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Abstract

Value Pursuit Iteration (VPI) is an approximate value iteration algorithm that finds
a close to optimal policy for reinforcement learning problems with large state
spaces. VPI has two main features: First, it is a nonparametric algorithm that
finds a good sparse approximation of the optimal value function given a dictio-
nary of features. The algorithm is almost insensitive to the number of irrelevant
features. Second, after each iteration of VPI, the algorithm adds a set of functions
based on the currently learned value function to the dictionary. This increases the
representation power of the dictionary in a way that is directly relevant to the goal
of having a good approximation of the optimal value function. We theoretically
study VPI and provide a finite-sample error upper bound for it.

1 Introduction

One often has to use function approximation to represent the near optimal value function of the
reinforcement learning (RL) and planning problems with large state spaces. Even though the con-
ventional approach of using a parametric model for the value function has had successes in many
applications [1, 2, 3, 4], it has one main weakness: Its success critically depends on whether the cho-
sen function approximation method is suitable for the particular task in hand. Manually designing a
suitable function approximator, however, is difficult unless one has considerable domain knowledge
about the problem. To address this issue, the problem-dependent choice of function approximator
and nonparametric approaches to RL/Planning problems have gained considerable attention in the
RL community, e.g., feature generation methods of Petrik [5], Mahadevan and Maggioni [6], Parr
et al. [7], Geramifard et al. [8], and nonparametric regularization-based approaches of Jung and
Polani [9], Xu et al. [10], Farahmand et al. [11, 12], Taylor and Parr [13] .

One class of approaches that addresses the aforementioned problem is based on the idea of finding
a sparse representation of the value function in a large dictionary of features (or atoms). In this
approach, the designer does not necessarily know a priori whether or not a feature is relevant to the
representation of the value function. The feature, therefore, is simply added to the dictionary with
the hope that the algorithm itself figures out the necessary subset of features. The usual approach to
tackle irrelevant features is to use sparsity-inducing regularizers such as the l1-norm of the weights
in the case of linear function approximators, e.g., Kolter and Ng [14], Johns et al. [15], Ghavamzadeh
et al. [16]. Another approach is based on greedily adding atoms to the representation of the target
function. Examples of these approaches in the supervised learning setting are Matching Pursuit [17]
(or Pure Greedy Algorithm) and Orthogonal Matching Pursuit (OMP) [18, 19] (also known as Or-
thogonal Greedy Algorithm) (cf. Temlyakov [20] for more information on matching pursuit (or
greedy) type of algorithms). These greedy algorithms have successfully been used in the signal pro-
cessing and statistics/supervised machine learning communities for years, but their application in
the RL/Planning problems has just recently attracted some attention. Johns [21] empirically inves-
tigated some greedy algorithms, including OMP, for the task of feature selection using dictionary
of proto-value functions [6]. A recent paper by Painter-Wakefield and Parr [22] considers two al-
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gorithms (OMP-TD and OMP-BRM; OMP-TD is the same as one of the algorithms by [21]) in the
context of policy evaluation and provides some conditions under which OMP-BRM can find the
minimally sparse solution. Moreover, they show that OMP-TD cannot recover an s-sparse value
function in s iterations.

To address the problem of value function representation in RL when not much a priori knowledge
is available, we introduce the Value Pursuit Iteration (VPI) algorithm. VPI, which is an Approx-
imate Value Iteration (AVI) algorithm (e.g., [23]), has two main features. The first is that it is a
nonparametric algorithm that finds a good sparse approximation of the optimal value function given
a set of features (dictionary), by using a modified version of OMP. The second is that after each
iteration, the VPI algorithm adds a set of functions based on the currently learned value function to
the dictionary. This potentially increases the representation power of the dictionary in a way that is
directly relevant to the goal of approximating the optimal value function.

At the core of VPI is the OMP algorithm equipped with a model selection procedure. Using OMP
allows VPI to find a sparse representation of the value function in large dictionaries, even countably
infinite ones1. This property is very desirable for RL/Planning problems for which one usually does
not know the right representation of the value function, and so one wishes to add as many features
as possible and to let the algorithm automatically detect the best representation. A model selection
procedure ensures that OMP is adaptive to the actual difficulty of the problem.

