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Abstract

Statistical models for networks have been typically cortedito strong prior as-
sumptions concerning the form of the modeled distributidisreover, the vast
majority of currently available models are explicitly dgséd for capturing some
specific graph properties (such as power-law degree disiitis), which makes
them unsuitable for application to domains where the behmafithe target quan-
tities is not known a priori. The key contribution of this gaps twofold. First,
we introduce the Fiedler delta statistic, based on the lcégrlespectrum of graphs,
which allows to dispense with any parametric assumptioceonring the modeled
network properties. Second, we use the defined statistieveldp the Fiedler
random field model, which allows for efficient estimation ofge distributions
over large-scale random networks. After analyzing the ddpece structure in-
volved in Fiedler random fields, we estimate them over séver-world net-
works, showing that they achieve a much higher modeling raocguthan other
well-known statistical approaches.

1 Introduction

Arising from domains as diverse as bioinformatics and wetimgj, large-scale data exhibiting net-
work structure are becoming increasingly available. Nekwoodels are commonly used to rep-
resent the relations among data units and their structntatactions. Recent studies, especially
targeted at social network modeling, have focused on rarglawh models of those networks. In
the simplest form, a random network is a configuration of kjimrandom variables{,,,, such that
the value ofX,,, stands for the presence or absence of a link between noaledv in the network.
The general idea underlying random graph modeling is thivaré& configurations are generated
by a stochastic process governed by specific probabilitg |aa that different models correspond to
different families of distributions over graphs.

The simplest random graph model is the Erd6s-Rényi (ERjehid], which assumes that the prob-
ability of observing a link between two nodes in a given gragpbonstant for any pair of nodes in
that graph, and it is independent of which other edges arglwdiserved. In preferential attachment
models [2], the probability of linking to any specified nodeai graph is proportional to the degree
of the node in the graph, leading to “rich get richer” effe@snall-world models [3] try to capture
instead such phenomena often observed in real networksakdiameters and high clustering co-
efficients. An attempt to model potentially complex deperuikes between graph edges in the form
of Gibbs-Boltzmann distributions is made by exponentiabdl@n graph (ERG) models [4], which
subsume the ER model as a special case. Finally, a recampatiémodeling real networks through
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a stochastic generative process is made by Kronecker gfahhghich try to capture phenomena
such as heavy-tailed degree distributions and shrinkiadter properties while paying attention
to the temporal dynamics of network growth.

While some of these models behave better than others in tefieemputational tractability, one
basic limitation affecting all of them is a sort parametric assumptioooncerning the probability
laws underlying the observed network properties. In othends, currently available models of net-
work structure assume that the shape of the probabilityiligion generating the network is known
a priori. For example, typical formulations of ERG modelswane that the building blocks of real
networks are given by such structuresiastars and:-triangles, with different weights assigned to
different structures, whereas the preferential attachmmeel is committed to the assumption that
the observed degree distributions obey a power law. In achdworks, estimating the model from
data reduces to fitting the model parameters, where the jgariarform of the target distribution is
fixed a priori. Clearly, in order for such models to delivecaate estimates of the distributions at
hand, their prior assumptions concerning the behavior @tadnget quantities must be satisfied by
the given data. But unfortunately, this is something thatese rarely assess a priori. To date, the
knowledge we have concerning large-scale real-world nddsvdoes not allow to assess whether
any particular parametric assumption is capturing in déip¢htarget generative process, although
some observed network properties may happen to be modélgdiell.

The aim of this paper is twofold. On the one hand, we take a $iegp toward nonparametric
modeling of random networks by developing a novel netwoaltistic, which we call thé=iedler
delta statistic. The Fiedler delta function allows to model diffiet graph properties at once in an
extremely compact form. This statistic is based on the sglentalysis of the graph, and in particular
on the smallest non-zero eigenvalue of the Laplacian mattich is known as Fiedler value [6, 7].
On the other hand, we use the Fiedler delta statistic to defB@tzmann distribution over graphs,
leading to theFiedler random field FRF) model. Roughly speaking, for each binary edge vagiabl
Xu.v, potentials in a FRF are functions of the difference deteediin the Fiedler value by flipping
the value ofX,,, where the spectral decomposition is restricted to a deitsltbgraph incident to
nodesu,v. The intuition is that the information encapsulated in thedker delta forX,,, gives

a measure of the role of,, in determining the algebraic connectivity of its neighbmot. As

a first step in the theoretical analysis of FRFs, we provettiege models allow to capture edge
correlations at any distance within a given neighborho@mclk defining a fairly general class of
conditional independence structures over networks.

