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1 Proof of Theorem 3.1

Recall the definitions α := ‖x‖2 + mγ2, β := 〈x,y〉, and µ := (β/α)1. Viewing w(t) as a
collection of Gaussian random variables indexed by t, expressions for w̄(t) and w̃(t) can be obtained
as manipulations of Gaussians:

w̄(t) ∼ N
(
1
n1
>µw(t), 1

n21
>Σw(t)1

)
= N

(
e−αt E[w̄(0)] + (1− e−αt)βα , e

−2αt E[(w̄(0))2] + σ2

2αn (1− e−2αt)
)

where w̄(0) = 1
n1
>w(0). Turning to the fluctuations, let Q = I − 1

n11
> denote the orthogonal

projection onto the zero-mean subspace of Rn. Note that w̃ = Qw and w̄1 = (I −Q)w. We have

w̃(t) ∼ N (Qµw(t), QΣw(t)Q>)

= N
(
e−(L+αI)t E[w̃(0)], e−(L+αI)t E[w̃(0)w̃(0)>]e−(L+αI)t

+ σ2

2 (QLQ>+ αI)−1(I − e−2(QLQ
>+αI)t)

)
.

We can now consider the error

E
[
1
n‖w(t)− µ‖2

]
= E

[
1
n‖w̃(t)‖2

]
+ E

[
1
n‖w̄(t)1− µ‖2

]
.

In general if x ∼ N (µx,Σx) then E[‖x− c‖2] = tr(Σx)+‖µx − c‖2 for any (non-random) vector
c. The first error term on the right-hand side can be estimated as

E
[
1
n‖w̃(t)‖2

]
≤ 1

n

∑
i>0

λi(Σw(0))e−2(λi(L)+α)t +
σ2

2n

∑
i>0

1− e−2(λi(L)+α)t

λi(L) + α

+ E[w(0)]>Q>e−2(L+α)tQE[w(0)]

≤ λmax(Σw(0))e−2(λ+α)t +
σ2
(
1− e−2(λ+α)t

)
2(λ+ α)

+ e−2(λ+α)t‖E[w(0)]‖2

where λ is the smallest non-zero eigenvalue of L and λmax(·) denotes the largest eigenvalue of its
argument. The first term on the right-hand side of the first inequality follows from Von Neumann’s
trace inequality. The second error term is given by

E
[
1
n‖w̄(t)1− µ‖2

]
= E

[(
w̄(t)− β

α

)2]
= e−2αt E[(w̄(0))2] +

σ2

2αn
(1− e−2αt) + e−2αt

(
E[w̄(0)]− β

α

)2
.
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Note that E[(w̄(0))2] = 1
n21
>Σw(0)1 and E[w̄(0)] = 1

n21
>µw(0). Defining the constants

C̃ := λmax(Σw(0))− σ2

2(λ+ α)
+ ‖E[w(0)]‖2

C := E[(w̄(0))2]− σ2

2αn
+
(
E[w̄(0)]− β

α

)2
and combining with the above, we obtain the Theorem.

2 Proof of Theorem 5.1

The OU process (16b) is ergodic and has stationary distribution µ∞ = N (0, 12σ
2I). Furthermore,

the system (17)-(16b) satisfies the conditions of Theorem 2.1. Homogenizing (17) requires the
averaged vector field

F (u) =

∫
Rd

(2u>Az + z>Az)zµ∞(dz) = 2E[zz>]Au+ E[zz>Az] = σ2Au

(using that odd moments of a zero-mean Gaussian are zero), and leads to the averaged system
U̇ = −γσ2AU, U(0) = u(0).

The solution to this ODE is easily found to be U(t) = e−γσ
2AtU(0). Theorem 2.1 then provides

that u(t) converges in distribution to U(t) as ε→ 0. Since U(t) is deterministic for all t ≥ 0 in this
case, u(t) also converges to U(t) in probability. Let (ei)

d
i=1 denote the canonical basis of Rd and

let xi denote the i-th coordinate of a vector x ∈ Rd. The projection function πi(x) = 〈x, ei〉 = xi

is clearly continuous, so by the continuous mapping theorem, πi(ut)→ U i(t) in probability.

