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A Methodology and Derivation of Results

Although both k-means and k-flats optimize the same empirical risk, the performance measure we
are interested in is that of Equation 1. We may bound it from above as follows:

Eρ(Sn,k) ≤ |Eρ(Sn,k)− En(Sn,k)|+ En(Sn,k)− En(S∗k) + |En(S∗k)− E∗ρ,k|+ E∗ρ,k

≤ 2 · sup
S∈Sk

|Eρ(S)− En(S)|︸ ︷︷ ︸
Statistical error

+ E∗ρ,k︸︷︷︸
Approximation error

(14)

where E∗ρ,k := infS∈Sk
Eρ(S) is the best attainable performance over Sk, and S∗k is a set for which

the best performance is attained. Note that En(Sn,k) − En(S∗k) ≤ 0 by the definition of Sn,k. The
same error decomposition can be considered for k-flats, by replacing Sn,k by Fn,k and Sk by Fk.

Equation 14 decomposes the total learning error into two terms: a uniform (over all sets in the class
Ck) bound on the difference between the empirical, and true error measures, and an approximation
error term. The uniform statistical error bound will depend on the samples, and thus may hold with
a certain probability.

In this setting, the approximation error will typically tend to zero as the class Ck becomes larger (as
k increases.) Note that this is true, for instance, if Ck is the class of discrete sets of size k, as in the
k-means problem.

The performance of Equation 14 is, through its dependence on the samples, a random variable. We
will thus set out to find probabilistic bounds on its performance, as a function of the number n of
samples, and the size k of the approximation. By choosing the approximation size parameter k to
minimize these bounds, we obtain performance bounds as a function of the sample size.

B K-Means

We use the above decomposition to derive sample complexity bounds for the performance of the
k-means algorithm. To derive explicit bounds on the different error terms we have to combine in a
novel way some previous results and some new observations.

Approximation error. The error E∗ρ,k = infSk∈Sk
Eρ(Sk) is related to the problem of optimal

quantization. The classical optimal quantization problem is quite well understood, going back to the
fundamental work of [21, 20] on optimal quantization for data transmission, and more recently by
the work of [10, 13, 12, 6]. In particular, it is known that, for distributions with finite moment of
order 2 + λ, for some λ > 0, it is [10]

lim
k→∞

E∗ρ,k · k2/d = C

{∫
dν(x)pa(x)d/(d+2)

}(d+2)/d

(15)
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where ν is the Lebesgue measure, pa is the density of the absolutely continuous part of the dis-
tribution (according to its Lebesgue decomposition), and C is a constant that depends only on the
dimension. Therefore, the approximation error decays at least as fast as k−2/d.

We note that, by setting µ to be the uniform distribution over the unit cube [0, 1]d, it clearly is

lim
k→∞

E∗µ,k · k2/d = C

and thus, by making use of Zador’s asymptotic formula [21], and combining it with a result of
Böröczky (see [13], p. 491), we observe that C ∼ (d/(2πe))r/2 with d → ∞, for the r-th order
quantization problem. In particular, this shows that the constant C only depends on the dimension,
and, in our case (r = 2), has only linear growth in d, a fact that will be used in the sequel.

The approximation error E∗ρ,k = infSk∈Sk
Eρ(Sk) of k-means is related to the problem of optimal

quantization on manifolds, for which some results are known [12]. By calling E∗M,p,k the approxi-
mation error only among sets of means contained in M, Theorem 1 in Appendix C, implies in this
case (letting r = 2) that

lim
k→∞

E∗ρ,k · k2/d = C

{∫
M

dµI(x) p(x)d/(d+2)

}(d+2)/d

(16)

where p is absolutely continuous over M and, by replacing M with a d-dimensional domain in Rd,
it is clear that the constant C is the same as above.

Since restricting the means to be onM cannot decrease the approximation error, it is E∗ρ,k ≤ E∗M,p,k,
and therefore the right-hand side of Equation 16 provides an (asymptotic) upper bound to E∗ρ,k ·k2/d.

