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Abstract

We prove a new exponential concentration inequality for a plug-in estimator of the
Shannon mutual information. Previous results on mutual information estimation
only bounded expected error. The advantage of having the exponential inequality
is that, combined with the union bound, we can guarantee accurate estimators of
the mutual information for many pairs of random variables simultaneously. As an
application, we show how to use such a result to optimally estimate the density
function and graph of a distribution which is Markov to a forest graph.

1 Introduction
We consider the problem of nonparametrically estimating the Shannon mutual information between
two random variables. Let X1 ∈ X1 and X2 ∈ X2 be two random variables with domains X1 and
X2 and joint density p(x1, x2). The mutual information between X1 and X2 is

I(X1;X2) :=

∫
X1

∫
X2

p(x1, x2) log

(
p(x1, x2)

p(x1)p(x2)

)
dx1 dx2 = H(X1) +H(X2)−H(X1, X2),

whereH(X1, X2) = −
∫ ∫

p(x1, x2) log p(x1, x2)dx1 dx2 (and similarly forH(X1) andH(X2))

are the corresponding Shannon entropies [4]. The mutual information is a measure of dependence
between X1 and X2. To estimate I(X1;X2) well, it suffices to estimate H(X1, X2) := H(p).

A simple way to estimate the Shannon entropy is to use a kernel density estimator (KDE) [22, 1, 9,
5, 20, 7], i.e., the densities p(x, y), p(x), and p(y) are separately estimated from samples and the
estimated densities are used to calculate the entropy. Alternative methods involve estimation of the
entropies using spacings [25, 26, 23], k-nearest neighbors [11, 12], the Edgeworth expansion [24],
and convex optimization [17]. More discussions can be found in the survey articles [2, 19]. There
have been many recent developments in the problem of estimating Shannon entropy and related
quantities as well as application of these results to machine learning problems [18, 21, 8, 6]. Under
weak conditions, it has been shown that there are estimators that achieve the parametric

√
n-rate of

convergence in mean squared error (MSE), where n is the sample size.

In this paper, we construct an estimator with this rate, but we also prove an exponential concentration
inequality for the estimator. More specifically, we show that our estimator Ĥ of H(p) satisfies

sup
p∈Σ

P
(
|Ĥ −H(p)| > ε

)
≤ 2 exp

(
− nε2

36κ2

)
(1.1)
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where Σ is a nonparametric class of distributions defined in Section 2 and κ is a constant. To
the best of our knowledge, this is the first such exponential inequality for nonparametric Shannon
entropy and mutual information estimation. The advantage of this result, over the usual results which
state that E

(
|Ĥ − H(p)|2

)
= O(n−1), is that we can apply the union bound and thus guarantee

accurate mutual information estimation for many pairs of random variables simultaneously. As an
application, we consider forest density estimation [15], which, in a d-dimenionsal problem, requires
estimating d(d+1)

2 mutual informations in order to apply the Chow-Liu algorithm. As long as log d
n →

0 as n→∞, we can estimate the forest graph well, even if d = d(n) increases with n exponentially
fast.

The rest of this paper is organized as follows. The assumptions and estimator are given in Section 2.
The main theoretical analysis is in Section 3. In Section 4 we show how to apply the result to forest
density estimation. Some discussion and possible extensions are provided in the last section.

2 Estimator and Main Result
Let X = (X1, X2) ∈ R2 be a random vector with density p(x) := p(x1, x2) and let x1, . . . , xn ∈
X ⊂ R2 be a random sample from p. In this paper, we only consider the case of bounded domain
X = [0, 1]2. We want to estimate the Shannon entropy

H(p) = −
∫
X
p(x) log p(x)dx. (2.1)

We start with some assumptions on the density function p(x1, x2).
Assumption 2.1 (Density assumption). We assume the density p(x1, x2) belongs to a 2nd-order
Hölder class Σκ(2, L) and is bounded away from zero and infinity. In particular, there exist constants
κ1, κ2

0 < κ1 ≤ min
x∈X

p(x) ≤ max
x∈X

p(x) ≤ κ2 <∞, (2.2)

and for any (x1, x2)T ∈ X , there exists a constant L such that, for any (u, v)T ∈ X∣∣∣p(x1 + u, x2 + v)− p(x1, x2)− ∂p(x1, x2)