The paper is organized as follows. Sec. 2 reviews some tliealrbackground concerning the
Laplacian spectrum of graphs. FRFs are then introduced én Fewhere we also analyze their
dependence structure and present an efficient approacédiorihg them from data. To avoid un-
warranted prior assumptions concerning the statistichhbier of the Fiedler delta, potentials are
modeled by non-linear functions, which we estimate fronmadat minimizing a contrastive diver-
gence objective. FRFs are evaluated experimentally in &ethowing that they are well suited for
large-scale estimation problems over real-world netwasksle Sec. 5 draws some conclusions and
sketches a few directions for further work.

2 Graphs, Laplacians, and eigenvalues

LetG = (V, &) be an undirected graph withnodes. In the following we assume that the graph is
unweighted with adjacency matrik. The degreel,, of a nodeu € V is defined as the number of
connections of to other nodes, that i, = |{v: {u, v} € £}|. Accordingly, the degree matrR of

a graphg corresponds to the diagonal matrix with the vertex degieges . , d,, on the diagonal. The
main tools exploited by the random graph model proposed &rer¢he graph Laplacian matrices.
Different graph Laplacians have been defined in the liteeatin this work, we use consistently the
unnormalized graph Laplaciamgiven byL = D — A. Some basic facts related to the unnormalized
Laplacian matrix can be summarized as follows [7]:

Proposition 1. The unnormalized graph Laplacidn of an undirected graply has the following
properties: ¢) L is symmetric and positive semi-definitg) the smallest eigenvalue &fis 0; (ii)

L hasn non-negative, real-valued eigenvalugs= A\; < ... < \,; (iv) the multiplicity of the
eigenvalue 0 oL equals the number of connected components in the graphisthe&t = 0 and
Ao > 0 if and only ifG is connected.



In the following, the (algebraic) multiplicity of an eigesue)\; will be denoted byM ();, G).

If the graph has one single connected component, #i¢h G) = 1, and the second smallest eigen-
value \2(G) > 0 is called, in this case, thEiedler eigenvalue The Fiedler eigenvalue provides
insight into several graph properties: when there is a ndakispectral gap, i.eA2(G) is clearly
separated from 0O, the graph has good expansion propett@sgsr connectivity, and rapid conver-
gence of random walks in the graph. For example, itis knoatth(G) < u(G), whereu(G) is the
edge connectivity of the graph (i.e. the size of the smatidge cut whose removal makes the graph
disconnected [7]). Notice that if the graph has more thancomaected component, than(G) will

be also equal to zero, thus implying that the graph is not eored. Without loss of generality, we
abuse the term Fiedler eigenvalue to denote the smallestfue different from zero, regardless
of the number of connected components. In this paper, byldfiedlue we mean the eigenvalue
Aie+1(G), wherek = M (0, G).

For any pair of nodes andv in a graphg = (V, &), we define two corresponding grapm%“+ and
G~ inthe following way:G**" = (V,£ U {{u,v}}),andg"" = (V, &\ {{u,v}}). Clearly, we
have that eithe**" = G orG**~ = G. A basic property concerning the Laplacian eigenvalues of
Gw" andG" is the following [7, 8, 9]:

Lemma 1. If G**" andG“*~ are two graphs with nodes, such thafu, v} C V, g»" = (V,€ U
{{u,v}}), andG* = (V, €\ {{u,v}}), then we have thati} 37, X;(G*") — \i(G™ ) = 2;

(23) /\i(g“”) < \i(G®0 ) for anyi such thatl < i < n.

3 Fiedler random fields

Fiedler random fields are introduced in Sec. 3.1, while irsS82—-3.3 we discuss their dependence
structure and explain how to estimate them from data reseéct

3.1 Probability distribution

Using the notions reviewed above, we define the Fiedler diahtetion A\ in the following way:
Definition 1. Given graphg, letk = M (0,G**"). Then,

M1 (G = N (G i Xy = 1
Aa(u,v,G) = { M1 (G ) = M1 (G™7)  otherwise @

In other words A\ (u, v, G) is the variation in the Fiedler eigenvalue of the graph Leigla that
would result from flipping the value of ,, in G. Concerning the range of the Fiedler delta function,
we can easily prove the following proposition:

Proposition 2. For any graphg = (V, £) and any pair of nodeéu, v} such thatX,,, = 1, we have
that0 < AXg(u,v,G) < 2.

