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In this supplementary material, we provide the derivation of the global solution of the expectation-
maximization method in Sec. 2.2 and the required statistics in the variational Bayesian methods in
Secs. 3 and 4. Equation numbers are denoted with preceding “S-”, and the ones without “S-” refer
to the main text.

1 Global Solution of the EM method

The log-likelihood is given by

L =

N∑
i=1

log p(di,yi|D,A) (S-1)

= −N
2

(
M log(σ2

y) + log |K| − 1

N
tr
(
K−1DDT

))
− 1

2σ2
y

tr
(
(Y −D)T (Y −D)

)
+ const ,

with K = σ2
dI+DAATDT . To maximize the log-likelihood w.r.t. A, we take its gradient w.r.t. A

using matrix differentiation identities [2] and set it equal to zero, which yields

DTK−1DA =
1

N
DTK−1DDTK−1DA . (S-2)

This has three possible solutions: (i) DA = 0, (ii) K = 1
NDDT , and (iii) DA 6= 0 and K 6=

1
NDDT . We consider the latter two cases, as the first one is not interesting for subspace clustering.
In the last case, assuming σ2

d > 0 and thus K−1 exists, we have

DA =
1

N
DDTK−1DA . (S-3)

We first solve this system w.r.t. DA. Let the SVDs of D and DA be1 D = UΛVT and DA =

ÛΛ̂V̂T , respectively, such that we have

K−1DA =
(
σ2
dI + DAATDT

)−1
DA , (S-4)

= DA
(
σ2
dI + ATDTDA

)−1
, (S-5)

= ÛΛ̂
(
σ2
dI + Λ̂2

)−1
V̂T . (S-6)

1At this point, we do not know if the singular vectors of DA and D are related.
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Plugging this in (S-2), we have at the stationary points

ÛΛ̂V̂T =
1

N
DDT ÛΛ̂

(
σ2
dI + Λ̂2

)−1
V̂T , (S-7)

Û
(
σ2
dI + Λ̂2

)
Λ̂ =

1

N
DDT ÛΛ̂ , (S-8)

from which it can be observed that Û contains the eigenvectors of DDT and hence the left singular
vectors of D, such that Û = U. Moreover, σ2

dI+Λ̂2 contains the eigenvalues of 1
NDDT . Therefore,

similarly to [3], we have the solution

DA = Uq

(
1

N
Λ2
q − σ2

dI

)1/2

R , (S-9)

where R is an arbitrary orthogonal rotation matrix, and Uq is a M × q matrix consisting of q left
singular vectors of D with corresponding singular values that are larger than

√
Nσd. Therefore, the

singular values of DA satisfy li = (
λ2
i

N − σ
2
d)

1/2.

In the case (ii), we have the same solution (S-9) where the last M − q smallest singular values of D
are equal to

√
Nσd. This is an unrealistic case and is analyzed also in PPCA [3].

Using the solution (S-9), we can solve for the optimal B using (9) as

〈B〉 = ΣB
1

σ2
d

ATDTD , (S-10)

=

(
σ2
dI + RT (

1

N
Λ2
q − σ2

dI)R

)−1
RT (

1

N
Λ2
q − σ2

dI)
1/2UT

q UΛVT , (S-11)

= RTσ−2d (
1

N
Λ2
q − σ2

dI)
1/2

(
I + σ−2d (

1

N
Λ2
q − σ2

dI)RRT

)−1
ΛqV

T
q , (S-12)

= RT (
1

N
Λ2
q − σ2

dI)
1/2Λ−1q NVT

q . (S-13)

Now we have an expression for DA and 〈B〉. Combining,

DA〈B〉 = Uq(Λ
2
q −Nσ2

dI)Λ
−1
q VT

q . (S-14)

Plugging D = UΛVT in (S-14) yields the final solution

A〈B〉 = Vq(Λ
2
q −Nσ2

dI)Λ
−2
q VT

q = VqΛ̃qV
T
q , (S-15)

with Λ̃q is a diagonal matrix with 1 − Nσ2
d

λ2
j

on the diagonal. The optimal solution for A can easily
be extracted from this expression.