∂x1
u− ∂p(x1, x2)

∂x2
v
∣∣∣ ≤ L(u2 + v2). (2.3)

Assumption 2.2 (Boundary assumption). If {xn} ∈ X is any sequence converging to a boundary
point x∗, we require the density p(x) has vanishing first order partial derivatives:

lim
n→∞

∂p(xn)

∂x1
= lim
n→∞

∂p(xn)

∂x2
= 0. (2.4)

To efficiently estimate the entropy in (2.1), we use a KDE based “plug-in” estimator. Bias at the
boundaries turns out to be very important in this problem; see [10] for a discussion of boundary
bias. To correct the boundary effects, we use the following “mirror image” kernel density estimator:

p̃h(x1, x2) :=
1

nh2

n∑
i=1

{
K

(
x1 − xi1

h

)
K

(
x2 − xi2

h

)
+K

(
x1 + xi1

h

)
K

(
x2 − xi2

h

)
+K

(
x1 − xi1

h

)
K

(
x2 + xi2

h

)
+K

(
x1 + xi1

h

)
K

(
x2 + xi2

h

)
+K

(
x1 − xi1

h

)
K

(
x2 − 2 + xi2

h

)
+K

(
x1 + xi1

h

)
K

(
x2 − 2 + xi2

h

)
+K

(
x1 − 2 + xi1

h

)
K

(
x2 − xi2

h

)
+K

(
x1 − 2 + xi1

h

)
K

(
x2 + xi2

h

)
+K

(
x1 − 2 + xi1

h

)
K

(
x2 − 2 + xi2

h

)}
. (2.5)

Here h is the bandwidth and K(·) is a univariate kernel function. We denote by K2(u, v) :=
K(u)K(v) the bivariate product kernel. This estimator has nine terms; one corresponds to the
original data in the unit square [0, 1]2, and each of the remaining terms corresponds to reflecting the
data across one of the four sides or four corners of the square.
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Assumption 2.3 (Kernel assumption). The kernel K(·) is nonnegative and has a bounded support

[−1, 1] with
∫ 1

−1

K(u)du = 1 and
∫ 1

−1

uK(u)du = 0.

By Assumption 2.1, the values of the true density lie in the interval [κ1, κ2]. We propose a clipped
KDE estimator

p̂h(x) = Tκ1,κ2
(p̃h(x)) , (2.6)

where Tκ1,κ2
(a) = κ1 · I(a < κ1) + a · I(κ1 ≤ a ≤ κ2) + κ2 · I(a > κ2), so that the estimated

density also has this property. Letting g(u) = u log u, we propose the following plug-in entropy
estimator:

H (p̂h) := −
∫
X
g (p̂h(x)) dx = −

∫
X
p̂h(x) log p̂h(x)dx. (2.7)

Remark 2.1. The clipped estimator p̂h requires the knowledge of κ1 and κ2. In applications, we do
not need to know the exact values of κ1 and κ2; lower and upper bounds are sufficient.

Our main technical result is the following exponential concentration inequality onH(p̂h) around the
population quantity H(p). Our proof is given in Section 3.
Theorem 2.1. Under Assumptions 2.1, 2.2, and 2.3, if we choose the bandwidth according to h �
n−1/4, then there exists a constant N0 such that for all n > N0,

sup
p∈Σκ(2,L)

P
(
|H (p̂h)−H (p)| > ε

)
≤ 2 exp

(
− nε2

36κ2

)
, (2.8)

where κ = max {| log κ1|, | log κ2|}+ 1.

To the best of our knowledge, this is the first time an exponential inequality like (2.8) has been
established for Shannon entropy estimation over the Hölder class. It is easy to see that (2.8) implies
the parametric

√
n-rate of convergence in mean squared error, E

(
|Ĥ − H(p)|

)
= O(n−1/2). The

bandwidth h � n−1/4 in the above theorem is different from the usual choice for optimal bivariate
density estimation, which is hP � n−1/6 for the 2nd-order Hölder class. By using h � n−1/4,
we undersmooth the density estimate. As we show in the next section, such a bandwidth choice is
important for achieving the optimal rate for entropy estimation.

