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A Proofs

Lemma 3.1. For closed S ⊆M, ρ ∈ Pp(M), it holds Ex∼ρd(x, S)p = Wp(ρ, π
S
ρ)p.

Proof. Consider a random variable X with Law(X) = ρ, and the random variable Y = πS(X),
which satisfies Law(Y ) = πSρ. It is

Ex∼ρd(x, S)p = E‖X − πSX‖p = E‖X − Y ‖p

≥ inf {E‖X − Y ‖p, Law(X) = ρ, Law(Y ) = πSρ} = Wp(ρ, πSρ)p

Let ε > 0 be arbitrary, and define X and Y to be random variables with Law(X) = ρ, and
Law(Y ) = πSρ (but not necessarily related in a deterministic way), and such that they minimize
eq. 1 (up to ε) for µ = πSρ. Then, it holds

Wp(ρ, πSρ)p + ε ≥ E‖X − Y ‖p ≥
supp µ⊆S

E min
q∈S

‖X − q‖p = Ex∼ρd(x, S)p

Since ε > 0 is arbitrary, it follows that Wp(ρ, πSρ)p ≥ Ex∼ρd(x, S)p.

Lemma 3.2. For closed S, and all µ ∈ Pp(M) with supp(µ) ⊆ S, it holds Wp(ρ, µ) ≥ Wp(ρ, π
S
ρ).

Proof. Let ε > 0 be arbitrary, and define X, Y to be random variables with Law(X) = ρ and
Law(Y ) = µ, that minimize eq. 1 up to ε. It is

Wp(ρ, µ)p + ε ≥ E‖X − Y ‖p ≥
supp µ=S

E min
q∈S

‖X − q‖p = Ex∼ρd(x, S)p =
lemma 3.1

Wp(ρ, πSρ)p

Since ε > 0 is arbitrary, it follows that Wp(ρ, µ) ≥ Wp(ρ, πSρ).

In the reminder of the paper, we use C to denote a constant whose value may change each time it
appears, but such that it only depends on the dimension d.

Theorem 5.1. Given ρ ∈ Pp(M) with absolutely continuous part ρA 6= 0, sufficiently large n, and
0 < δ < 1, it holds

W2(ρ, ρ̂n) ≤ C ·m(ρA) · n−1/(2d+4) · τ, with probability 1− e−τ2
.

where m(ρA) :=
∫
M ρA(x)d/(d+2)dλM(x), and C depends only on d.

Proof. Given eq. 3, it is possible to bound from above each of the three terms in the sum. As stated
in sec. 5, let Sk be an optimal quantizer of ρ of order 2 and size k. The terms’ labels correspond to
those in fig. 2.
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(a) By lemma 3.1, the first term in fig. 2) is simply the quantization error associated to Sk, which, in
Rd, is know to be of order Θ(k−2/d) for measures with non-null absolutely continuous part [1].
More recently, the work of Gruber [2] (see [3] ch. 33 for an excellent account) extended these
results to manifolds, effectively providing the same rates for quantization with respect to the
geodesic distance on M, and with quantization points lying on M. Since the geodesic distance
dG of a d-manifold M embedded in X is never smaller than the natural distance in X , and op-
timal quantization with points on the manifold M⊂ X can never perform better than choosing
them from X , it follows that, for sufficiently large k, it is

W2(ρ, πSk
ρ)2 =

lemma 3.1
Ex∼ρd(x, Sk)2 = inf

|S|=k,S⊂X
Ex∼ρd(x, S)2 ≤ inf

|S|=k,S⊂M
Ex∼ρdG(x, S)2

Therefore, by [2], if ρA 6= 0 (and thus m(ρA) 6= 0), it is

lim
k→∞

k2/dW2(ρ, πSk
ρ)2 ≤ lim

k→∞
k2/d inf

|S|=k,S⊂M
Ex∼ρdG(x, S)2 = C ·m(ρA)(d+2)/d

and thus for sufficiently large k it is W2(ρ, πSk
ρ)2 ≤ C ·m(ρA)(d+2)/d ·k−2/d (where the value

of C may be slightly larger than that of the previous equation.)