Finally, using this expression for A〈B〉 in (10), we solve for D as

Y = D

[
I +

σ2
y

σ2
d

〈 (I−AB) (I−AB)
T 〉

]
, (S-16)

= UΛVT
[
I +Nσ2

yVqΛ
−2
q VT

q

]
, (S-17)

Using the partitioning D = [Uq , UN−q] diag(Λq,ΛN−q) [Vq , VN−q]
T , we have the final solu-

tion

Y = [Uq,UN−q]

[
Λq +Nσ2

yΛ
−1
q 0

0
σ2
y+σ

2
d

σ2
d

ΛN−q

]
[VqVN−q]

T . (S-18)

Therefore, the eigenvectors of D and Y are the same, but the eigenvalues are related via

ξj =

{
λj +Nσ2

y λ
−1
j , if λj >

√
Nσd

λj
σ2
y+σ

2
d

σ2
d

, if λj ≤
√
Nσd

(S-19)
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Figure 1: Estimates of singular values λ of D given singular values ξ of Y (N = 100). The dashed
line is λ = ξ. In (a), σd = 1, σy = 2 , in (b), σd = σy = 1.

The explicit solutions for λj are given by

λj =


ξj

σ2
d

σ2
y+σ

2
d
, ξj < 2

√
Nσy

ξj
2 + 1

2

√
ξ2j − 4Nσ2

y ξj ≥ 2
√
Nσy, ξj ≥ min

(
2
√
Nσd,

√
N
σd

(σ2
d + σ2

y)
)

ξj
2 −

1
2

√
ξ2j − 4Nσ2

y σy ≥ σd, 2
√
Nσy ≤ ξj ≤

√
N
σd

(σ2
d + σ2

y)

(S-20)

The solution for λj is unique except when σy ≥ σd and 2
√
Nσy ≤ ξj ≤

√
N
σd

(σ2
d + σ2

y), where
we have the latter two cases as solutions. As shown in Fig. 1(a), the last solution is only valid in
a comparably small region. To achieve continuity in the solutions, we always choose the first two
solutions (S-20).

As can be observed from Fig. 1, the solution (S-20) is a combination of two operations: a down-
scaling when ξj < 2

√
Nσy and a polynomial thresholding operation for larger singular values. The

polynomial thresholding preserves the larger singular values as the shrinkage amount gets smaller:
ξj gets larger compared to 2Nσy , and for very large values λj ≈ ξj . On the other hand, small
singular values get shrunk via down-scaling. Obviously, when σd = 0, no shrinkage is applied and
D = Y.

2 Derivation of the Variational Bayesian Methods

The explicit form of the variational free energy in (17) is given by

F = 〈 log q(D,A,B, σ2
d, σ

2
y)− log p(D,A,B, σ2

d, σ
2
y)〉q(D,A,B,σ2

d,σ
2
y)

= 〈 log q(D) q(A) q(B) q(σ2
d) q(σ

2
y)〉

+
MN

2
〈 log σ2

d〉+
MN

2
〈 log σ2

y〉+
1

2
tr(〈AC−1A AT 〉) + 1

2
tr(〈C−1B BBT 〉) + 1

2
tr(〈DDT 〉)

+

(
1

2〈σ2
y〉

+
1

2〈σ2
d〉

)
tr(〈DDT 〉) + 1

2〈σ2
y〉
‖Y‖2F −

1

〈σ2
y〉

tr(〈D〉TY)

− 1

〈σ2
d〉

tr(〈BTATDTD〉) + 1

2〈σ2
d〉

tr(〈ATDTDABBT 〉) (S-21)

+
N

2
log |CA|+

N

2
log |CB|+ const .

The optimal forms of q(D) and q(B) can be found as matrix-variate normal distributions by inspec-
tion. The optimal q(A) does not have a matrix-variate normal form. The optimal distribution is

3



found in terms of a = vec(A), by rewriting the terms involving A in (S-23) as

− log q(a) = tr
(
〈σ−2d 〉 〈‖D−DAB‖F 〉2 + AC−1A AT

)
+
N

2
log |CA|+ const

= 〈σ−2d 〉 〈‖d− (BT ⊗D)a‖22〉+ aT (C−1A ⊗ I)a +
N

2
log |CA|+ const

= 〈σ−2d 〉 〈
(
dTd + aT (BT ⊗D)T (BT ⊗D)a− 2aT (BT ⊗D)Td

)
〉+ aT (C−1A ⊗ I)a +

N

2
log |CA|+ const

= aT
[
〈σ−2d 〉〈(B

T ⊗D)T (BT ⊗D)〉+ C−1A ⊗ I
]
a− 2aT (〈B〉T ⊗ 〈D〉)T 〈d〉+ N

2
log |CA|+ const

= aT
[
〈σ−2d 〉(〈B

TB〉 ⊗ 〈DTD〉) + C−1A ⊗ I
]
a− 2aT (〈B〉T ⊗ 〈D〉)T 〈d〉+ N

2
log |CA|+ const

(S-22)