Let I(p) := I(X1;X2) be the Shannon mutual information, and define

I(p̂h) :=

∫
X1

∫
X2

p̂h(x1, x2) log

(
p̂h(x1, x2)

p̂h(x1)p̂h(x2)

)
dx1 dx2. (2.9)

The next corollary provides an exponential inequality for Shannon mutual information estimation.
Corollary 2.1. Under the same conditions as in Theorem 2.1, if we choose h � n−1/4, then there
exists a constant N1, such that for all n > N1,

sup
p∈Σκ(2,L)

P
(
|I (p̂h)− I (p)| > ε

)
≤ 6 exp

(
− nε2

324κ2

)
, (2.10)

where κ = max {| log κ1|, | log κ2|}+ 1.

Proof. Using the same proof for Theorem 2.1, we can show that (2.8) also holds for estimating
univariate entropies H(X1) and H(X2). The desired result then follows from the union bound
since I(p) := I(X1;X2) = H(X1) +H(X2)−H(X1, X2).

Remark 2.2. We use the same bandwidth h � n−1/4 to estimate the bivariate density p(x1, x2)
and univariate densities p(x1), p(x2). A related result is presented in [15]. They consider the same
problem setting as ours and also use a KDE based plug-in estimator to estimate the mutual infor-
mation. However, unlike our proposal, they advocate the use of different bandwidths for bivariate
and univariate entropy estimations. For bivariate case they use h2 � n−1/6; for univariate case they
use h1 � n−1/5. Such bandwidths h1 and h2 are useful for optimally estimating the density func-
tions. However, such a choice achieves a suboptimal rate in terms of mutual information estimation:
supp∈Σκ(2,L) P

(
|I (p̂h)− I (p)| > ε

)
≤ c1 exp

(
−c2n2/3ε2

)
, where c1 and c2 are two constants.

Our method achieves the faster parametric rate.
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3 Theoretical Analysis
Here we present the detailed proof of Theorem 2.1. To analyze the error |H (p̂h)−H (p)|, we first
decompose it into a bias or approximation error term, and a “variance” or estimation error term:

|H (p̂h)−H (p)| ≤ |H (p̂h)− EH (p̂h)|︸ ︷︷ ︸
Variance

+ |EH (p̂h)−H (p)|︸ ︷︷ ︸
Bias

. (3.1)

We are going to show that

sup
p∈Σκ(2,L)

P
(
|H (p̂h)− EH (p̂h)|︸ ︷︷ ︸

Variance

> ε
)
≤ 2 exp

(
− nε2

32κ2

)
, (3.2)

sup
p∈Σκ(2,L)

|EH (p̂h)−H (p)|︸ ︷︷ ︸
Bias

≤ c1h
2 +

c3
nh2

, (3.3)

where c1 and c3 are two constants. Since the bound on the variance in (3.2) does not depend on h,
to optimize the rate, we only need to choose h to minimize the righthand side of (3.3). Therefore
h � n−1/4 achieves the optimal rate. In the rest of this section, we bound the bias and variance
terms separately.

3.1 Analyzing the Bias Term
Here we prove (3.3). Let u be a vector. We denote the sup norm by ‖u‖∞. The next lemma bounds
the integrated squared bias of the kernel density estimator over the support X := [0, 1]2.
Lemma 3.1. Under Assumptions 2.1, 2.2, and 2.3, there exists a constant c > 0 such that

sup
p∈Σκ(2,L)

∫
X

(Ep̃h(x)− p(x))
2
dx ≤ ch4. (3.4)

Proof. We partition the support X := [0, 1]2 into three regions X = B ∪ C ∪ I, the boundary area
B, the corner area C, and the interior area I:

C = {x : ‖x− u‖∞ ≤ h for u = (0, 0)T , or (0, 1)T , or (1, 0)T , or (1, 1)T }, (3.5)
B = {x : x is within distance h to an edge of X , but does not belong to C}, (3.6)
I = X \ (C ∪ B). (3.7)

We have the following decomposition:∫
X

(Ep̃h(x)− p(x))
2
dx =

∫
I

+

∫
C

+

∫
B

(Ep̃h(x)− p(x))
2
dx = TI + TC + TB.