(b) The second term (W2(πSk
ρ, πSk

ρ̂n)2) of eq. 3, can be bounded as follows. As pointed out
in sec. 3.1, both πSk

ρ̂n and πSk
ρ are discrete distributions supported on Sk. In particular, if

Sk = {m1, . . . ,mk}, they can be written as

πSk
ρ =

n∑
j=1

wjδmj

πSk
ρ̂n =

n∑
i=1

1
n

δπSk
(xi) =

n∑
i=1

ŵjδxj

(5)

for some probability masses wj , ŵj ∈ [0, 1]. Let w := (wj)j=1,...,k ∈ Rk, and ŵ :=
(ŵj)j=1,...,k ∈ Rk, and note that Sk is an optimal quantizer of ρ, and thus can be chosen
deterministically as a function of ρ. Since ŵj is simply the proportion of samples xi that map to
the same point mj ∈ Sk, which is governed by the probabilities (wj)j=1,...,k, the values ŵj are
distributed according to a scaled multinomial distribution n−1M(n;w) and, in particular, their
expectation is Eŵ = w.

The optimal cost W2(πSk
ρ, πSk

ρ̂n)2 of transporting πSk
ρ to πSk

ρ̂n corresponds to the cost
of redistributing the excess probability masses ŵ − w, among the points in Sk ⊂ M. Since
M is constrained to lie in the unit ball of X , the maximum (squared) distance that masses are
transported by is 4, while the amount to transport is given by the excess mass at each mj . It then
follows that

W2(πSk
ρ, πSk

ρ̂n)2 ≤ 4‖n−1M(n; ŵ)−w‖1

We obtain a bound on the L1 norm of a multinomial from proposition A.6.6 of [5], although
bounds of similar order could’ve been obtained by using known concentration inequalities for
Hilbert space random variables, and combining them with a standard Rk-norm inequality ‖·‖2 ≤√

k‖ · ‖1. The resulting bound is

W2(πSk
ρ, πSk

ρ̂n)2 ≥ 8
√

nλ with probability 2ke−2λ2
,

or equivalently,

W2(πSk
ρ, πSk

ρ̂n)2 ≤ 8√
n

√
k

ln 2
2

+
1
2

ln
1
δ

with probability 1− δ.

(c) The third term of eq. 3 satisfies

W2(πSk
ρ̂n, ρ̂n)2 ≤ W2(ρ, πSk

ρ)2 + |W2(ρ̂n, πSk
ρ̂n)2 −W2(ρ, πSk

ρ)2|
=

lemma 3.1
Ex∼ρd(x, Sk)2 + |Ex∼ρ̂n

d(x, Sk)2 − Ex∼ρd(x, Sk)2|

≤ Ex∼ρd(x, Sk)2 + sup
|S|=k

|Ex∼ρ̂n
d(x, S)2 − Ex∼ρd(x, S)2|

(6)
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The first term in the last line of eq. 6 is the optimal quantization error of size k, which was
already bounded in part a). The second term is a uniform bound on the quantization error for
sets of size k, which can be bounded by making use of theorem 6 in [4]:

sup
|S|=k

|Ex∼ρ̂n
d(x, S)2 − Ex∼ρd(x, S)2| ≤ k

√
72π

n
+

√
8 ln 1/δ

n
with probability 1− δ

By combining the above three bounds, it follows that, with probability at least 1−δ, with 0 < δ < 1,
it is

W2(ρ, ρ̂n)2 ≤ C ·m(ρA)(d+2)/dk−2/d +
8√
n

(
k

√
9π

2
+

√
2 ln

1
δ

+

√
k

ln 2
2

+
1
2

ln
1
δ

)

≤
δ<1,k≥1

2

√
ln

1
δ

(
C ·m(ρA)(d+2)/dk−2/d +

72k√
n

) (7)

The minimizer of eq. 7 over all values of k can easily be seen to correspond to the choice k =
C · nd/(2(d+2)). In particular, by setting

k = C ·m(ρA) · nd/(2(d+2))

the two terms in the final sum of eq. 7 are balanced, yielding

W2(ρ, ρ̂n)2 ≤ C ·
√

ln
1
δ
·m(ρA) · n−1/(d+2) with probability 1− δ.