Let uε(t) denote the (strong) solution to (17) for some fixed ε ∈ (0, 1]. If the family {uiε(t)}ε∈(0,1]
is uniformly integrable (for each t < ∞), then together with ui(t) → U i(t) i.p., we would have
that E[uiε(t)] → E[U i(t)] = U i(t) as ε → 0 (by way of convergence in L1). We establish uniform
integrability by showing that supε∈(0,1] E[π2

i

(
uε(t)

)
] < ∞. First note that for any ε > 0, the OU

process (16b) is a Gaussian process Zt ∼ N (µt,Σt) with bounded moments E[‖Zt‖p] <∞, p ≥ 1,
for all t ≤ T <∞: Suppose X ∼ N (0, Id×d). Then for each t, Zt = µt + Σ

1/2
t X in law. Because

the standard Normal moments E[‖X‖p] are bounded for all p, we have, restricting our attention to p
even, that

E[‖Zt‖p] ≤ 2p−1
(
‖µt‖p + E[‖Σ1/2

t X‖p]
)

≤ Cp
(
e−pt/ε + (tr Σt)

p/2 E[‖X‖p]
)

≤ Cp(1 + e−pt/ε) <∞
where Cp is a constant depending on p that changes from instance to instance, and where µt,Σt are
given by (13a), (13b) (resp.) with Lz = 0, η = 1, γ = σ/

√
2. Returning to the second moment of

u, define the norm ‖x‖A ,
√
〈x,Ax〉, where A is the symmetric strictly positive definite matrix

appearing in (17). Note that λmin(A)‖x‖2 ≤ ‖x‖2A ≤ λmax(A)‖x‖2 for any x ∈ Rd, where
λmin(A) > 0 is the smallest eigenvalue of A and λmax(A) < ∞ is the largest eigenvalue of A.
Applying Ito’s lemma to the map u 7→ ‖u‖2A, we have for any ε > 0 and 0 ≤ t ≤ T <∞,

E
[
‖uε(t)‖2A

]
= −2γ

∫ t

0

E
[(

2uε(s)
>AZs + Z>sAZs

)(
uε(s)

>AZs
)]

ds+ ‖u(0)‖2A

≤ −2γ

∫ t

0

E
[
(Z>sAZs)(uε(s)

>AZs)
]

ds+ ‖u(0)‖2A

≤ 2γ

∫ t

0

E
[
‖uε(s)‖A‖Zs‖3A

]
ds+ ‖u(0)‖2A

≤ C
∫ t

0

E
[
‖uε(s)‖2A + ‖Zs‖6A

]
ds+ ‖u(0)‖2A

≤ C
∫ t

0

E
[
‖uε(s)‖2A

]
ds+ C

(
t+ ε(1− e−t/ε

)
+ ‖u(0)‖2A

≤ C
(
1 + ε+ ‖u(0)‖2A

)
eCt <∞
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where C is a constant independent of ε that changes from line to line. The second inequality follows
using that−(u>εAZ)2 ≤ 0, the third from Cauchy-Schwarz, and the fourth follows from Young’s in-
equality. The fifth line follows from substituting and integrating the estimate for E[‖Zt‖p] computed
above, and the final line follows from an application of Gronwall’s inequality.

Since E[‖uε(t)‖2] ≤ (1/λmin(A))E[‖uε(t)‖2A], the coordinates of uε(t) individually have bounded
second moments for all ε > 0, and supε∈(0,1] E[π2

i

(
uε(t)

)
] ≤ C(1 + supε∈(0,1] εe

Ct) < ∞ for all
i. Hence, E[uiε(t)]→ U i(t) for each i, and so E[uε(t)]→ U(t) as ε→ 0.
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