From standard results on kernel density estimation, we know that supp∈Σ(2,L) TI ≤ ch4. In the next

two subsections, we bound TB :=

∫
B

(Ep̃h(x)− p(x))
2
dx and TC :=

∫
C

(Ep̃h(x)− p(x))
2
dx.

3.1.1 Analyzing TB

Let A := {x : 0 ≤ x1 ≤ h and h ≤ x2 ≤ 1− h}. We have

TB =

∫
B

(Ep̃h(x)− p(x))
2
dx ≤ c

∫
A

(Ep̃h(x)− p(x))
2
dx. (3.8)

For x ∈ A, we have

p̃h(x) =
1

nh2

n∑
i=1

[
K

(
x1 − xi1

h

)
K

(
x2 − xi2

h

)
+K

(
x1 + xi1

h

)
K

(
x2 − xi2

h

)]
. (3.9)

Therefore, for x ∈ A we have

Ep̃h(x) =
1

h2

∫ 1

0

∫ 1

0

K

(
x1 − t1
h

)
K

(
x2 − t2
h

)
p(t1, t2)dt1dt2
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+
1

h2

∫ 1

0

∫ 1

0

K

(
x1 + t1
h

)
K

(
x2 − t2
h

)
p(t1, t2)dt1dt2

=

∫ 1

−1

∫ 1

− x1h
K(u1)K(u2)p(x1 + u1h, x2 + u2h)du1du2

+

∫ 1

−1

∫ − x1h
−1

K(u1)K(u2)p(x1 − u1h, x2 − u2h)du1du2. (3.10)

Since p ∈ Σκ(2, L) and 0 < x1 ≤ h, we have

|p(x1 + u1h, x2 + u2h)− p(x1, x2)− 〈5p(x), u〉h| ≤ L‖u‖22h2,

|p(x1−u1h, x2−u2h)− p(x1, x2) +
∂p(x)

∂x1
(2x1+u1h) +

∂p(x)

∂x2
(u2h)| ≤ L[(2 + u1)2 + u2

2]h2.

Since |u1|, |u2| ≤ 1, we have |p(x1 + u1h, x2 + u2h) − p(x1, x2)| ≤
∣∣∣∣∂p(x)

∂x1

∣∣∣∣h +

∣∣∣∣∂p(x)

∂x2

∣∣∣∣h +

L‖u‖22h2. Similarly, |p(x1 − u1h, x2 − u2h)− p(x1, x2)| ≤ 9

∣∣∣∣∂p(x)

∂x1

∣∣∣∣h+

∣∣∣∣∂p(x)

∂x2

∣∣∣∣h+ 10Lh2.

For any x ∈ A, we can bound the bias term

|Ep̃h(x)− p(x)| (3.11)

=

∣∣∣∣Ep̃h(x)−
∫ 1

−1

∫ 1

−1

K(u1)K(u2)p(t1, t2)du1du2

∣∣∣∣ (3.12)

≤
∫ 1

−1

∫ 1

− x1h
K(u1)K(u2)

∣∣p(x1 + u1h, x2 + u2h)− p(x1, x2)
∣∣du1du2 (3.13)

+

∫ 1

−1

∫ − x1h
−1

K(u1)K(u2)
∣∣p(−u1h− x1, x2 − u2h)− p(x1, x2)

∣∣du1du2 (3.14)

≤ 10

∣∣∣∣∂p(x)

∂x1

∣∣∣∣h+ 2

∣∣∣∣∂p(x)

∂x2

∣∣∣∣h+ 12Lh2

≤ 12Lh2 + 12Lh2

= 24Lh2,

where the last inequality follows from the fact that
∣∣∣∂p(x)
∂x1

∣∣∣ , ∣∣∣∂p(x)
∂x2

∣∣∣ ≤ Lh, by the Hölder condition
and the assumption that the density p(x) has vanishing partial derivatives on the boundary points.
Therefore, we have TB ≤ ch5.