For the statistical error we use available bounds.
Statistical error. The statistical error of Equation 14, which uniformly bounds the difference
between the empirical, and expected error, has been widely-studied in recent years in the litera-
ture [16, 17, 3]. In particular, it has been shown that, for a distribution p over the unit ball in Rd, it
is

sup
S∈Sk

|Eρ(S)− En(S)| ≤ k
√

18π√
n

+

√
8 ln 1/δ

n
(17)

with probability 1 − δ [16]. Clearly, this implies convergence En(S) → Eρ(S) almost surely, as
n → ∞; although this latter result was proven earlier in [18], under the less restrictive condition
that p have finite second moment.
By bringing together the above results, we obtain the bound in Theorem 1 on the performance of
k-means, whose proof is postponed to Appendix A.

Further, we can consider the error incurred by the actual optimization algorithm used to compute the
k-means solution.
Computational error. In practice, the k-means problem is NP-hard [1, 8, 15], with the original
Lloyd relaxation algorithm providing no guarantees of closeness to the global minimum of Equation
2. However, practical approximations, such as the k-means++ algorithm [2], exist. When using
k-means++, means are inserted one by one at samples selected with probability proportional to their
squared distance to the set of previously-inserted means. This randomized seeding has been shown
by [2] to output a set that is, in expectation, within a 8 (ln k + 2)-factor of the optimal. Once again,
by combining these results, we obtain Theorem 2, whose proof is also in Appendix A.

We use the results discussed in Section A to obtain the proof of Theorem 1 as follows.
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Proof. Letting ‖p‖d/(d+2) :=
{∫

dµI(x)p(x)d/(d+2)

}(d+2)/d

, then with probability 1− δ, it is

Eρ(Sn,k) ≤ 2n−1/2
(
k
√

18π +
√

8 ln 1/δ
)

+ Ck−2/d · ‖p‖d/(d+2)

≤ 2n−1/2k
√

18π ·
√

8 ln 1/δ + Ck−2/d · ‖p‖d/(d+2)

= 24
√

πkn−1/2
√

ln 1/δ + Ck−2/d · ‖p‖d/(d+2)

= 2
√

ln 1/δn−1/(d+2)Cd/(d+2)
(
24
√

π
)2/(d+2) ·

{∫
dµI(x)p(x)d/(d+2)

} (18)

where the parameter

kn = n
d

2(d+2) ·
(

C

24
√

π

)d/(d+2)

·
{∫

dµI(x)p(x)d/(d+2)

}
(19)

has been chosen to balance the summands in the third line of Equation 18.

The proof of Theorem 2 follows a similar argument.

Proof. In the case of Theorem 2, the additional multiplicative term Ak = 8(ln k +2) corresponding
to the computational error incurred by the k-means++ algorithm does not affect the choice of pa-
rameter kn since both summands in the third line of Equation 18 are multiplied by Ak in this case.
Therefore, we may simply use the same choice of kn as in Equation 19 in this case to obtain

EZ Eρ(Sn,k) ≤ 2n−1/2
(
k
√

18π +
√

8 ln 1/δ
)

+ Ck−2/d · ‖p‖d/(d+2) · 8(ln k + 2)

≤ 16
√

ln 1/δn−1/(d+2)Cd/(d+2)
(
24
√

π
)2/(d+2) ·

{∫
dµI(x)p(x)d/(d+2)

}
·
[
2 +

d

d + 2

(
1
2

lnn + ln
C

12
√

π
+ ln ‖p‖d/(d+2)

)] (20)

with probability 1−δ, where the expectation is with respect to the random choice Z in the algorithm.
From this the bound of Theorem 2 follows.

