, for every probability
distribution on the elements of A, |ε2{ε3 � 1| ¤ 1{30.

Lemma 5.1 is proved in section A by showing that σ̃ � σ and R̃ � R. This allows us to optimize p
with respect to ε3 instead of ε2. In minimizing ε3 we see that there is freedom to use different rows
to optimize σ̃ and R̃. At a cost of a factor of 2, we will couple the two minimizations by minimizing

2Here and in the following, to lighten notation, we will omit all arguments, i.e., p, σppq, Rppq, from the
objective functions εi we seeks to optimize, as they are readily understood from context.
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ε4 � maxtε5, ε6u where

ε5 :� max
i

�
�α

gffe¸
j

A2
ij

pij
� βmax

j

|Aij |
pij

�
� , ε6 :� max

j

�
�α

gffe¸
i

A2
ij

pij
� βmax

i

|Aij |
pij

�
� . (4)

Note that the maximization of R̃ in ε5 (and ε6) is coupled with that of the σ̃-related term by con-
straining the optimization to consider only one row (column) at a time. Clearly, 1 ¤ ε3{ε4 ¤ 2.

Next we focus on ε5, the first term in the maximization of ε4. The following key lemma establishes
that for all data matrices satisfying Condition 1 of Definition 4.1, by minimizing ε5 we also minimize
ε4 � maxtε5, ε6u.
Lemma 5.2. For every matrix satisfying Condition 1 of Definition 4.1, argminp ε5 � argminp ε4.

At this point we can derive in closed form the probability distribution p minimizing ε5.
Lemma 5.3. The function ε5 is minimized by pij � ρiqij where qij � |Aij |{}Apiq}1. To define ρi

let zi9}Apiq}1 and define ρipζq �
�
αzi{2ζ �

b
pαzi{2ζq2 � βzi{ζ


2

. Let ζ1 ¡ 0 be the unique

solution to3 °
i ρipζ1q � 1. Let ρi :� ρipζ1q.

To prove Theorem 4.2 we see that Lemmas 5.2 and 5.3 combined imply that there is an efficient
algorithm for minimizing ε4 for every matrix A satisfying Condition 1 of Definition 4.1. If A also
satisfies Conditions 2 and 3 of Definition 4.1, then it is possible to lower and upper bound the ratios
ε1{ε2, ε2{ε3 and ε3{ε4. Combined, these bounds guarantee a lower and upper bound for ε1{ε4.
In general, if c ¤ ε4{ε1 ¤ C we can conclude that ε1parg minpε4qq ¤ pC{cqminpε1q. Thus,
calculating the constants shows ε1parg minpε4qq ¤ 3 minpε1q, yielding Theorem 4.3.

6 Experiments

We experimented with 4 matrices with different characteristics, summarized in the table below. See
Section 4 for the definition of the different characteristics.

Measure m n nnzpAq }A}1 }A}F }A}2 sr nd nrd

Synthetic 1.0e+2 1.0e+4 5.0e+5 1.8e+7 3.2e+4 8.7e+3 1.3e+1 3.1e+5 3.2e+3
Enron 1.3e+4 1.8e+5 7.2e+5 4.0e+9 5.8e+6 1.0e+6 3.2e+1 4.9e+5 1.5e+3
Images 5.1e+3 4.9e+5 2.5e+8 6.5e+9 2.0e+6 1.8e+6 1.3e+0 1.1e+7 2.3e+3

Wikipedia 4.4e+5 3.4e+6 5.3e+8 5.3e+9 7.5e+5 1.6e+5 2.1e+1 5.0e+7 1.9e+4

Enron: Subject lines of emails in the Enron email corpus [Sty11]. Columns correspond to subject
lines, rows to words, and entries to tf-idf values. This matrix is extremely sparse to begin with.
Wikipedia: Term-document matrix of a fragment of Wikipedia in English. Entries are tf-idf values.
Images: A collection of images of buildings from Oxford [PCI�07]. Each column represents the
wavelet transform of a single 128� 128 pixel grayscale image.
Synthetic: This synthetic matrix simulates a collaborative filtering matrix. Each row corresponds to
an item and each column to a user. Each user and each item was first assigned a random latent vector
(i.i.d. Gaussian). Each value in the matrix is the dot product of the corresponding latent vectors plus
additional Gaussian noise. We simulated the fact that some items are more popular than others by
retaining each entry of each item i with probability 1� i{m where i � 0, . . . ,m� 1.