3.1.2 Analyzing TC

Let A1 := {x : 0 ≤ x1, x2 ≤ h}. We now analyze the term TC :

TC =

∫
C

(Ep̃h(x)− p(x))
2
dx ≤ c

∫
A1

(Ep̃h(x)− p(x))
2
dx. (3.15)

For notational simplicity, we write

Ux,h(a, b) = K

(
x1 − a
h

)
K

(
x2 − b
h

)
. (3.16)

For x ∈ A1, we have

p̃h(x) =
1

nh2

n∑
i=1

[
Ux,h(xi1, x

i
2) + Ux,h(−xi1, xi2) + Ux,h(xi1,−xi2) + Ux,h(−xi1,−xi2)

]
. (3.17)

Therefore, for x ∈ A1 we have

Ep̃h(x)

=
1

h2

∫ 1

0

∫ 1

0

[Ux,h(t1, t2) + Ux,h(−t1, t2) + Ux,h(t1,−t2) + Ux,h(−t1,−t2)] p(t1, t2)dt1dt2
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=

∫ 1

− x2h

∫ 1

− x1h
K(u1)K(u2)p(x1 + u1h, x2 + u2h)du1du2 (3.18)

+

∫ 1

− x2h

∫ 1

x1
h

K(u1)K(u2)p(u1h− x1, x2 + u2h)du1du2 (3.19)

+

∫ 1

x2
h

∫ 1

− x1h
K(u1)K(u2)p(u1h+ x1,−x2 + u2h)du1du2 (3.20)

+

∫ 1

x2
h

∫ 1

x1
h

K(u1)K(u2)p(−x1 + u1h,−x2 + u2h)du1du2. (3.21)

Since K(·) is a symmetric kernel on [−1, 1], we have∫ 1

− x2h

∫ 1

x1
h

K(u1)K(u2)du1du2 =

∫ 1

− x2h

∫ − x1h
−1

K(u1)K(u2)du1du2, (3.22)

∫ 1

x2
h

∫ 1

− x1h
K(u1)K(u2)du1du2 =

∫ − x2h
−1

∫ 1

− x1h
K(u1)K(u2)du1du2. (3.23)

Therefore, for x = (x1, x2)T ∈ A1,

p(x1, x2) =

∫ 1

− x2h

∫ 1

− x1h
+

∫ 1

− x2h

∫ 1

x1
h

+

∫ 1

x2
h

∫ 1

− x1h
+

∫ 1

x2
h

∫ 1

x1
h

p(x1, x2)K(u1)K(u2)du1du2.

Using the fact that p ∈ Σκ(2, L), 0 ≤ x1, x2 ≤ h, and −1 ≤ u1, u2 ≤ 1, we have

|p(x1 + u1h, x2 + u2h)− p(x1, x2)| ≤ 4Lh2, (3.24)

|p(u1h− x1, x2 + u2h)− p(x1, x2)| ≤ 20Lh2, (3.25)

|p(u1h+ x1, u2h− x2)− p(x1, x2)| ≤ 20Lh2, (3.26)

|p(u1h− x1, u2h− x2)− p(x1, x2)| ≤ 36Lh2. (3.27)

For x ∈ A1, we can then bound the bias term as

|Ep̃h(x)− p(x)| (3.28)

=

∣∣∣∣Ep̃h(x)−
∫ 1

−1

∫ 1

−1

K(u1)K(u2)p(t1, t2)du1du2

∣∣∣∣ (3.29)

≤
∫ 1

− x2h

∫ 1

− x1h
K(u1)K(u2)|p(x1 + u1h, x2 + u2h)− p(x1, x2)|du1du2 (3.30)

+

∫ 1

− x2h

∫ 1

x1
h

K(u1)K(u2)|p(u1h− x1, x2 + u2h)− p(x1, x2)|du1du2 (3.31)

+

∫ 1

x2
h

∫ 1

− x1h
K(u1)K(u2)|p(u1h+ x1, u2h− x2)− p(x1, x2)|du1du2 (3.32)

+

∫ 1

x2
h

∫ 1

x1
h

K(u1)K(u2)|p(u1h− x1, u2h− x2)− p(x1, x2)|du1du2 (3.33)

≤ 80Lh2. (3.34)

Therefore, we have TC ≤ ch6.

Combining the analysis of TB, TC , and TI , we show that the mirror image kernel density estimator
is free of boundary bias. Thus the desired result of Lemma 3.1 is proved.