Proof. Let k = M(0,G). The proposition follows straightforwardly from Lemma liyen that
Ao (u,,G) = Ay 1(G) — M1 (G ). U

We now proceed to define FRFs. Given a gréph- (V, &), for each (unordered) pair of nodes
{u,v} such thatu # v, we takeX,, to denote a binary random variable such that, = 1 if
{u,v} € &€, andX,,,, = 0 otherwise. Since the graph is undirectéd,, = X,,,,. We also say that a
subgraphgs of G with edge se€s is incidentto X, if {u,v} C Uee&S e. Then:

Definition 2. Given a graphg, let X denote the set of random variables definedjone. Xg =
{Xuw: u # v A{u,v} C V} ForanyX,, € Xg, letG,, be a subgraph of which is incident
to X, and p,, be a two-place real-valued function with parameter vedor We say that the
probability distribution ofX g is a Fiedler random fieldf it factorizes as

P(Xg|0) = %exp ( Z gouv(XuU,A)\g(u,v,qu);O)) 2
X

uv€Xg



whereZ(0) is the partition function.

In other words, a FRF is a Gibbs-Boltzmann distribution ayephs, with potential functions de-
fined for each node pairu, v} along with some neighboring subgrag@h,. In particular, in order

to model the dependence of each variaklg ong,,,, potentials take as argument both the value of
X.» and the Fiedler delta correspondingta v} in G,,,. The idea is to treat the Fiedler delta statis-
tic as a (real-valued) random variable defined over subgrapfigurations, and to exploit this ran-
dom variable as a compact representation of those confignsatThis means that the dependence
structure of a FRF is fixed by the particular choice of sublysaj,,,, so that the seX¢, \ {Xuv}
makesX,,, independent oX¢ \ Xg,,. Three fundamental questions are then the following. First
how do we fix the subgrap8,,, for each pair of nodeéu, v}? Second, how do we choose a shape
for the potential functions, so as to fully exploit the infoation contained in the Fiedler delta, while
avoiding unwarranted assumptions concerning their parasxferm? Third, how does the Fiedler
delta statistic behave with respect to the Markov deperalpraperty for random graphs? One basic
result related to the third question is presented in Se¢véhite Sec. 3.3 will address the first two
points.

3.2 Dependence structure

We first recall the definition of Markov dependence for randgnaphs [10]. Let\V'(X,,,) denote
the set{ X,,,: {w, 2z} € €A {w, z} N {u,v}| = 1}. Then:
Definition 3. A random graply is said to be aMarkov graph(or to have aMarkov dependence

structurg if, for any pair of variablesX,,,, and X, in G such that{u, v} N {w, z} = 0, we have
that P(X o | Xz, N(Xuw)) = P(Xuw| N (Xuw))-

Based on Def. 3, we say that the dependence structure of amagrhphg is non-Markovianif,
for disjoint pairs of nodequ,v} and {w, z}, it does not imply thatP(X .| Xu., N (Xuy)) =
P(Xyu|N(Xup)), ie. if it is consistent with the inequalityP (X, | Xw., N (X)) #
P(Xuy| N(Xuy)). We can then prove the following proposition:

Proposition 3. There exist Fiedler random fields with non-Markovian depsrmoe structure.

Proof sketch.Consider a graph¢ = (V,€) such thatV = {u,v,w,z} and & =
{{u, v}, {v,w}, {w, z},{u,2}}. The proof relies on the following result [6]: if graphs
and G, are, respectively, a path and a circuit of size then \2(G1) = 2(1 — cos(w/n))

and \2(G2) = 2(1 — cos(2n/n)). Since adding exactly one edge to a path of size 4 can
yield a circuit of the same size, this property allows to deranalytic forms for the Fiedler
delta statistic in such graphs, showing that there existrpaterizations ofy,, such that
Oun (Xuw, Ao (1, v,G);0) # pun(Xuw, AXa(u, v,Gs); @). This means that the dependence struc-
ture ofG is non-Markovian: O

Note that the proof of Prop. 3 can be straightforwardly galiezd to the dependence between two
variablesX,,, andX,, in circuits/paths of arbitrary size, since the expression used for the Fiedler
eigenvalues of such graphs holds for any This fact suggests that FRFs allow to model edge
correlations at virtually any distance withéh provided that each subgragh, is chosen in such a
way as to encompass the relevant correlation.

3.3 Model estimation

The problem of learning a FRF from an observed network camplieiisto the task of estimating
the potential functions once the network distribution hasrbfactorized into a particular set of
subgraphs, and the task of factorizing the distributioodigh a suitable set of subgraphs, which
corresponds to estimating the dependence structure ofRRe lere we focus on the problem of
learning the FRF potentials, while suggesting a heuristig t@ fix the dependence structure of the
model.