6.1 Sampling techniques and quality measure

The experiments report the accuracy of sampling according to four different distributions. In Fig-
ure 6.1, Bernstein denotes the distribution of this paper, defined in Lemma 5.3. The Row-L1
distribution is a simplified version of the Bernstein distribution, where pij9|Aij | � }Apiq}1. L1 and
L2 refer to pij9|Aij | and pij9|Aij |2, respectively, as defined earlier in the paper. The case of L2

3Notice that the function
°
ρipζq is monotonically decreasing for ζ ¡ 0 hence the solution is indeed unique.
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sampling was split into three sampling methods corresponding to different trimming thresholds. In
the method referred to as L2 no trimming is made and pij9|Aij |2. In the case referred to as L2 trim
0.1, pij9|Aij |2 for any entry where |Aij |2 ¡ 0.1 �Eijr|Aij |2s and pij � 0 otherwise. The sampling
technique referred to as L2 trim 0.01 is analogous with threshold 0.01 � Eijr|Aij |2s.
Although to derive our sampling probability distributions we targeted minimizing }A � B}2, in
experiments it is more informative to consider a more sensitive measure of quality of approximation.
The reason is that for a number of values of s, the scaling of entries required for B to be an unbiased
estimator of A, results in }A � B} ¡ }A} which would suggest that the all zeros matrix is a
better sketch for A than the sampled matrix. We will see that this is far from being the case. As
a trivial example, consider the possibility B � 10A. Clearly, B is very informative of A although
}A � B} ¥ 9}A}. To avoid this pitfall, we measure }PBk A}F {}Ak}F , where PBk is the projection
on the top k left singular vectors of B. Thus, Ak � PAk A is the optimal rank k approximation of
A. Intuitively, this measures how well the top k left singular vectors of B capture A, compared
to A’s own (optimal) top-k left singular vectors. We also compute }AQBk }F {}Ak}F where QBk is
the projection on the top k right singular vectors of A. Note that, for a given k, approximating
the row-space is harder than approximating the column-space since it is of dimension n which is
significantly larger than m, a fact also borne out in the experiments. In the experiments we made
sure to choose a sufficiently wide range of sample sizes so that at least the best method for each
matrix goes from poor to near-perfect both in approximating the row and the column space. In all
cases we report on k � 20 which is close to the upper end of what could be efficiently computed
on a single machine for matrices of this size. The results for all smaller values of k are qualitatively
indistinguishable.

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

4	   4.7	   5	   5.7	   6	   6.7	   7	  
0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

4	   4.7	   5	   5.7	   6	   6.7	   7	  
0.75	  

0.8	  

0.85	  

0.9	  

0.95	  

1	  

4	   4.7	   5	   5.7	   6	  
0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

4	   4.7	   5	   5.7	   6	  

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

4	   4.7	   5	   5.7	   6	   6.7	   7	  
0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

4	   4.7	   5	   5.7	   6	   6.7	   7	  
0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

4	   4.7	   5	   5.7	   6	  
0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

4	   4.7	   5	   5.7	   6	  

Figure 1: Each vertical pair of plots corresponds to one matrix. Left to right: Wikipedia, Im-
ages, Enron, Synthetic . Each top plot shows the quality of the column-space approximation ratio,
}P kBA}F {}Ak}, while the bottom plots show the row-space approximation ratio }AQkB}F {}Ak}.
The number of samples s is on the x-axis in log scale x � log10psq.