C K-Flats

Here we state a series of lemma that we prove in the next section. For the k-flats problem, we begin
by introducing a uniform bound on the difference between empirical (Equation 2) and expected risk
(Equation 1.)
Lemma 1. If Fk is the class of sets of k d-dimensional affine spaces then, with probability 1− δ on
the sampling of Xn ∼ p, it is

sup
X′∈Fk

|Eρ(X ′)− En(X ′)| ≤ k

√
2πd

n
+

√
ln 1/δ

2n

By combining the above result with approximation error bounds, we may produce performance
bounds on the expected risk for the k-flats problem, with appropriate choice of parameter kn. We
distinguish between the codimension one hypersurface case, and the more general case of a smooth
manifold M embedded in a Hilbert space. We begin with an approximation error bound for hyper-
surfaces in Euclidean space.
Lemma 2. Assume given M smooth with metric of class C3 in Rd+1. If Fk is the class of sets
of k d-dimensional affine spaces, and E∗ρ,k is the minimizer of Equation 1 over Fk, then there is a
constant C that depends on d only, such that

lim
k→∞

E∗ρ,k · k4/d ≤ C · (κM)4/d

where κM := µ|II|(M) is the total root curvature of M, and µ|II| is the measure associated with the
(positive) second fundamental form. The constant C grows as C ∼ (d/(2πe))2 with d →∞.
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For the more general problem of approximation of a smooth manifold in a separable Hilbert space,
we begin by considering the definitions in Section 4 the second fundamental form II and its operator
norm |IIq| at a point q ∈M. The we have:

Lemma 3. Assume given a d-manifold M with metric in C3 embedded in a separable Hilbert space
X . If Fk is the class of sets of k d-dimensional affine spaces, and E∗ρ,k is the minimizer of Equation
1 over Fk, then there is a constant C that depends on d only, such that

lim
k→∞

E∗ρ,k · k4/d ≤ C · (κM)4/d

where κM :=
∫
M

dµI(x) 1
4 |IIx|

2 and µI is the volume measure over M. The constant C grows as

C ∼ (d/(2πe))2 with d →∞.

We combine these two results into Theorems 3 and 4, whose derivation is in Appendix B.

C.1 Proofs

We begin proving the bound on the statistical error given in Lemma 1.

Proof. We begin by finding uniform upper bounds on the difference between Equations 1 and 2 for
the class Fk of sets of k d-dimensional affine spaces. To do this, we will first bound the Rademacher
complexity Rn(Fk, p) of the class Fk.

Let Φ and Ψ be Gaussian processes indexed by Fk, and defined by

ΦX′ =
n∑

i=1

γi

k
min
j=1

d2
X

(xi, π
′
jxi)

ΨX′ =
n∑

i=1

γi

k∑
j=1

d2
X

(xi, π
′
jxi)

(21)

X ′ ∈ Fk, X ′ is the union of k d-subspaces: X ′ = ∪k
j=1Fj , where each π′j is an orthogonal

projection onto Fj , and γi are independent Gaussian sequences of zero mean and unit variance.

Noticing that d2
X

(x, πx) = ‖x‖2−‖πx‖2 = ‖x‖2−〈xxt, π〉
F

for any orthogonal projection π (see
for instance [5], Sec. 2.1), where 〈·, ·〉

F
is the Hilbert-Schmidt inner product, we may verify that:

Eγ (ΦX′ − ΦX′′)2 =
n∑

i=1

[
k

min
j=1

‖xi‖2 −
〈
xix

t
i, π

′
j

〉
F
−
(

k
min
j=1

‖xi‖2 −
〈
xix

t
i, π

′′
j

〉
F

)]2
≤

n∑
i=1

k
max
j=1

(〈
xix

t
i, π

′
j

〉
F
−
〈
xix

t
i, π

′′
j

〉
F

)2

≤
n∑

i=1

k∑
j=1

(〈
xix

t
i, π

′
j

〉
F
−
〈
xix

t
i, π

′′
j

〉
F

)2

= Eγ (ΨX′ −ΨX′′)2

(22)

Since it is,

Eγ sup
X′∈Fk

n∑
i=1

γi

k∑
j=1

〈
xix

t
i, π

′
j

〉
F

= Eγ sup
X′∈Fk

k∑
j=1

〈
n∑

i=1

γixix
t
i, π

′
j

〉
F

≤ k Eγ sup
π

〈
n∑

i=1

γixix
t
i, π

〉
F

≤ k sup
π
‖π‖

F
Eγ ‖

n∑
i=1

γixix
t
i‖F

≤ k
√

dn

(23)
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we may bound the Gaussian complexity Γn(Fk, p) as follows:

Γn(Fk, p) =
2
n

Eγ sup
X′∈Fk

n∑
i=1

γi

k
min
j=1

d2
X

(xi, π
′
jxi)

≤ 2
n

Eγ sup
X′∈Fk

n∑
i=1

γi

k∑
j=1

〈
xix

t
i, π

′
j

〉
F
≤ 2k

√
d

n

(24)

where the first inequality follows from Equation 22 and Slepian’s Lemma [19], and the second from
Equation 23.

Therefore the Rademacher complexity is bounded by

Rn(Fk, p) ≤
√

π/2Γn(Fk, p) ≤ k

√
2πd

n
(25)

Finally, by Theorem 8 of [4], it is:

sup
X′∈Fk

|Eρ(X ′)− En(X ′)| ≤ Rn(Fk, p) +

√
ln 1/δ

2n
≤ k

√
2πd

n
+

√
ln 1/δ

2n
(26)

as desired.

C.2 Approximation Error

In order to prove approximation bounds for the k-flats problem, we will begin by first considering
the simpler setting of a smooth d-manifold in Rd+1 space (codimension 1), and later we will extend
the analysis to the general case.

Approximation Error: Codimension One

Assume that it is X = Rd+1 with the natural metric, and M is a compact, smooth d-manifold with
metric of class C2. Since M is of codimension one, the second fundamental form at each point is a
map from the tangent space to the reals. Assume given α > 0 and λ > 0. At every point x ∈ M,
define the metric Qx := |IIx|+ α′(x)Ix, where

a) I and II are, respectively, the first and second fundamental forms on M [9].
b) |II| is the convexified second fundamental form, whose eigenvalues are those of II but in

absolute value. If the second fundamental form II is written in coordinates (with respect to
an orthonormal basis of the tangent space) as SΛST , with S orthonormal, and Λ diagonal,
then |II| is S|Λ|ST in coordinates. Because |II| is continuous and positive semi-definite, it
has an associated measure µ|II| (with respect to the volume measure µI.)

c) α′(x) > 0 is chosen such that dµ
Qx

/dµI = dµ|II|/dµI + α. Note that such α′(x) > 0
always exists since:
· α′(x) = 0 implies dµ

Qx
/dµI = dµ|II|/dµI, and

· dµ
Qx

/dµI can be made arbitrarily large by increasing α′(x).

and therefore there is some intermediate value of α′(x) > 0 that satisfies the constraint.

In particular, from condition c), it is clear that Q is everywhere positive definite.

Let µI and µ
Q

be the measures over M, associated with I and Q. Since, by its definition, µII is
absolutely continuous with respect to I, then so must Q be. Therefore, we may define

ω
Q

:= dµ
Q
/dµI

to be the density of µ
Q

with respect to µI.

Consider the discrete set Pk ⊂M of size k that minimizes the quantity

fQ,p(Pk) =
∫
M

dµ
Q
(x)
[

p(x)
ω

Q
(x)

]
min
p∈Pk

d4

Q
(x, p) (27)
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among all sets of k points on M. fQ,p(Pk) is the (fourth-order) quantization error over M, with
metric Q, and with respect to a weight function p/ω

Q
. Note that, in the definition of fQ,p(Pk), it is

crucial that the measure (µ
Q

), and distance (d
Q

) match, in the sense that d
Q

is the geodesic distance
with respect to the metric Q, whose associated measure is µ

Q
.

The following theorem, adapted from [12], characterizes the relation between k and the quantization
error fQ,p(Pk) on a Riemannian manifold.

Theorem 1. [[12]] Given a smooth compact Riemannian d-manifold M with metric Q of class C1,
and a continuous function w : M→ R+, then

min
P∈Pk

∫
M

dµ
Q
(x)w(x) min

p∈P
dr

Q
(x, p) ∼ C

{∫
M

dµ
Q
(x)w(x)d/(d+r)

}(d+r)/d

· k−r/d (28)

as k →∞, where the constant C depends only on d.