where we used vec(DAB) = (BT ⊗ D) vec(A), and d = vec(D), b = vec(B). It can be
derived from here that q(a) has a multivariate normal distribution with mean Σa (〈B〉T ⊗〈D〉)T 〈d〉
and covariance Σa =

[
〈σ−2d 〉(〈BTB〉 ⊗ 〈DTD〉) + C−1A ⊗ I

]−1
. However, computing A in this

manner can be very inefficient, as ΣA might get extremely big (MN ×MN for A of size N ×N
and D of size M ×N ).

Therefore, we force q(A) to have a matrix-variate form N (〈A〉,ΣA,ΩA), which leads to an effi-
cient algorithm. Under this constraint, the variational free energy can be rewritten as (treating all
terms not involving A as constant)

F =
1

2
tr(〈AC−1A AT 〉)− 1

〈σ2
d〉

tr(〈BTATDTD〉) + 1

2〈σ2
d〉

tr(〈ATDTDABBT 〉) (S-23)

− N

2
log |ΣA| −

N

2
log |ΩA|+

N

2
log |CA|+

N

2
log |CB|+ const .

Evaluating the expectations using the matrix-variate normal form for q(A) (see the next section),
we minimize F with respect to ΣA, resulting in

Σ−1A =
1

N
tr(C−1A ΩA) I +

1

Nσ2
d

tr(ΩA〈BBT 〉) 〈DTD〉 (S-24)

Similarly, minimization with respect to ΩA yields

Ω−1A =
1

N
tr(ΣA)C−1A +

1

Nσ2
d

tr(ΣA〈DTD〉) 〈BBT 〉 . (S-25)

Finally, the update of 〈A〉 is given by

〈A〉C−1A +
1

σ2
d

〈DTD〉〈A〉〈BBT 〉 = 1

σ2
d

〈DTD〉〈B〉T (S-26)

The closed form solution for 〈A〉 cannot be found, but it can be solved using a fixed-point iteration
starting from an initial estimate.

2.1 Required Statistics for the Variational Bayesian Methods

For a general matrix-variate Gaussian distribution p(X|M,Ω,Σ) = N (X|M,Σ,Ω), we have [1]

〈XTKX〉 = tr(ΣKT )Ω + MTKM , (S-27)

〈XKXT 〉 = tr(KTΩ)Σ + MKMT . (S-28)
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Thus, for q(D) = N (〈D〉, I,ΩD), q(A) = N (〈A〉,ΣA,ΩA), and q(B) = N (〈B〉, I,ΣB), we
have

〈DTD〉 = tr(IM )ΩD + 〈D〉T 〈D〉 (S-29)

=MΩD + 〈D〉T 〈D〉 (S-30)

〈AAT 〉 = tr(ΩA)ΣA + 〈A〉〈A〉T (S-31)

〈ATA〉 = tr(ΣA)ΩA + 〈A〉T 〈A〉 (S-32)

〈BBT 〉 = tr(ΩB)ΣB + 〈B〉〈B〉T (S-33)

= NΣB + 〈B〉〈B〉T (S-34)

〈BTB〉 = tr(ΣB)IN + 〈B〉T 〈B〉 (S-35)

Combining, we obtain

〈ATDTDA〉 = tr(ΣA〈DTD〉)ΩA + 〈A〉T 〈DTD〉〈A〉 (S-36)

〈BTATAB〉 = tr(ΣB〈ATA〉)IN + 〈B〉T 〈ATA〉〈B〉 (S-37)

〈ABBTAT 〉 = tr(〈BBT 〉ΩA)ΣA + 〈A〉〈BBT 〉〈A〉T (S-38)

〈BTATDTDAB〉 = tr(ΣB〈ATDTDA〉)IN + BT 〈ATDTDA〉B (S-39)
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