In order to estimate the FRF potentials, we need to specifyqerone hand a suitable architecture
for such functions, and on the other hand the objective fandhat we want to optimize. As a

1For a complete proof, see the supplementary material.



preliminary step, we tested experimentally a variety ofpasafor the potential functions. The tests
indicated the importance of avoiding limiting assumptiaasicerning the form of the potentials,
which motivated us to model them by a feed-forward multitgyerceptron (MLP), due to its well-
known capabilities of approximating functions of arbitrashape [12]. In particular, throughout
the applications described in this paper we use a simple MtRitacture with one hidden layer
and hyperbolic tangent activation functions. Therefore, marameter vecta? simply consists of
the weights of the chosen MLP architecture. Notice thataas$ the estimation of potentials is
concerned, any regression model offering approximatigalbgities analogous to the MLP family
could be used as well. Here, the only requirement is to avowgdawranted prior assumptions with
respect to the shape of the potential functions. In thisgetspve take our approach to be genuinely
nonparametri¢csince it does not require the parametric form of the tangettions to be specified
a priori in order to estimate them accurately. Concernirsgeiad the learning objective, the main
difficulty we want to avoid is the complexity of computing tpartition function involved in the
Gibbs-Boltzmann distribution. The approach we adopt te #im is to minimize aontrastive
divergenceobjective [13]. IfG = (V, &) is the network that we want to fit our model to, and
Guv = (Vuw, Euv) is asubgraph of such thafu, v} € V,,,,, letG:, denote the graph that we obtain
by resampling the value ok, in G, according to the conditional distributioﬁ(Xuv| zg,, \
{zuv}; @) predicted by our model. In other words;, is the result of performing just one iteration
of Gibbs sampling onX,,,, using@, where the configuratiomg,, of G,, is used to initialize the
(single-step) Markov chain. Then, our goal is to minimize thinctionlcp(0; G), given by:

1 ~
Lep(0;G) =log {m exp Z <p(x1*w, Adra(u,v,Gr)); 0) } —log P(xg| 0)
Xuv€EXg

)
S {go(x;v,mg(u,v,ggv);o) — (@, AAg(u,U,qu);H)}

Xuv€Xg

wherey is the function computed by our MLP architecture. The appéabntrastive divergence
learning is that, while it does not require to compute thdifam function, it is known to converge
to points which are very close to maximume-likelihood salug [14].

If we want our learning objective to be usable in the largalessetting, then it is not feasible to
sum over all node pairu, v} in the network, since the number of such pairs grows quacditi
with |V]. In this respect, a straightforward approach for scalingely large networks consists in
samplingn objects from the set of all possible pairs of nodes, taking ti@at the sample contains a
good balance between linked and unlinked pairs. Anotheeigg need to address concerns the way
we sample a suitable set of subgraghs,, , . - ., Gu, v, for the selected pairs of nodes. Although
different sampling techniques could be used in principl],[bur goal is to model correlations
between each variabl€,,,, and some neighboring regigh,, in G. Such a neighborhood should be
large enough to maké& s (u, v, G,,,,) sufficiently informative with respect to the overall netkgout
also small enough to keep the spectral decompositigh,oicomputationally tractable. Therefore,
in order to sampl€,,,,, we propose to draw,,,, by performingk ‘snowball waves’ org [16], using

u andv as seeds, and then settifig, to be the edge set induced by,, in G (see Algorithm 1
for the details). In this way, we can empirically tune thbyperparameter in order to trade-off the
informativeness of,,,, for the tractability of its spectral decomposition, wherisiknown that the
complexity of computing\ s (u, v, G,y ) IS cubic with respect to the number of nodegjin, [17].

Algorithm 1 SampleSubgraph: Sampling a neighboring subgraph for a given node pair

Input: Undirected graplg = (V, £); node paif{u, v}; numberk of snowball waves.
Output: Undirected grapl,., = Vuw, Euv)-

SampleSubgraph(g, {u, v}, k):
o VY = {u,v
for(i =1 1to k)
Vo = Vuw UlUyey, 12 € Vi{w, 2} € £}
Euw = {{w, 2z} € &:{w, 2} TV}
return (Vuw, Euv)

ok wbdE




Once sampled our training S& = {(zu, v, Guivy)s - - -+ (Tupvy s Gunv, ) | We learn the MLP
weights by minimizing the objectivé-(6; D), which which we obtain fronfcp(0;G) by re-
stricting the summation in Eq. 3 to the elementsIaf Minimization is performed by iterative
gradient descent, using standard backpropagation fortingdae MLP weights.