3.1.3 Analyzing the Bias of the Entropy Estimator

Lemma 3.2. Under Assumptions 2.1, 2.2, and 2.3, there exists a universal constant C∗ that does
not depend on the true density p, such that

sup
p∈Σκ(2,L)

∣∣∣EH (p̂h)−H(p)
∣∣∣ ≤ C∗√

n
. (3.35)

6



Proof. Recalling that g(u) = u log u, by Taylor’s theorem we have

g (p̂h(x))− g (p(x)) =
(
log(p(x)) + 1

)
·
[
p̂h(x)− p(x)

]
+

1

2ξ(x)
·
[
p̂h(x)− p(x)

]2
, (3.36)

where ξ(x) lies in between p̂h(x) and p(x). It is obvious that κ1 ≤ ξ(x) ≤ κ2.

Let κ be as defined in the statement of the theorem. Using Fubini’s theorem, Hölder’s inequality and
the fact that the Lebesgue measure of X is 1, we have∣∣EH (p̂h)−H(p)

∣∣ (3.37)

=
∣∣∣E ∫

X

[
g (p̂h(x))− g (p(x))

]
dx
∣∣∣ (3.38)

=
∣∣∣∫
X
E
[
g (p̂h(x))− g (p(x))

]
dx
∣∣∣ (3.39)

≤
∣∣∣∫
X

(
log(p(x)) + 1

)
· E
[
p̂h(x)− p(x)

]
dx
∣∣∣+
∣∣∣∫
X

1

2ξ(x)
· E
[
p̂h(x)− p(x)

]2
dx
∣∣∣

≤ κ

√∫
X

[
Ep̂h(x)− p(x)

]2
dx+

1

2κ1
·
∫
X
E
[
p̂h(x)− p(x)

]2
dx (3.40)

≤ κ

√∫
X

[
Ep̃h(x)− p(x)

]2
dx+

1

2κ1
·
∫
X
E
[
p̃h(x)− p(x)

]2
dx. (3.41)

≤ c1h
2 + c2h

4 +
c3
nh2

. (3.42)

The last inequality follows from standard results of kernel density estimation and Lemma 3.1, where
c1, c2, c3 are three constants. We get the desired result by setting h � n−1/4.

3.2 Analyzing the Variance Term
Lemma 3.3. Under Assumptions 2.1, 2.2, and 2.3, we have,

sup
p∈Σκ(2,L)

P
(
|H (p̂h)− EH (p̂h)| > ε

)
≤ 2 exp

(
− nε2

32κ2

)
. (3.43)

Proof. Let p̂′h(x) be the kernel density estimator defined as in (2.6) but with the jth data point
xj replaced by an arbitrary value (xj)′. Since g′(u) = log u + 1, by Assumption 2.1, we have
max

[
|g′ (p̂h(x))| , |g′ (p̂′h(x))|

]
≤ κ.

For notational simplicity, we write the product kernel asK2 = K ·K. Using the mean-value theorem
and the fact that Tκ1,κ2(·) is a contraction, we have

sup
x1,...,xn,(xj)′

|H (p̂h)−H (p̂′h)| (3.44)

= sup
x1,...,xn,(xj)′

∣∣∣∣∫
X

[
g (p̂h(x))− g (p̂′h(x))

]
dx

∣∣∣∣ (3.45)

≤ κ sup
x1,...,xn,(xj)′

∫
|p̂h(x)− p̂′h(x)| dx (3.46)

= κ sup
x1,...,xn,(xj)′

∫
X
|Tκ1,κ2

[p̃h(x)]− Tκ1,κ2
[p̃′h(x)]| dx (3.47)

≤ 4κ sup
x1,...,xn,(xj)′

∫
X

∣∣∣∣ 1

nh2
K2

(
xj − x
h

)
− 1

nh2
K2

(
(xj)′ − x

h

)∣∣∣∣ dx (3.48)

≤ 8κ sup
y

∫
X

1

nh2
K2

(
y − x
h

)
dx (3.49)

≤ 8κ

n

∫
K2(u)du =

8κ

n
. (3.50)

Therefore, using McDiarmaid’s inequality [16], we get the desired inequality (3.43). The uniformity
result holds since the constant does not depend on the true density p.
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4 Application to Forest Density estimation
We apply the concentration inequality (2.10) to analyze an algorithm for learning high dimen-
sional forest graph models [15]. In a forest density estimation problem, we observe n data points
x1, . . . , xn ∈ Rd from a d-dimensional random vector X . We have two learning tasks: (i) we want
to estimate an acyclic undirected graph F = (V,E), where V is the vertex set containing all the
random variables and E is the edge set such that an edge (j, k) ∈ E if and only if the corresponding
random variables Xj and Xk are conditionally independent given the other variables X\{j,k}; (ii)
once we have an estimated graph F̂ , we want to estimate the density function p(x).