The second main feature of VPI is that it increases the size of the dictionary by adding some basis
functions computed from previously learned value functions. To give an intuitive understanding of
how this might help, consider the dictionary B = {g1, g2, . . . }, in which each atom gi is a real-
valued function defined on the state-action space. The goal is to learn the optimal value function
by a representation in the form of Q =

∑
i≥1 wigi.

2 Suppose that we are lucky and the optimal
value function Q∗ belongs to the dictionary B, e.g., g1 = Q∗. This is indeed an ideal atom to have
in the dictionary since one may have a sparse representation of the optimal value function in the
form of Q∗ =

∑
i≥1 wigi with w1 = 1 and wi = 0 for i ≥ 2. Algorithms such as OMP can

find this sparse representation quite effectively (details will be specified later). Of course, we are
not usually lucky enough to have the optimal value function in our dictionary, but we may still use
approximation of the optimal value function. In the exact Value Iteration, Qk → Q∗ exponentially
fast(i.e., ‖Qk −Q∗‖∞ ≤ γk ‖Q0 −Q∗‖∞). This ensures that Qk and Qk+1 = T ∗Qk are close
enough, so one may use Qk to explain a large part ofQk+1 and use the other atoms of the dictionary
to “explain” the residual(it is easy to see that ‖T ∗Qk −Qk‖∞ ≤ (1 + γ)γk ‖Q∗ −Q0‖∞). In
an AVI procedure, however, the estimated value function sequence (Qk)k≥1 does not necessarily
converge to Q∗, but one may hope that it gets close to a region around the optimum. In that case,
we may very well use the dictionary of {Q1, . . . , Qk} as the set of candidate atoms to be used in the
representation of Qk+1. We show that adding these learned atoms does not hurt and may actually
help.

One may also interpret what VPI does as a form of deep representation learning. After the k-th
iteration of VPI, the resulting output Qk is provided as an input to the new iteration of learning.
This new input in addition to the the initial dictionary as well as all other estimated value functions
provide a rich input representation for the function approximator. As opposed to the conventional
deep learning procedures, we use a supervised signal to train each layer. Thus, one may consider VPI
as an extremely deep learning architecture for the optimal value function learning and representation.

To summarize, the algorithmic contribution of this paper is to introduce the VPI algorithm that finds
a sparse representation of the optimal value function in a huge function space and increases the
representation capacity of the dictionary problem-dependently. The theoretical contribution of this
work is to provide a finite-sample analysis of VPI and to show that the method is sound. We analyze
how the errors from earlier iterations affect the function approximation error of the current iteration.
This, alongside an analysis of the estimation error at each iteration, leads to an upper bound on the
error in approximating T ∗Qk by Qk+1 at each iteration of VPI. Finally, we show how these errors
are propagated through iterations and affect the performance loss of the resulting policy.

1From the statistical viewpoint and ignoring the computational difficulty of working with large dictionaries.
2The notation will be defined precisely in Section 2.
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2 Definitions

We follow the standard notation and definitions of Markov Decision Processes (MDP) and Rein-
forcement Learning (RL) (cf. [24]). The definitions can be found in Appendix E. We also need
some definitions regarding the function spaces and norms, which are defined later in this section.

For a space Ω with σ-algebra σΩ,M(Ω) denotes the set of all probability measures over σΩ. B(Ω)
denotes the space of bounded measurable functions w.r.t. (with respect to) σΩ and B(Ω, L) denotes
the subset of B(Ω) with bound 0 < L <∞.

A finite-action discounted MDP is a 5-tuple (X ,A, P,R, γ), where X is a measurable state space,
A is a finite set of actions, P : X ×A →M(X ) is the transition probability kernel,R : X ×A →
M(R) is the reward kernel, and γ ∈ [0, 1) is a discount factor. Let r(x, a) = E [R(·|x, a)], and
assume that r is uniformly bounded by Rmax. A measurable mapping π : X → A is called a
deterministic Markov stationary policy, or just a policy for short. A policy π induces the m-step
transition probability kernels (Pπ)m : X →M(X ) and (Pπ)m : X ×A →M(X ×A) form ≥ 1.