Furthermore, for each connected M, there is a number ξ > 1 such that each set Pk that minimizes
Equation 28 is a

(
k−1/d/ξ

)
-packing and

(
ξk−1/d

)
-cover of M, with respect to d

Q
.

This last result, which shows that a minimizing set Pk of size k must be a
(
ξk−1/d

)
-cover, clearly

implies, by the definition of Voronoi diagram and the triangle inequality, the following key corollary.
Corollary 1. GivenM, there is ξ > 1 such that each set Pk that minimizes Equation 28 has Voronoi
regions of diameter no larger than 2ξk−1/d, as measured by the distance d

Q
.

Let each Pk ⊂ M be a minimizer of Equation 27 of size k, then, for each k, define Fk to be the
union of (d-dimensional affine) tangent spaces to M at each q ∈ Pk, that is, Fk := ∪q∈Pk

TqM. We
may now use the definition of Pk to bound the approximation error Eρ(Fk) on this set.

We begin by establishing some results that link distance to tangent spaces on manifolds to the
geodesic distance d

Q
associated with Q. The following lemma appears (in a slightly different form)

as Lemma 4.1 in [7], and is borrowed from [12, 11].
Lemma 4. [[12, 11], [7]] Given M as above, and λ > 0 then, for every p ∈ M there is an open
neighborhood Vλ(p) 3 p in M such that, for all x, y ∈ Vλ(p), it is

d2
X

(x, TyM) ≤ (1 + λ)d4
|II|(x, y) (29)

where dX (x, TyM) is the distance from x to the tangent plane TyM at y, and d|II| is the geodesic
distance associated with the convexified second fundamental form.

From the definition of Q, it is clear that, because Q strictly dominates |II| then, for points x, y
satisfying the conditions of Equation 29, it must be dX (x, TyM) ≤ (1 + λ)d|II|(x, y) ≤ (1 +
λ)d

Q
(x, y).

Given our choice of λ > 0, Lemma 4 implies that there is a collection of k neighborhoods, centered
around the points p ∈ Pk, such that Equation 29 holds inside each. However, these neighborhoods
may be too small for our purposes. In order to apply Lemma 4 to our problem, we will need to prove
a stronger condition. We begin by considering the Dirichlet-Voronoi regions DM,Q

(p;Pk) of points
p ∈ Pk, with respect to the distance d

Q
. That is,

DM,Q
(p;Pk) = {x ∈M : d

Q
(x, p) ≤ d

Q
(x, q),∀q ∈ Pk}

where, as before, Pk is a set of size k minimizing Equation 27.
Lemma 5. For each λ > 0, there is k′ such that, for all k ≥ k′, and all q ∈ Pk, Equation 29 holds
for all x, y ∈ DM,Q

(q;Pk).

Remark Note that, if it were P ′
k ⊂ Pk with k > k′ (if each Pk+1 were constructed by adding one

point to Pk), then Lemma 5 would follow automatically from Lemma 4 and Corollary 1. Since, in
general, this not the case, the following proof is needed.

Proof. It suffices to show that every Voronoi region DM,Q
(q;Pk), for sufficiently large k, is con-

tained in a neighborhood Vλ(vq) of the type described in Lemma 4, for some vq ∈M.

6



Clearly, by Lemma 4, the set C = {Vλ(x) : x ∈ M} is an open cover of M. Since M is compact,
C admits a finite subcover C ′. By the Lebesgue number lemma, there is δ > 0 such that every set
in M of diameter less than δ is contained in some open set of C ′.

Now let k′ = d(δ/2ξ)−de. By Corollary 1, every Voronoi region DM,Q
(q;Pk), with q ∈ Pk, k ≥ k′,

has diameter less than δ, and is therefore contained in some set of C ′. Since Equation 29 holds inside
every set of C ′ then, in particular, it holds inside DM,Q

(q;Pk).