Using the negative log-likelihood loss, Liu et al. [15] show that the graph estimation problem can be
recast as the problem of finding the maximum weight spanning forest for a weighted graph, where
the weight of the edge connecting nodes j and k is I(Xj ;Xk), the mutual information between
these two variables. Empirically, we replace I(Xj ;Xk) by its estimate Î(Xj ;Xk) from (2.9). The
forest graph can be obtained by the Chow-Liu algorithm [3, 13], which is an iterative algorithm. At
each iteration the algorithm adds an edge connecting that pair of variables with maximum mutual
information among all pairs not yet visited by the algorithm, if doing so does not form a cycle. When
stopped early, after s < d−1 edges have been added, it yields the best s-edge weighted forest. Once
a forest graph F̂ = (V, Ê) is estimated, we propose to estimate the forest density as

p̂F̂ (x) =
∏

(j,k)∈Ê

p̃h2
(xj , xk)

p̃h2
(xj)p̃h2

(xk)
·
∏
u∈Û

p̃h2
(xu) ·

∏
`∈V \Û

p̃h1
(x`), (4.1)

where Û is the set of isolated vertices in the estimated forest F̂ . Our estimator is different from the
estimator proposed by [15]—once the graph F̂ is given, we treat the isolated variables differently
than the connected variables. As will be shown in Theorem 4.2, such a choice leads to minimax
optimal forest density estimation, while the obtained rate from [15] is suboptimal.

Let Fsd denote the set of forest graphs with d nodes and no more than s edges. Let D(·‖·) be the
Kullback-Leibler divergence. We define the s-oracle forest F ∗s := (V,E∗) and its corresponding
oracle density estimator pF∗ to be

F ∗s = arg min
F∈Fsd

D(p‖pF ) and pF∗ :=
∏

(j,k)∈E∗

p(xj , xk)

p(xj , xk)

∏
`∈V

p(x`). (4.2)

Let Σκ(2, L) be defined as in Assumption (2.1). We define a density class Pκ as
Pκ :=

{
p : p is a d-dimensional density with p(xj , xk) ∈ Σκ(2, L) for any j 6= k

}
. (4.3)

The next two theorems show that the above forest density estimation procedure is minimax optimal
for both graph recovery and density estimation. Their proofs are provided in a technical report [14].

Theorem 4.1 (Graph Recovery). Let F̂ be the estimated s-edge forest graph using the Chow-Liu
algorithm. Under the same condition as Theorem 12 in [15], If we choose h � n−1/4 for the mutual
information estimator in (2.9), then

sup
p∈Pκ

P
(
F̂ 6= F ∗s

)
= O

(√
s

n

)
whenever

log d

n
→ 0. (4.4)

Theorem 4.2 (Density Estimation). Once the s-edge forest graph F̂ as in Theorem 4.1 has been
obtained, we calculate the density estimator (B.1) by choosing h1 � n−1/5 and h2 � n−1/6. Then,

sup
p∈Pκ

E
∫
X

∣∣p̂F̂ (x)− pF∗(x)
∣∣ dx ≤ C ·√ s

n2/3
+
d− s
n4/5

. (4.5)

5 Discussions and Conclusions
Theorem 4.1 allows d to increase exponentially fast as n increases and still guarantees graph recov-
ery consistency. Theorem 4.2 provides the rate of convergence for the L1-risk. The obtained rate
is minimax optimal over the class Pκ. The term sn−2/3 corresponds to the price paid to estimate
bivariate densities; while the term (d − s)n−4/5 corresponds to the price paid to estimate univari-
ate densities. In this way, we see that the exponential concentration inequality for Shannon mutual
information leads to significantly improved theoretical analysis of the forest density estimation, in
terms of both graph estimation and density estimation. This research was supported by NSF grant
IIS-1116730 and AFOSR contract FA9550-09-1-0373.
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