We use V π and Qπ to denote the value and action-value function of a policy π. We also use V ∗
and Q∗ for the optimal value and optimal action-value functions, with the corresponding optimal
policy π∗. A policy π is greedy w.r.t. an action-value function Q, denoted π = π̂(·;Q), if π(x) =
argmaxa∈AQ(x, a) holds for all x ∈ X (if there exist multiple maximizers, one of them is chosen in
an arbitrary deterministic manner). Define Qmax = Rmax/(1− γ). The Bellman optimality operator
is denoted by T ∗. We use (PV )(x) to denote the expected value of V after the transition according
to a probability transition kernel P . Also for a probability measure ρ ∈ M(X ), the symbol (ρP )
represents the distribution over states when the initial state distribution is ρ and we follow P for
a single step. A typical choice of P is (Pπ)m for m ≥ 1 (similarly for ρ ∈ M(X × A) and
action-value functions).

2.1 Norms and Dictionaries

For a probability measure ρ ∈M(X ), and a measurable function V ∈ B(X ), we define the Lp(ρ)-

norm (1 ≤ p < ∞) of V as ‖V ‖p,ρ ,
[∫
X |V (x)|p dρ(x)

]1/p
. The L∞(X )-norm is defined as

‖V ‖∞ , supx∈X |V (x)|. Similarly for ν ∈ M(X × A) and Q ∈ B(X × A), we define ‖·‖p,ν as
‖Q‖pp,ν ,

∫
X×A |Q(x, a)|pdν(x, a) and ‖Q‖∞ , sup(x,a)∈X×A |Q(x, a)|.

Let z1:n denote the Z-valued sequence (z1, . . . , zn). For Dn = z1:n, define the empirical norm of
function f : Z → R as ‖f‖pp,z1:n = ‖f‖pp,Dn , 1

n

∑n
i=1 |f(zi)|p. Based on this definition, one

may define ‖V ‖Dn (with Z = X ) and ‖Q‖Dn (with Z = X × A). Note that if Dn = Z1:n is
random with Zi ∼ ν, the empirical norm is random as well. For any fixed function f , we have
E
[
‖f‖p,Dn

]
= ‖f‖p,ν . The symbols ‖·‖ν and ‖·‖Dn refer to an L2-norm. When we do not want to

emphasize the underlying measure, we use ‖·‖ to denote an L2-norm.

Consider a Hilbert spaceH endowed with an inner product norm ‖·‖. We call a family of functions
B = {g1, g2, . . . , } with atoms gi ∈ H a dictionary. The class L1(B) = L1(B; ‖·‖) consists of those
functions f ∈ H that admits an expansion f =

∑
g∈B cgg with (cg) being an absolutely summable

sequence (these definitions are quoted from Barron et al. [25]; also see [26, 20]). The norm of a
function f in this space is defined as ‖f‖L1(B;‖·‖) , inf{

∑
g∈B |cg| : f =

∑
g∈B cgg}. To avoid

clutter, when the norm is the empirical norm ‖·‖Dn , we may useL1(B;Dn) instead ofL1(B; ‖·‖Dn),
and when the norm is ‖·‖ν , we may use L1(B; ν). We denote a ball with radius r > 0 w.r.t. the
norm of L1(B; ν) by Br(L1(B; ν)).