We now have all the tools needed to prove:

Lemma 2 If Fk is the class of sets of k d-dimensional affine spaces, and E∗ρ,k is the minimizer of
Equation 1 over Fk, then there is a constant C that depends on d only, such that

lim
k→∞

E∗ρ,k · k4/d ≤ C · (κM)4/d

where κM := µ|II|(M) is the total root curvature of M. The constant C grows as C ∼ (d/(2πe))2

with d →∞.

Proof. Pick α > 0 and λ > 0. Given Pk minimizing Equation 27, if Fk is the union of tangent
spaces at each p ∈ Pk, by Lemmas 4 and 5, it is

Eρ(Fk) =
∫
M

dµI(x)p(x) min
p∈Pk

d2
X

(x, TpM)

≤ (1 + λ)
∫
M

dµI(x)p(x) min
p∈Pk

d4
Q
(x, p)

= (1 + λ)
∫
M

dµ
Q
(x)

p(x)
ωQ(x)

min
p∈Pk

d4
Q
(x, p)

Thm. 1, r=4
≤ (1 + λ)C

{∫
M

dµ
Q
(x)
[

p(x)
ωQ(x)

]d/(d+4)
}(d+4)/d

· k−4/d

(30)

where the last line follows from the fact that Pk has been chosen to minimize Equation 27, and
where, in order to apply Theorem 1, we use the fact that p is absolutely continuous in M.

By the definition of ωQ, it follows that{∫
M

dµ
Q
(x)
[

p(x)
ωQ(x)

]d/(d+4)
}(d+4)/d

=
{∫

M
dµI(x)ωQ(x)4/(d+4)p(x)d/(d+4)

}(d+4)/d

≤
{∫

M
dµI(x)ω

Q
(x)
}4/d

(31)

where the last line follows from Hölder’s inequality (‖fg‖1 ≤ ‖f‖p‖g‖q with p = (d + 4)/d > 1,
and q = (d + 4)/4.)

Finally, by the definition of Q and α′, it is∫
M

dµI(x)ω
Q
(x) ≤

∫
M

dµI(x)α +
∫
M

dµ|II|(x) = αVM + κM (32)

where VM is the total volume of M, and κM := µ|II|(M) is the total root curvature of M. There-
fore

Eρ(Fk) ≤ (1 + λ)C {αVM + κM}
4/d · k−4/d (33)

Since α > 0 and λ > 0 are arbitrary, Lemma 2 follows.

Finally, we discuss an important technicality in the proof that we hadn’t mentioned before in the
interest of clarity of exposition. Because we are taking absolutely values in its definition, Q is not
necessarily of class C1, even if II is. Therefore, we may not apply Theorem 1 directly. We may,
however, use Whitney’s approximation theorem (see for example [14] p. 252), to obtain a smooth
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ε-approximation to Q, which can be enforced to be positive definite by relating the choice of ε to
that of α, and with ε → 0 as α → 0. Since the ε-approximation Q only affects the final performance
(Equation 33) by at most a constant times ε, then the fact that α is arbitrarily (and hence so is ε)
implies the lemma.

Approximation Error: General Case

Assume given a d-manifoldMwith metric in C3 embedded in a separable Hilbert spaceX . Consider
the definition in Section 4 of the second fundamental form II and its operator norm |II|.
We begin extending the results of Lemma 4 to the general case, where the manifold is embedded in
a possibly infinite-dimensional ambient space. In this case, the orthogonal complement (TxM)⊥ to
the tangent space at x ∈ M may be infinite-dimensional (although, by the separability of X , it has
a countable basis.)

For each x ∈M, consider the largest x-centered ball Bx(ε) for which there is a smooth one-to-one
Monge patch mx : Bx(εx) ⊂ TxM → M. Since M is smooth, and II bounded, by the inverse
function theorem it holds εx > 0. Because II ∈ C1, we can always choose εx to be continuous inM,
and thus by the compactness of M there is a minimum 0 < ε such that 0 < ε ≤ εx with x ∈ M.
Let Nx(δ) denote the geodesic neighborhood around x ∈ M of radius δ. We begin by proving the
following technical Lemma.
Lemma 6. For every q ∈M, there is δq such that, for all x, y ∈ Nq(δq), it is x ∈ my(By(ε)) (x is
in the Monge patch of y.)