The theorem follows by letting τ :=
√

ln 1/δ.

Theorem 5.2. Given ρ ∈ Pp(M) with absolutely continuous part ρA 6= 0, sufficiently large n, and
0 < δ < 1, it holds

W2(ρ, πŜk
ρ̂n) ≤ C ·m(ρA) · n−1/(2d+4) · τ, with probability 1− e−τ2

.

where m(ρA) :=
∫
M ρA(x)d/(d+2)dλM(x), and C depends only on d.

Proof. Consider the decomposition of W2(ρ, πŜk
ρ̂n)2 depicted in figure 2 (blue arrow):

W2(ρ, πŜk
ρ̂n)2 ≤ 2

[
W2(ρ, πŜk

ρ)2 + W2(πŜk
ρ, πŜk

ρ̂n)2
]

Letting Sk be, as before, an optimal quantizer of ρ of order 2 and size k, we may now simply reduce
each of the above terms to those already analyzed in the proof of theorem 5.1:

(e) A bound for W2(πŜk
ρ, πŜk

ρ̂n)2 can be obtained in exactly the same way as the bound b)
in theorem 5.1, by simply noticing that the same conditions apply, with the difference that
the distributions whose distance we are bounding are supported on Ŝk, rather than on the
optimal quantizer Sk. Since the bound b) was obtained without assumptions on the support
set (other than the fact that it is contained in the convex hull of supp ρ, and this remains the
case for the empirical minimizer Ŝk), it is readily applicable to our case, and therefore

W2(πŜk
ρ, πŜk

ρ̂n)2 ≤ 8√
n

√
k

ln 2
2

+
1
2

ln
1
δ

with probability 1− δ.

(f) Since Ŝk is a minimizer of Ex∼ρ̂n
d(x, Ŝk)2 =

lemma 3.1
W2(ρ̂n, πŜk

ρ̂n)2 over sets of size k,

and by part c) in the proof of theorem 5.1, it holds
W2(ρ, πŜk

ρ)2 ≤ |W2(πŜk
ρ, ρ)2 −W2(πŜk

ρ̂n, ρ̂n)2|+ W2(πŜk
ρ̂n, ρ̂n)2

≤ |W2(πŜk
ρ, ρ)2 −W2(πŜk

ρ̂n, ρ̂n)2|+
|W2(πSk

ρ, ρ)2 −W2(πSk
ρ̂n, ρ̂n)2|+ W2(ρ, πSk

ρ)

≤
lemma 3.1

2 sup
|S|=k

|Ex∼ρ̂n
d(x, S)2 − Ex∼ρd(x, S)2|+ Ex∼ρd(x, Sk)2

where the sup has been bounded in part c) of theorem 5.1, and a bound for the optimal
quantization cost Ex∼ρd(x, Sk)2 is discussed in part a) of the same theorem.
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By putting together the above bounds, we obtain an equivalent bound to that of eq. 7:

W2(ρ, πŜk
ρ̂n)2 ≤ 4

√
ln

1
δ

(
C ·m(ρA)(d+2)/dk−2/d +

72k√
n

)
(8)

where the constants differ by a factor of two. Since the bounds in theorem 5.1 are written up to a
universal multiplicative constant C that depends only on the dimension, eq. 8 implies that the exact
same analysis holds in the k-means case that concerns us here. Namely, a bound

W2(ρ, πŜk
ρ̂n)2 ≤ C ·

√
ln

1
δ
·m(ρA) · n−1/(d+2) with probability 1− δ

holds, and the theorem follows again by letting τ :=
√

ln 1/δ.
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