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1 Proof of Theorem 3.1

Recall the definitions a := [|x||? + m~?, B := (x,y), and p := (B/a)l. Viewing w(t) as a
collection of Gaussian random variables indexed by ¢, expressions for w(t) and w(¢) can be obtained
as manipulations of Gaussians:

@(t) ~ N (31, (1), 721 S0 (H)1)
=N (e E[w(0)] + (1 - e*at)g’ e 2V E[(w(0))?] + o2 (1 — e~2at))
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where @(0) = 11 Tw(0). Turning to the fluctuations, let Q = I — 2117 denote the orthogonal
projection onto the zero-mean subspace of R". Note that w = Qw and w1l = (I — Q)w. We have

w(t) ~ N(Qpy (1), QX (1)QT)
= N(e—(L+aI)t E[\FI\VI(O)}, e-(L—O—aI)t E[W(O)ﬁ/(O)T]e_(L+aI)t
+ %(QLQTJF al) NI - e—Q(QLQWaI)t)).

‘We can now consider the error

E[;Iw(t) — ul®] =E[[IWw®)|*] + E[}lo()1 - p?].
In general if x ~ N (p,,, ¥;) then E[||x — ¢||?] = tr(X,) + ||, — c]|? for any (non-random) vector
c. The first error term on the right-hand side can be estimated as

L|1w(t)]? (D) ey, O N L — e 2B)tedt
ELIWOIT] < 23 MEu(@)e MO+ 225 — s

i>0 2n i>0
+E[w(0)]'Q e > QE[w(0)]
o2 (1 — 6’2(A+°‘)t)
2(A + )

where A is the smallest non-zero eigenvalue of L and Ay (+) denotes the largest eigenvalue of its
argument. The first term on the right-hand side of the first inequality follows from Von Neumann’s
trace inequality. The second error term is given by

E[L[la(t)1 - ul?] = E[(a(t) — £)?)
2

= e 2 E[(@(0))?] + 227(1 —e ) 4 e 2 (E[w(0)] —
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Note that E[(w(0))?] = 517%,,(0)1 and E[w(0)] = 51T p,,(0). Defining the constants

~ Uznz
C = )\max(EW(O)) N m

C = E[(w(0))?] - 2‘;7 + (E[w(0)] - £)°

and combining with the above, we obtain the Theorem.
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2 Proof of Theorem 5.1

The OU process (16b) is ergodic and has stationary distribution o, = N (O, %021 ). Furthermore,
the system (17)-(16b) satisfies the conditions of Theorem 2.1. Homogenizing (17) requires the
averaged vector field

F(u) = / (2u'Az + 2" A2)2p00 (d2) = 2E[22 T Au + E[22 T Az] = 02 Au
Rd

(using that odd moments of a zero-mean Gaussian are zero), and leads to the averaged system
U=—y0"AU,  U(0) =u(0).

The solution to this ODE is easily found to be U(t) = e‘”"z“”U(O). Theorem 2.1 then provides

that u(¢) converges in distribution to U (t) as € — 0. Since U (¢) is deterministic for all ¢ > 0 in this

case, u(t) also converges to U(t) in probability. Let (e;)%, denote the canonical basis of R? and

let 27 denote the i-th coordinate of a vector € R. The projection function 7;(z) = (z,e;) =
is clearly continuous, so by the continuous mapping theorem, 7;(u;) — U*(¢) in probability.

Let u.(t) denote the (strong) solution to (17) for some fixed & € (0, 1]. If the family {u’(¢)}.c(0,1]
is uniformly integrable (for each ¢ < o00), then together with u’(t) — U*(t) i.p., we would have
that E[u’(t)] — E[U"(¢)] = U'(t) as ¢ — 0 (by way of convergence in L1). We establish uniform
integrability by showing that sup, ¢ ) E[77 (u.(t))] < co. First note that for any £ > 0, the OU
process (16b) is a Gaussian process Z; ~ N (p,, 3¢) with bounded moments E[|| Z||?] < co,p > 1,
forall t <T < oo: Suppose X ~ N(0,Ijxq). Then foreach t, Z; = p, + Ei/QX in law. Because
the standard Normal moments E[|| X ||?] are bounded for all p, we have, restricting our attention to p
even, that

E[|Z0|P) < 277" (les|I” + B[ 52 X 7))
< Cy(e7?/5 + (tr )P 2 | X))
< Cp(1+e7%) < 00
where C}, is a constant depending on p that changes from instance to instance, and where p,, ¥, are
given by (13a), (13b) (resp.) with L, = 0,n =1, v = a/\/i Returning to the second moment of
u, define the norm ||z||4 £ +/(z, Az), where A is the symmetric strictly positive definite matrix
appearing in (17). Note that Apin(A)[|z]|? < [|#]|4 < Amax(A)|z]? for any z € R?, where

Amin(A4) > 0 is the smallest eigenvalue of A and Ayax(A) < oo is the largest eigenvalue of A.
Applying Ito’s lemma to the map u ~ ||u||%, we have forany e > 0and 0 < t < T < oo,

E[[lu.(t)]%] = —27/0 E [(2u5(s)TAZs + ZSTAZS)(uE(s)TAZS)} ds + [[u(0)[4
<= [ B[Z]Az)( (7420 s+ O
<27 [ E[Ju()alZ.)%] as + )]
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<C [ B[l + 1215 s+ a0

<C [ B3] s+ C(t+(1 =) + )]

<C(1+e+]u(0)]%)e’" < oo



where C'is a constant independent of € that changes from line to line. The second inequality follows
using that —(u] AZ)? < 0, the third from Cauchy-Schwarz, and the fourth follows from Young’s in-
equality. The fifth line follows from substituting and integrating the estimate for E[|| Z;||P] computed
above, and the final line follows from an application of Gronwall’s inequality.

Since E[||uc (¢)]1?] < (1/Amin(4)) E[||uc(2) %], the coordinates of u. (¢) individually have bounded
second moments for all & > 0, and sup.¢ (o 1) B[} (u:(t))] < C(1 4 sup.¢ (g1 £°*) < oo for all
i. Hence, E[u’ (t)] — U(t) for each i, and so E[u.(t)] — U(t) as € — 0.