6.2 Insights

The experiments demonstrate three main insights. First and most important, Bernstein-sampling is
never worse than any of the other techniques and is often strictly better. A dramatic example of
this is the Wikipedia matrix for which it is far superior to all other methods. The second insight
is that L1-sampling, i.e., simply taking pij � |Aij |{}A}1, performs rather well in many cases.
Hence, if it is impossible to perform more than one pass over the matrix and one can not even obtain
an estimate of the ratios of the L1-weights of the rows, L1-sampling seems to be a highly viable
option. The third insight is that for L2-sampling, discarding small entries may drastically improve
the performance. However, it is not clear which threshold should be chosen in advance. In any case,
in all of the example matrices, both L1-sampling and Bernstein-sampling proved to outperform or
perform equally to L2-sampling, even with the correct trimming threshold.
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[Ber07] Aleš Berkopec. Hyperquick algorithm for discrete hypergeometric distribution. Journal of Discrete
Algorithms, 5(2):341–347, 2007.

[CR09] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational mathematics, 9(6):717–772, 2009.

[CT10] Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix com-
pletion. Information Theory, IEEE Transactions on, 56(5):2053–2080, 2010.

[d’A08] Alexandre d’Aspremont. Subsampling algorithms for semidefinite programming. arXiv preprint
arXiv:0803.1990, 2008.

[DKM06] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algorithms for matrices;
approximating matrix multiplication. SIAM J. Comput., 36(1):132–157, July 2006.

[DZ11] Petros Drineas and Anastasios Zouzias. A note on element-wise matrix sparsification via a matrix-
valued bernstein inequality. Inf. Process. Lett., 111(8):385–389, 2011.
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A Optimizations on the L1 ball

Lemma A.1. For any x, p P Rn, if pi ¥ 0 and }p}1 � 1, then maxk |xk|{pk ¥ }x}1 and°
k x

2
k{pk ¥ }x}21, with equality holding in both cases if and only if pk � |xk|{}x}1.

Proof. To prove maxk |xk|{pk ¥ }x}1 we note that if |xi|{pi � |xj |{pj , then changing pi, pj to
p1i, p

1
j such that p1i � p1j � pi � pj and |xi|{p1i � |xj |{p1j can only reduce the maximum. In order for

all |xk|{pk to be equal it must be that pk � |xk|{}x}1 for all j, in which case maxk |xk|{pk � }x}1.

The second claim follows from applying Jensen’s inequality to the convex function x ÞÑ x2. Specif-
ically, Jensen’s inequality shows that for any p,

Ei�prp|xi|{piq2s ¥ Ei�prp|xi|{piqs2 � }x}21
This inequality is met for pi � |xi|{}x}1.

To prove Lemma 5.1 we first establish the following.
Lemma A.2. For any matrix A and any probability distribution p on the elements of A, we have
|σ2{σ̃2 � 1| ¤ }A}22°

i }Apiq}
2
1

and |R{R̃� 1| ¤ }A}2
}A}1

.

Proof. Recall thatB1 contains one non-zero elementAij{pij , while all its other entries are 0. There-
fore, ErB1B

T
1 s and ErBT1 B1s are both diagonal matrices where

ErpB1B
T
1 qi,is �

¸
j

A2
ij{pij and ErpBT1 B1qj,js �

¸
i

A2
ij{pij .

Since the operator norm of a diagonal matrix equals its largest entry we see that

σ̃2 :� max

#
max
i

¸
j

A2
ij{pij , max

j

¸
i

A2
ij{pij

+
� maxt}ErB1B

T
1 s}, }ErBT1 B1s}u .