For a dictionary B, we introduce a fixed exhaustion B1 ⊂ B2 ⊂ . . . ⊂ B, with the number of atoms
|Bm| being m. If we index our dictionaries as Bk, the symbol Bk,m refers to the m-th element of
the exhaustion of Bk. For a real number α > 0, the space L1,α(B; ‖·‖) is defined as the set of
all functions f such that for all m = 1, 2, . . . , there exists a function h depending on m such that
‖h‖L1(Bm;‖·‖) ≤ C and ‖f − h‖ ≤ Cm−α. The smallest constant C such that these inequalities
hold defines a norm forL1,α(B; ‖·‖). Finally, we define the truncation operator βL : B(X )→ B(X )
for some real number L > 0 as follows. For any function f ∈ B(X ), the truncated function of f at
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the threshold level L is the function βLf : B(X )→ R such that for any x ∈ X ,

βLf(x) ,


L if f(x) > L,

f(x) if − L ≤ f(x) ≤ L,
−L if f(x) < −L.

(1)

We overload βL to be an operator from B(X × A) to B(X × A) by applying it component-wise,
i.e., βLQ(x, ·) , [βLQ(x, a1), . . . , βLQ(x, aA)]>.

3 VPI Algorithm

In this section, we first describe the behaviour of VPI in the ideal situation when the Bellman op-
timality operator T ∗ can be applied exactly in order to provide the intuitive understanding of why
VPI might work. Afterwards, we describe the algorithm that does not have access to the Bellman
optimality operator and only uses a finite sample of transitions.

VPI belongs to the family of AVI algorithms, which start with an initial action-value function Q0

and at each iteration k = 0, 1, . . . , approximately apply the Bellman optimality operator T ∗ to the
most recent estimate Qk to get a new estimate Qk+1 ≈ T ∗Qk. The size of the error between Qk+1

and T ∗Qk is a key factor in determining the performance of an AVI procedure.

Suppose that T ∗Qk can be calculated, but it is not possible to represent it exactly. In this case, one
may use an approximant Qk+1 to represent T ∗Qk. In this paper we would like to represent Qk+1

as a linear function of some atoms in a dictionary B = {g1, g2, . . . } (g ∈ H(X × A) and ‖g‖ = 1
for all g ∈ B), that is Qk+1 =

∑
g∈B cgg. Our goal is to find a representation that is as sparse as

possible, i.e., uses only a few atoms in B. From statistical viewpoint, the smallest representation
among all those that have the same function approximation error is desirable as it leads to smaller
estimation error. The goal of finding the sparsest representation, however, is computationally in-
tractable. Nevertheless, it is possible to find a “reasonable” suboptimal sparse approximation using
algorithms such as OMP, which is the focus of this paper.

The OMP algorithm works as follows. Let Q̃(0) = 0. For each i = 1, 2, . . . , define the
residual r(i−1) = T ∗Qk − Q̃(i−1). Define the new atom to be added to the representation as
g(i) ∈ Argmaxg∈B

∣∣〈 r(i−1) , g
〉∣∣, i.e., choose an element of the dictionary that has the maxi-

mum correlation with the residual. Here 〈 · , · 〉 is the inner product for a Hilbert space H(X × A)
to which T ∗Qk and atoms of the dictionary belong. Let Π(i) be the orthogonal projection onto
span(g(1), . . . , g(i)), i.e., Π(i)T ∗Qk , argminQ∈span(g(1),...,g(i)) ‖Q− T ∗Qk‖. We then have
Q̃(i) = Π(i)T ∗Qk. OMP continues iteratively.

To quantify the approximation error at the i-th iteration, we use the L1(B; ‖·‖)-norm of the target
function of the OMP algorithm, which is T ∗Qk in our case (with the norm being the one induced by
the inner product used in the OMP procedure). Recall that this class consists of functions that admit
an expansion in the form

∑
g∈B cgg and (cg) being an absolutely summable sequence. If T ∗Qk

belongs to the class of L1(B; ‖·‖), it can be shown (e.g., Theorem 2.1 of Barron et al. [25]) that

after i iterations of OMP, the returned function Q̃(i) is such that ‖Q̃(i) − T ∗Qk‖ ≤
‖T∗Qk‖L1(B;‖·‖)√

i+1
.

The problem with this result is that it requires T ∗Qk to belong to L1(B; ‖·‖). This depends on how
expressive the dictionary B is. If it is not expressive enough, we still would like OMP to quickly
converge to the best approximation of T ∗Qk /∈ L1(B; ‖·‖) in L1(B; ‖·‖). Fortunately, such a result
exists (Theorem 2.3 by Barron et al. [25], quoted as Lemma 4 in Appendix A) and we use it in the
proof of our main result.