4 Experimental evaluation

In order to investigate the empirical behavior of FRFs as@imdf large-scale networks, we design
two different groups of experiments (in link prediction agrdph generation respectively), using col-
laboration networks drawn from the arXiv e-print reposjt@iit t p: / / snap. st anf or d. edu/
dat a/ i ndex. ht ml ), where nodes represent scientists and edges represemtquauthorships.
Some basic network statistics are reported in Table 1.

Link prediction. In the first kind of experiments, given a random netwgrk= (V, &), our
goal is to measure the accuracy of FRFs at estimating theitoamal distribution of variables
X given the configuration of neighboring subgraghs, of G. This can be seen as a link
prediction problem where only local information (given By,) can be used for predicting the
presence of a linku,v}. At the same time, we want to understand whether the oveedll n
work size (in terms of the number of nodes) has an impact omtimber of training examples
that will be necessary for FRFs to converge to stable priedicccuracy. Recall that FRFs are
trained on a data SamMpB = {(Zu,0;,Gurer)s -« > (Tunon s Gunon ) }» Wheren < AVIZD,
Given this, converging to stable predictions for valuesiafihich do not depend ofV| is a cru-
cial requirement for achieving large-scale applicahilibet us sample our training s& by first
drawingn node pairs fromV in such a way that linked and unlinked pairs fr@fnare equally
represented irD, and then extracting the corresponding subgraghs,, by Algorithm 1 using
one snowball wave. We then learn our model fr@mas described in Sec. 3.3. In all the ex-
periments reported in this work, the number of hidden umt®ur MLP architecture is set to
5. A test setT containingm objects(xy,v,,3Gs,);- -, (Tu,,v,.,Fs,,) is also sampled frony

so that7 N D = (), where pairs{u;,v;} in 7 are drawn uniformly at random fro x V.
Predictions are derived from the learned model
by first computing the conditional probabil-
ity of observing a link for each pair of nodes
{uj,v;} in T, and then making a decision on °°[
the presence/absence of links by thresholdinge*|
the predicted probability (where the threshold is o=}
tuned by cross-validation). Prediction accuracy o}
is measured by averaging the recognition accé- .|
racy for linked and unlinked pairs ifi respec-
tively (where|7| = 10,000). InFig. 1, the ac- ¢ |
curacy of FRFs on the test set is plotted agalnst .

0.95

0.65 |

Prediction acct

a growing sizen of D (wherel2 < n < 48). [ &9 212 s
Interestingly, the number of training examples *°[ Cﬁg;‘;gggfggzsg:j .
required for the accuracy curve to stabilize does *“w = % % % & & =

Training set size

not seem to depend at all on the overall network
size. Indeed, fastest convergence is achievetgure 1: Prediction accuracy of FRFs on the
for the average-sized and the second larg@siv networks for a growing training set size.
networks, i.e. HepPh and AstroPh respectively.

Notice how a training sample containing an extremely smaltentage of node pairs is sufficient
for our learning approach to converge to stable predictamugacy. This result encourages to think
of FRFs as a convenient modeling option for the large-satang.

Besides assessing whether the network size affects theemwhtraining samples needed to accu-
rately learn FRFs, we want to evaluate the usefulness ofépertience structure involved in our
model in predicting the conditional distributions of edgggen their neighboring subgraphs. That
is, we want to ascertain whether the effort of modeling theditional independence structure of
the overall network through the FRF formalism is justifiedabguitable gain in prediction accuracy
with respect to statistical models that do not focus exyicn such dependence structure. To this
aim, we compare FRFs to two popular statistical models fgelascale networks, namely the Watts-
Strogatz (WS) and the Barabasi-Albert (BA) models [3, 2heTWS formalism is mainly aimed