We will need to bound σ̃2 from below. Trivially, σ̃2 ¥ }ErB1B
T
1 s} � maxi

°
j A

2
ij{pij . Defining

ρi :� °
j pij and qij :� pij{ρi, the second and third inequalities follow from Lemma A.1

σ̃2 ¥ max
i

¸
j

A2
ij

pij
� max

i
ρ�1
i

¸
j

A2
ij

qij
¥ max

i
ρ�1
i }Apiq}21 ¥

¸
i

}Apiq}21 . (5)

On the other hand, σ2 � maxt}ErZ1Z
T
1 s}, }ErZT1 Z1s}u, where Z1 � B1 �A. Since ErB1s � A,

}ErZ1Z
T
1 s} � }ErB1B

T
1 �ABT1 �B1A

T �AAT s} � }ErB1B
T
1 s �AAT }

and, analogously, }ErZT1 Z1s} � }ErBT1 B1s � ATA}. Therefore, by the triangle inequality, |σ2 �
σ̃2| ¤ }A}2 and the claim now follows from (5).

Recall that B1 contains one non-zero entry Aij{pij and that R � max }B1 � A} over all possible
realizations of p, i.e., choices of pi, jq. Thus, R � max }B1�A} ¤ max }B1}�}A} by the triangle
inequality, while if B�

1 � arg max }B1}, then R � max }B1 � A} ¥ }B�
1 � A} ¥ }B�

1 } � }A} �
max }B1} � }A}. Since B1 has one non-zero entry, max }B1} � maxij |Aij |{pij � R̃ and, thus,
|R{R̃�1| ¤ }A}{R̃. Applying Lemma A.1 to A P Rm�n with distribution p yields R̃ ¥ }A}1.

Proof of Lemma 5.1. It suffices to prove that both |σ2{σ̃2 � 1| and |R{R̃� 1| are bounded by 1{30.

Lemma A.2 yields the first inequality below and Condition 2 of Definition 4.1 the second. The third
inequality holds for every matrix A, with equality occurring when all rows have the same L1 norm.

|σ2{σ̃2 � 1| ¤ }A}22°
i }Apiq}21

¤ }A}21
30m

°
i }Apiq}21

¤ 1

30
.

Lemma A.2 yields the first inequality below. The second inequality follows from rearranging the
factors in the second inequality above. Condition 3 of Definition 4.1, i.e., m ¥ 30, implies the third.

|R{R̃� 1| ¤ }A}2
}A}1 ¤

1?
30m

¤ 1

30
.
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B Global minimization over the distribution

To find the probability distribution p that minimizes ε5 we start by writing p � ρiqij , without loss
of generality. That is, we decompose p to a distribution ρi ¥ 0 over the rows of the matrix, i.e.,°
i ρi � 1, and a distribution qij ¥ 0 within each row i, i.e.,

°
j qij � 1, for all i. We first prove that

(surprisingly) the optimal q has a closed form solution while the optimal ρ is efficiently computable.

For any ρ, writing ε5 in terms of ρi, qij we see that ε5 is the maximum, over rows 1 ¤ i ¤ m , of

α?
ρi

gffe¸
j

A2
ij

qij
� β

ρi
max
j

|Aij |
qij

. (6)

Observe that since ρ is fixed, the only variables in the above expression for each row i are the qij .
Lemma A.1 implies that setting qij � |Aij |{}Apiq}1 simultaneously minimizes both terms in (6).
This means that for every fixed probability distribution ρ, the minimizer of ε5 satisfies qij � |Aij |

}Apiq}1
.

Thus, we are left to determine

Φpρq � max
i

�
α}Apiq}1?

ρi
� β}Apiq}1

ρi

�
.

Unlike the intrarow optimization, the two summands in Φ achieve their respective minima at differ-
ent distributions ρ. To get some insight into the tradeoff, let us first consider the two extreme cases.
When β � 0, minimizing the maximum over i requires equating all }Apiq}1{?ρi, i.e., ρi9}Apiq}21,
leading to the distribution we call “row-L1”, i.e., pij 9 |Aij | � }Apiq}1. When α � 0, equating the
}Apiq}1{ρi requires ρi 9 }Apiq}1, leading to the “plain-L1” distribution pij 9 |Aij |.
Nevertheless, since we wish to minimize the maximum over several functions, we can seek p under
which all functions are equal, i.e., such that there exists ζ ¡ 0 such that for all i,

α}Apiq}1?
ρi

� β}Apiq}1
ρi

� ζ ¡ 0 .