We now turn to the more interesting case when we do not have access to T ∗Qk. Instead we
are only given a set of transitions in the form of D(k)

n = {(X(k)
i , A

(k)
i , R

(k)
i , X ′i

(k)
)}ni=1, where

(X
(k)
i , A

(k)
i ) are drawn from the sampling distribution ν ∈ M(X × A), X ′i ∼ P (·|Xi, Ai), and

Ri ∼ R(·|Xi, Ai). Instead of using T ∗Qk, we use the empirical Bellman operator for the dataset
D(k)
n . The operator is defined as follows.

Definition 1 (Empirical Bellman Optimality Operator). Let Dn =
{(X1, A1, R1, X

′
1), . . . , (Xn, An, Rn, X

′
n)}, defined similarly as above. Define the ordered multi-
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Algorithm 1 Value Pursuit Iteration(B0,m, {σi}m
′

i=1, ν,K)

Input: Initial dictionary B0, Number of dictionary atoms used m, Link functions {σi}m
′

i=1, State-
action distribution ν, Number of iterations K.
Return: QK
Q0 ← 0.
B′0 ← ∅.
for k = 0, 1, . . . ,K − 1 do

Construct a dataset D(k)
n =

{
(X

(k)
i , A

(k)
i , R

(k)
i , X ′i

(k)
)
}n
i=1

, (X
(k)
i , A

(k)
i )

i.i.d.∼ ν

Q̂
(0)
k+1 ← 0

// Orthogonal Matching Pursuit loop
Normalize elements of B0,m and B′k according to ‖·‖D(k)

n
and call them B̂k and B̂′k.

for i = 1, 2, . . . , c1n do
r(i−1) ← T̂ ∗Qk − Q̂(i−1)

k+1

g(i) ← Argmaxg∈B̂k
⋃
B̂′k

∣∣∣〈 r(i−1) , g
〉
D(k)
n

∣∣∣
Q̂

(i)
k+1 ← Π(i)T̂ ∗Qk {Π(i): Projection onto span(g(1), . . . , g(i))}

end for
i∗ ← argmini≥1

{∥∥∥βQmaxQ̂
(i)
k+1 − T̂ ∗Qk

∥∥∥2

D(k)
n

+ c2(Qmax) i ln(n)
n

}
{Complexity Regularization}

Qk+1 ← Q̂
(i∗)
k+1

B′k+1 ← B′k
⋃
{σi(βQmaxQk+1;Bk

⋃
B′k)}m

′
i=1 {Extending the dictionary}

end for

set Sn = {(X1, A1), . . . , (Xn, An)}. The empirical Bellman optimality operator T̂ ∗ : Sn → Rn is
defined as (T̂ ∗Q)(Xi, Ai) , Ri + γmaxa′ Q(X ′i, a

′) for 1 ≤ i ≤ n.

Since E
[
T̂ ∗Qk(X

(k)
i , A

(k)
i )

∣∣Qk, X(k)
i , A

(k)
i

]
= T ∗Qk(X

(k)
i , A

(k)
i ), we can solve a regression

problem and find an estimate forQk+1, which is close T ∗Qk. This regression problem is the core of
the family of Fitted Q-Iteration (FQI) algorithms, e.g., [23, 12]. In this paper, the regression function
at each iteration is estimated using a modified OMP procedure introduced by Barron et al. [25].

We are now ready to describe the VPI algorithm (Algorithm 1). It gets as input a predefined dictio-
nary B0. This can be a dictionary of wavelets, proto-value functions, etc. The size of this dictionary
can be countably infinite. It also receives an integer m, which specifies how many atoms of B0

should be used by the algorithm. This defines the effective dictionary B0,m. This value can be set
to m = dnae for some finite a > 0, so it can actually be quite large. This value shows that the
effective size of the dictionary can grow even faster than the number of samples (but not exponen-
tially faster).VPI also receives K, the number of iterations, and ν, the sampling distribution. For
the simplicity of analysis, we assume that the sampling distribution is fixed, but in practice one may
change this sampling distribution after each iteration (e.g., sample new data according to the latest
policy). Finally, VPI gets a set of m′ link functions σi : B(X × A, Qmax) → B(X × A, Qmax) for
some m′ that is smaller than m/K. We describe the role of link functions shortly.