Proof. The Monge function my : By(ε) → M is such that r ∈ By(ε) implies my(r) − (y + r) ∈
(TyM)⊥ (with the appropriate identification of vectors in X and in (TyM)⊥), and therefore for all
r ∈ By(ε) it holds
dI(y, my(r)) ≥ ‖my(r)−y‖X = ‖my(r)−(y+r)+(y+r)−y‖X = ‖my(r)−(y+r)‖X+‖r‖X ≥ ‖r‖X
Therefore Ny(ε) ⊂ my(By(ε)).

For each q ∈ M, the geodesic ball Nq(ε/2) is such that, by the triangle inequality, for all x, y ∈
Nq(ε/2) it is dI(x, y) ≤ ε. Therefore x ∈ Ny(ε) ⊂ my(By(ε)).

Lemma 7. For all λ > 0 and q ∈ M, there is a neighborhood V 3 q such that, for all x, y ∈ V it
is

d2
X (x, TyM) ≤ (1 + λ)d4

I (x, y)|IIx|2 (34)

Proof. Let V be a geodesic neighborhood of radius smaller than ε, so that Lemma 6 holds. Define
the extension II∗x(r) = II∗x(rt + r⊥) := IIx(rt) of the second fundamental form to X , where
rt ∈ TxM and r⊥ ∈ (TxM)⊥ is the unique decomposition of r ∈ X into tangent and orthogonal
components.

By Lemma 6, given x, y ∈ V , x is in the (one-to-one) Monge patch my of y. Let x′ ∈ TyM be the
unique point such that my(x′) = x, and let r := (x′ − y)/‖x′ − y‖X . Since the domain of my is
convex, the curve γy,r : [0, ‖x′ − y‖X ] →M given by

γy,r(t) = y + tr + my(tr) = y + tr +
1
2
t2IIy(r) + o(t2)

is well-defined, where the last equality follows from the smoothness of II. Clearly, γy,r(‖x′ −
y‖X ) = x.

For 0 ≤ t ≤ ‖x′ − y‖X the length of γy,r([0, t]) is

L(γy,r([0, t])) =
∫ t

0

dτ‖ ˙γy,r(τ)‖X =
∫ t

0

dτ (‖r‖X + O(t)) = t · (1 + o(1)) (35)

(where o(1) → 0 as t → 0.) This establishes the closeness of distances in TyM to geodesic distance
on M. In particular, for any α > 0, y ∈ M, there is a sufficiently small geodesic neighborhood
N 3 y such that, for x ∈ N , it holds

‖x′ − y‖X ≤ ‖x− y‖X ≤ dI(x, y) ≤ (1 + λ)‖x′ − y‖X
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By the smoothness of II, for y ∈M and x ∈ Ny(δy), with 0 < δy < ε, it is

d2
X (x, TyM) = d2

X (γy,r(‖x′ − y‖X ), TyM) = ‖1
2

IIy(r)‖x′ − y‖2
X + o(‖x′ − y‖2

X )‖2

= ‖1
2

II∗y(x− y) + o(δ2
y)‖2

and therefore for any α > 0, there is a sufficiently small 0 < δy,α < ε such that, given any
x ∈ Ny(δy,α), it is

d2
X (x, TyM) ≤ (1 + α)‖1

2
II∗y(x− y)‖2 (36)

By the smoothness of II, and the same argument as in Lemma 6, there is a continuous choice of
0 < δy,α, and therefore a minimum value 0 < δα ≤ δy,α, for y ∈M.

Similarly, by the smoothness of II∗, for any α > 0 and y ∈M, there is a sufficiently small βy,α > 0
such that, for all x ∈ Ny(βy,α), it holds

‖1
2

II∗y(y − x)‖2 ≤ (1 + α)‖1
2

II∗x(y − x)‖2 (37)

By the argument of Lemma 6, there is a continuous choice of 0 < βy,α, and therefore a minimum
value 0 < βα ≤ βy,α, for y ∈M.