Solving the resulting quadratic equation and selecting for the positive root yields equation (7), i.e.,

ρipζq �
�
�α}Apiq}1

2ζ
�
d�

α}Apiq}1
2ζ


2

� β}Apiq}1
ζ

�

2

. (7)

Since the quantities under the square root in (7) are all positive we see that it is always possible to
find ζ ¡ 0 such that all equalities hold, and thus (7) does minimize ε5 for every matrixA. Moreover,
since the right hand side of (7) is strictly decreasing in ζ, binary search finds the unique value of ζ
such that

°
ρi � 1 .

Finally, recall that our overall goal is to determine the minimizer of ε4 � maxtε5, ε6u. We already
have determined the minimizer of ε5. We will now show that for matrices satisfying Condition 1 of
Lemma 4.1 the minimizer of ε5 is also the minimizer of ε4. We first prove that
Lemma B.1. For any two functions f, g, if x0 � arg minx fpxq and gpx0q ¤ fpx0q, then
minx maxtfpxq, gpxqu � fpx0q.

Proof.

min
x

maxtfpxq, gpxqu ¥ min
x
fpxq � fpx0q � maxtfpx0q, gpx0qu ¥ min

x
maxtfpxq, gpxqu

Thus, it suffices to evaluate ε6 at the distribution p minimizing ε5 and check that ε6ppq ¤ ε5ppq.
We know that p is of the form pij � ρi|Aij |{}Apiq}1 for some distribution ρ. Substituting this form
of p into ε6 gives (8). Condition 1 of Lemma 4.1, i.e., maxj }Apjq}1 ¤ mini }Apiq}1, allows us to
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pass from (9) to (10). Finally, to pass from (10) to (11) we note that the two maximizations over i
in (10) involve the same expression, thus externalizing the maximization has no effect.

ε6ppq � max
j

�
�α

�¸
i

}Apiq}1 � |Aij |
ρi

�1{2

� βmax
i

}Apiq}1
ρi

�
� (8)

¤ max
j

�
�α

�
max
i

}Apiq}1
ρi

�
¸
i

|Aij |
�1{2

� βmax
i

}Apiq}1
ρi

�
�

� max
j

�
α

�
max
i

}Apiq}1
ρi

� }Apjq}1

1{2

� βmax
i

}Apiq}1
ρi

�

¤ α

�
max
i

}Apiq}1
ρi

�max
j

}Apjq}1

1{2

� βmax
i

}Apiq}1
ρi

(9)

¤ α

�
max
i

}Apiq}1
ρi

�min
i
}Apiq}1


1{2

� βmax
i

}Apiq}1
ρi

(10)

¤ max
i

�
α

�}Apiq}1
ρi

�min
i
}Apiq}1


1{2

� β
}Apiq}1
ρi

�
(11)

¤ max
i

�
α
}Apiq}1?

ρi
� βmax

i

}Apiq}1
ρi

�
� ε5ppq .

C Proof of Theorem 4.3

Proof of Theorem 4.3. We start by computing the value of ε1 as a function of s, δ, for the probability
distribution P0 minimizing ε5. Recall that in deriving (7) we established that ε5pP0q � ζ0, where
ζ0 is such that

°m
i�1 ρipζ0q � 1, i.e.,

1 �
m̧

i�1

�
�α}Apiq}1

2ζ0
�
d�

α}Apiq}1
2ζ0


2

� β}Apiq}1
ζ0

�

2

¤
m̧

i�1

α2}Apiq}21
ζ20

� 2β}Apiq}1
ζ0

. (12)

This yields the following quadratic equation in ζ0

ζ20 � ζ0 � 2β}A}1 � α2
¸
i

}Apiq}21 ¤ 1 (13)

Treating (13) as an equality and bounding the larger root of the resulting quadratic equation we get

ζ0 � O

�
�β}A}1 � α

d¸
i

}Apiq}21

�
� O

�
� log

�
m�n
δ

� }A}1
s

�
d

log
�
m�n
δ

�°
i }Apiq}21

s

�
 (14)

The second equality is obtain by replacing α, β with their corresponding expressions of α �a
logppm� nq{δq{s and β � logppm � nq{δq{p3sq. Recall that to prove Theorem 4.2 we proved

that if A meets the conditions of Definition 4.1, then

min
P

ε1ppq � Θpζ0q .