at modeling the short-diameter property often observeeéatworld networks. Interestingly, the
degree distribution of WS networks can be expressed in dltmen in terms of two parametets
and g, related to the average degree distribution and a netwavking process respectively [18].
On the other hand, the BA model is aimed at explaining the gemare of power-law degree distri-
butions, where such distributions can be expressed in tefras adaptive parameter[19]. The
parameters of both the WS and the BA model can be estimatethbglasd maximume-likelihood
approaches and then used to predict conditional edgetdistons, exploiting information from the
degrees observed in the given subgraphs [20, 21]. The ERIri®odet considered in this group
of experiments, since the involved independence assumptakes it unusable (i.e. equivalent to
random guessing) for the purposes of conditional estimatieks. On the other hand, ERG models
are not suitable for application to the large-scale setting tried them out using edgk;star and
k-triangle statistics [4], and the tests confirmed this poMithough the prohibitive cost of fitting the
models and computing the involved feature functions coela@tercome in principle by sampling
strategies similar to the ones we employ for FRFs, the piaisnised in ERGs become numerically
unstable in the large-scale setting, leading to numeregalasentation issues for which we are not
aware of any off-the-shelf solution. Accuracy values fag thifferent models are reported in Ta-
ble 1. FRFs dramatically outperform the other two modelslbneaworks. Since both the BA and
the WS model do not show relevant improvements over simpléaa guessing, this result clearly
suggests that exploiting the dependence structure ingatveetwork edge configurations is crucial
to accurately predict the presence/absence of links.

Table 1: Edge prediction results on the arXiv networks. Galmeetwork statistics are also reported,
whereCCg and D¢ stand for average clustering coefficient and network diamrespectively.

Network Statistics Prediction Accuracy
Dataset V] [E] CCg Dg BA FRF WS
AstroPh 18,772 396,160 0.63 14 50.98%89.97% 50.14%
CondMat 23,133 186,936 0.63 15 50.15%91.62% 56.71%
GrQc 5,242 28,980 0.52 17 52.57%91.14% 53.72%
HepPh 12,008 237,010 0.61 13 51.61%86.57% 54.33%
HepTh 9,877 51,971 0.47 17 58.33%92.25% 50.30%

Graph generation. A second group of experiments is aimed at assessing wheh&RFs learned
on the arXiv networks can be considered as plausible modetealegree distribution (DD) and
the clustering coefficient distribution (CC) observed icleaetwork [15]. To this aim, we use the
estimated FRF models to generate artificial graphs of varize, using Gibbs sampling, and then
we compare the DD and CC observed in the artificial graphs thitise estimated on the whole
networks. For scale-free networks such as the ones coeslithere, the BA model is known to be
the most accurate model currently available with respeBtRoOn the other hand, for CC both BA
and WS are known to be more realistic models than ER randophgrd& herefore, we compare the
graphs generated by FRFs to those generated by the BA, ERy&mdodels for the same networks.
The distance in DD and CC between the artificial graphs ontiechand and the corresponding real
network on the other hand is measured using the Kolmogorowr®v D-statistic, following a
common use in graph mining research [15]. Here we only pkailte for the CondMat and HepTh
networks, noticing that the results we collected on the radingiv networks lend themselves to the
same interpretation as the ones displayed in Fig. 2. Valieeaveeraged over 100 samples for each
considered graph size, where the standard deviation isaipin the order ofl0~2. The outcome
motivates the following considerations. Concerning DDFERre able to improve (at least slightly)
the accuracy of the state-of-the-art BA model, while they aery close that model with respect
to clustering coefficient. In all cases, both BA and FRFs prtavbe far more accurate than ER
or WS, where the only advantage of using WS is limited to imprg CC over ER. These results
are particularly encouraging, since they show how the niampatric approach motivating the FRF
model allows to accurately estimate network propertiesi{sis DD) that are not aimed for explicitly
in the model design. This suggests that the Fiedler deltiatitds a promising direction for building
generative models capable of capturing different netwoolperties through a unified approach.
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Figure 2: D-statistic values for DD and CC on the CondMat (a—b) and HejgFd) networks.

5 Conclusions and future work

The main motivation inspiring this work was the observatioat statistical modeling of networks
cries for genuinely nonparametric estimation, becauseeiitaccuracy often resulting from unwar-
ranted parametric assumptions. In this respect, we shoeawdtre Fiedler delta statistic offers a
powerful building block for designing a nonparametric estfor, which we developed in the form
of the FRF model. Since here we only applied FRFs to collamraetworks, which are typically
scale-free, an important option for future work is to asshedlexibility of FRFs in modeling net-
works from different families. In the second place, sinceoméy addressed in a heuristic way the
problem of learning the dependence structure of FRFs, aiktting direction for further research
consists in designing clever techniques for learning thectire of FRFs, e.g. considering the use
of alternative subgraph sampling techniques. Finally, veeild like to assess the possibility of
modeling networks through mixtures of FRFs, so as to fit d#ffik network regions (with possibly
conflicting properties) through specialized componentseimixture.
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