Supplementary Materials

1 LOR
Here we derive the standard LQR solution and connect therges@ution to the updates of the
encoding model. Consider the dynamics

Ti41 = ACCt + B’LLt + €t € N(O, C)

whereu; is a control signal that depends en We want to choose; () to minimize the expected
guadratic cost with rate

! Qs + ul Rus 4 227 Nuy.

We can write down the optimal expected cost-torggivenz, (the Bellman equation). As we do
this, we will see by backward induction that this cost-toigquadratic inc;, so letV; be its Hessian.

ve(xy) = qulin[fo:ct + ufRut + 2xtTNut + E[vir1(xe41)]]

= H&ln[I?QIt + u;‘FRut + 2$?N’U¢ + (AIt + But)TVtJrl (AIt + But) + tr(‘/tJrlC) + ’Ut+1(0)].
We differentiate by, to find the optimal control
Ruy + NTx; + BTV, 1 (Azy + Buy) = 0
u = —(R+ BTV, 1B Y (NT + BTV, 1 A)xy,
so the "feedback gain” is
Li=—(R+ BTV}-HB)*l(NT + BTV%-HA),

and we substitute to get

’Ut(CCt) = CCZ-‘QCCt + I?Nut + (AIt)T‘/t+1(AZZ?t + But) + tr(Vt+10) + Ut+1(0),
SO

Vi=Q+ ATV, W A— (N + ATV, B)Y(R+ B"V, (1 B) ' (NT + BTV, ,, A)
and

v¢(0) = tr(Vi410) + v641(0).
Now suppose that there’s a variablewhich (givenu,) is jointly Gaussian withe;
zt:F:vt—i-Gut—i-{}; gtNN(O,H),

and an additional cost term quadraticzin

ve(xy) = min Bz Qs + ul Ruy + 227 Nug + 2] Sz + v (we41)]

= I%in[xtT (Q+FTSF)zi+ul (R+GTSG)u; + 22T (N + FTSG)uy +tr(SH) + Elviy 1 (2111)]],

which is like having
Q =Q+F"SF
R =R+ G"SG
N'=N+FTSG.

In the LQG setting, we would take, to be the actual hidden state, andthe Kalman estimate
of this state. In the Kalman filter;; andz, have the same dynamics except thais noisier, i.e.
they have the samé andB but differentC' (which we don’t care about). Now—ax;—u,, SO that

G = 0, and the filter is designed to havé = . () = 0 because the cost is on the real state, so
Q' =S,R = R, N' = N. H is the conditional covariance which is sometimes dendieout we
don’t care about it either (this where the separation of LQ& l6QR comes from). This all means
that LQR is the same whether applied to the actual hiddee etdts Kalman estimate.



In our case, the control depends gxtl , while the cost depends rﬁt . Also note that the,
t— t

in this section is before the neural noigeis added. So here’s how things in this supplement relate

to things in the paper:
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2 Decoding improvement with perfect estimation

Supplementary figure 1 depicts the decoding performanceamale realization of the data (for one
initial condition of figure 4(a) in the main paper). Comparthe initial decoding performance with
the final one, it is clear that this form of naive co-adaptatiynamics improve task performance.
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(a) Initial decoding performance (b) Final decoding performance

Figure 1: Each figure presents the 3 dimensions,dfn blue) over simulated time (along the hori-
zontal axis). Superimposed on each subplot is the decogledtiories:; (in red). (a) Decoding per-
formance with a random initial encoder, and the decoderishgttimal for it. (b) Encoder-decoder
pair has converged to an optimum joint setting and decodiradjty is meaningfully improved.

3 RLSprocedure

We propose a recursive least squares algorithm closelteteta the Kalman filter (RLS-Kalman)
as the method by which to estimate the parameters. This stlogvestimates to change gradually
as more data is generated, which in turn causes a graduaehathe parameters computed by the
smooth update steps.

We first present a general form of the RLS-Kalman estimatiethod we use, and subsequently
specialize it to the two cases where it is used symmetriflaylgach agent to estimate the parameters
of the other). We suppose that the vectorized maltfixo be estimated has dynamics:

My = AM1 +wi; we ~N(0, W),

whereW = /1 — X\2T and0 < 1 — X < 1 is a forgetting factor which allows for gradual change in
the parameters. The observation equation is

Zt:HtMt+Vt; VtNN(O,U).

The Kalman filter update allows for online estimation of tlagmeter matrixd/; at each timestep
as new inputd{, generate new observations The updates take the form

K= (S +WYHIN(H (2 +W)HE +U) 7!

M = AM;_1 + Ki(wy — Ht)\Mt—l)

Y= - KHy)(Zi—1 + W).

For the decoder-side agent, estimation isMf = vect{[CA CB]} which corresponds to the

T
partially observable encoding model. In this cage= Lfft 1] ® I and the observationis = ;.

For the encoder-side agent, estimation is\bf= vect{ [FGC]} which corresponds to the partially

T
t | ® I and the observation is = 7;. For

observable decoding model. In this cd$e = L}:

simulations M is initialized to zeros and its covariance is initializedhe I — these match the prior
from which the encoding model is drawn.



4 Simulation parameter selections

For the various simulations, reasonable selections ofnpeters will reflect the biological realities

(1) that individual neurons are noisy, (2) that we observalzsst of the neurons, and (3) that for
numbers of electrodes that we observe, neural noise istiregnaveraged out. For our simulations,
there is no absolute measure of scale for some of the valuel &s the noise), so we first fixed the
number of electrodes and tuned neural noise such that depwaadis noisy, but such that there would
be some signal as is experimentally observed. We treatretixhoise as negligible. Our code is
available from the first two authors’ research websites.

We simulate a population of 50 neurons which we responsivauto3 degrees of freedom. We

observe "electrode” signals from 5 neurons. In a real expeni with 10s of neurons recorded, only
a subset of neurons will respond for any particular degrdeeeflom. Our relatively small number

of electrodes should be considered comparable to the nuofildectrodes with fairly responsive

signals for the purposes of decoding.

We tuned the neural signal cost for the uBesuch that the neural signal could notincrease arbitrarily
to be le~2. For our choices of noise and number of electrodes, thisnpeter value sufficiently
restricted the magnitude of the neural signal, however wiitier values for these other parameters,

R would need to be different.

For the simulations in which each agent estimates the paeasnaf the other (sections 4 & 5 of the
main paper), there are some additional parameters. Thédtpenahe anticipated electrode signal
changes?’ was larger than the actual neufal This provided some regularization on the anticipated
changes. This value was not finely tuned, and presumablyrtbeder aware updates could be
further improved if this were chosen more thoroughly. Ald® (1 — \) values corresponding to
the forgetting factors in the RLS procedure (supplemertiae8) ranged betweete—3 andle—%
with the first number corresponding to less memory and therlaumber corresponding to almost
perfect memory.