It follows that for ε� � minP ε1ppq,

s � O

�
logppm� nq{δq°i }Apiq}1

ε�
� logppm� nq{δq°i }Apiq}21

pε�q2



The theorem now follows by taking ε� � ε}A}.
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D Efficient Parallel Reservoir Sampling

Assume we are to receive a stream of unknown items where the weight of the i-th item is wi ¡ 0.
We wish to sample a single item from the stream so that each stream item is selected with probability
pi � wi{W , where W � °

i wi. Reservoir sampling is the classic solution to this problem: select
the very first item in the stream as the “current” sample and from then on have each successive item
i replace the current sample with probability wi{Wi, where Wi �

°
j¤i wj .

Assume now that, instead, we wanted to take s ¡ 1 items from the stream, but as if the stream
was a set and we could sample it with replacement. One way to do this is to execute s independent
reservoir samplers as above in parallel, as was pointed out in [DZ11]. This, however, requires Θpsq
active memory and Θpsq randomized operations per item in the stream.

In forming a sketch matrix B, the fact s � nnzpBq make the above approach impractical, as the
overall number of operations required is nnzpAq nnzpBq � Ωps2q. Below we describe an algorithm
that requires only Oplog sq active memory and Op1q operations per item, instead of Θpsq memory
and Θpsq operations per item, respectively. The first idea is to use the fact that samplers are inde-
pendent. We can therefore simulate the process above by determining for each item, a, the (random)
number of samplers, k, that would have replaced their current sample with a when it appeared. This
random variable is Bernouli distributed and can be sampled efficiently. If this number is greater than
zero, we write item a along with k to durable storage (disk) and process the next item in the stream.
This processing generates a sketch of the stream on disk, the length of which can be shown to be
bounded by Ops logpbNqq, where b � maxi wi{mini wi.

When the stream terminates, we process the sketch from end to beginning as follows: for each pair
pa, kq we encounter in the sketch we process the k update operations as the throwing of k balls into
s bins uniformly at random. This is because, whether item a replaces the current sample, a1, of a
particular sampler is independent of a1. Notice that since we are going over the sketch backwards,
the very first ball we place in a bin corresponds to the very last update of the sampler in the original
execution. Thus, for each bin, we ignore all but the first ball placement and we stop as soon as each
bin has received a ball (thus we also avoid simulating the “irrelevant” part of the naive computation).
Performing this simulation only requires a bit-vector of length s in active memory.

Finally, we can avoid even the cost of the bit-vector, as follows. Note that we do not care about
the order of the samplers. Only the number of samplers that pick any item is important. Therefore,
we can simply track the number of empty bins ` (samplers that are not committed yet) instead
of the whole list and update it every time some balls fall into empty bins. The hypergeometric
distribution hypergeometricps, `, kq (see e.g [Ber07] for a more thorough overview) assigns each
integer t probability

�
`
t

��
s�`
k�t

�{�sk�. In words, assume we have s bins only ` of which are empty. If
we throw k balls to k different bins uniformly at random, the number of balls that fall in empty bins
distributes as hypergeometricps, `, kq.

Input: An integer s and a stream pa1, w1q, pa2, w2q, ...
W Ð 0, T Ð empty stack
for pa,wq P the stream do

W ÐW � w
p � w{W
k � binomialps, pq � Number of reservoir samplers that would have picked item a.
if k ¡ 0 then

Push pa, kq onto T
` � s � ` holds the number of samplers that did not commit on an item yet.
while ` ¡ 0 do

pa, kq � poppT q
t � hypergeometricps, `, kq
if t ¡ 0 then � t samplers committed to item a.

` � `� t
yield: pa, tq
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