Finally, let α = λ/4, and restrict 0 < λ < 1 (larger λ are simply less restrictive.) For each q ∈ M,
let V = Nq(min{δα, βα}/2) 3 q be a sufficiently small geodesic neighborhood such that, for all
x, y ∈ V , Eqs. 36 and 37 hold.

Since α = λ/4 < 1/4, it is clearly (1 + α)2 ≤ (1 + λ), and therefore

d2
X (x, TyM) ≤ (1 + α)‖1

2
II∗y(y − x)‖2 ≤ (1 + α)2‖1

2
II∗x(y − x)‖2

≤ (1 + λ)
1
4
‖y − x‖4|IIx|2 ≤ (1 + λ)

1
4
d4

I (x, y)|IIx|2
(38)

where the second-to-last inequality follows from the definition of |II|.

Note that the same argument as that of Lemma 5 can be used here, with the goal of making sure
that, for sufficiently large k, every Voronoi region of each p ∈ Pk in the approximation satisfies
Equation 34. We may now finish the proof by using a similar argument to that of the codimension-
one case.

Let λ > 0. Consider a discrete set Pk ⊂M of size k that minimizes

g(Pk) =
∫
M

dµI(x)
1
4
p(x)|IIx|2 min

p∈Pk

d4

I
(x, p) (39)

Note once again that the distance and measure in Equation 39 match and therefore, since
p(x)|IIx|2/4 is continuous, we can apply Theorem 1 (with r = 4) in this case.

Let Fk := ∪q∈Pk
TqM. By Lemma 7 and Lemma 5, adapted to this case, there is k′ such that for all

k ≥ k′ it is

Eρ(Fk) =
∫
M

dµI(x)
1
4
p(x) min

p∈Pk

d2
X

(x, TpM)

≤ (1 + λ)
∫
M

dµI(x)
1
4
p(x)|IIx|2 min

p∈Pk

d4
I
(x, p)

Thm. 1,r=4

≤ (1 + λ)C

{∫
M

dµI(x)
[
1
4
p(x)|IIx|2

]d/(d+4)
}(d+4)/d

· k−4/d

(40)

where the last line follows from the fact that Pk has been chosen to minimize Equation 39.

Finally, by Hölder’s inequality, it is{∫
M

dµI(x)
[
1
4
p(x)|IIx|2

]d/(d+4)
}(d+4)/d

≤
{∫

M
dµI(x)p(x)

}{∫
M

dµI(x)
(

1
4
|IIx‖2

)d/4
}4/d

= ‖1
4
|II|2‖d/4
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and thus
Eρ(Fk) ≤ (1 + λ)C · (κM/k)4/d

where the total curvature κM :=
∫
M

dµI(x)
1
4
|IIx|d/2 is the geometric invariant of the manifold

(aside from the dimension) that controls the constant in the bound.

Since α > 0 and λ > 0 are arbitrary, Lemma 3 follows.

Proofs of Theorems 3 and 4

We use the results discussed in Section A to obtain the proof of Theorem 3 as follows. The proof
of Theorem 4 follows from the derivation in Section A, as well as the argument below, with κ1

M
substituted by κM , and is omitted in the interest of brevity.

Proof. By Lemmas 1 and 2, with probability 1− δ, it is

Eρ(Fn,k) ≤ 2n−1/2

(
k
√

2πd +

√
1
2

ln 1/δ

)
+ C(κ1

M
/k)4/d

≤ 2n−1/2k
√

2πd ·
√

1
2

ln 1/δ + C(κ1
M

/k)4/d

= 2 (8πd)2/(d+4)
Cd/(d+4) · n−2/(d+4) ·

√
1
2

ln 1/δ ·
(
κ1
M

)4/(d+4)

(41)

where the last line follows from choosing k to balance the two summands of the second line, as:

kn = n
d

2(d+4) ·
(

C

2
√

2πd

)d/(d+4)

·
(
κ1
M

)4/(d+4)
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