At the k-th iteration of the algorithm, we perform OMP for c1n iterations (c1 > 0), similar to
what is described above with the difference that instead of using T ∗Qk as the target, we use T̂ ∗Qk
over empirical samples.3 This means that we use the empirical inner product 〈Q1 , Q2 〉D(k)

n
,

1
n

∑n
i=1 |Q1(Xi, Ai) · Q2(Xi, Ai)| for (Xi, Ai) ∈ D(k)

n and the empirical orthogonal projection.4

The result would be a sequence (Q̂
(i)
k+1)i≥0. Next, we perform a model selection procedure to choose

the best candidate. This can be done in different ways such as using a separate dataset as a validation
3The value of c1 depends only on Qmax and a. We do not explicitly specify it since the value that is

determined by the theory shall be quite conservative. One may instead find it by the trial and error. Moreover,
in practice we may stop much earlier than n iterations.

4When the number of atoms is larger than the number of samples (i > n), one may use the Moore–Penrose
pseudoinverse to perform the orthogonal projection.
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set. Here we use a complexity regularization technique that penalizes more complex estimates (those
that have more atoms in their representation). Note that we use the truncated estimate βQmaxQ̂

(i)
k+1 in

the model selection procedure (cf. (1)). This is required for the theoretical guarantees. The outcome
of this model selection procedure will determine Qk+1.

Finally we use link functions {σi}m
′

i=1 to generate m′ new atoms, which are vector-valued Qmax-
bounded measurable functions from X × A to R|A|, to be added to the learned dictionary B′k.
The link functions extract “interesting” aspects of Qk+1, potentially by considering the current
dictionary Bk

⋃
B′k. VPI is quite flexible in how the new atoms are generated and how large m′ can

be. The theory allows m′ to be in the order of na (a > 0), so one may add many potentially useful
atoms without much deterioration in the performance. Regarding the choice of the link functions,
the theory requires that at least Qk+1 itself is being added to the dictionary, but it leaves other
possibilities open. For example, one might apply nonlinearities (e.g., sigmoid functions) to Qk+1.
Or one might add atoms localized in parts of the state-action space with high residual errors – a
heuristic which has been used previously in basis function construction. This procedure continues
forK iterations and the outcome will beQK . In the next section, we study the theoretical properties
of the greedy policy w.r.t. QK , i.e., πK = π̂(·;QK).
Remark 1 (Comparison of VPI with FQI). Both VPI and FQI are indeed instances of AVI. If we
compare VPI with the conventional implementation of FQI that uses a fixed set of linear basis
functions, we observe that FQI is the special case of VPI in which all atoms in the dictionary are
used in the estimation. As VPI has a model selection step, its chosen estimator is not worse than
FQI’s (up to a small extra risk) and is possibly much better if the target is sparse in the dictionary.
Moreover, extending the dictionary decreases the function approximation error with negligible effect
on the model selection error. The same arguments apply to many other FQI versions that use a fixed
data-independent set of basis functions and do not perform model selection.

4 Theoretical Analysis

In this section, we first study how the function approximation error propagates in VPI (Section 4.1)
and then provide a finite-sample error upper bound as Theorem 3 in Section 4.2. All the proofs are
in the appendices.

4.1 Propagation of Function Approximation Error

In this section, we present tools to upper bound the function approximation error at each iteration.
Definition 2 (Concentrability Coefficient of Function Approximation Error Propagation). (I) Let ν
be a distribution over the state-action pairs, (X,A) ∼ ν, νX be the marginal distribution of X , and
πb(·|·) be the conditional probability of A given X . Further, let P be a transition probability kernel
P : X × A → M(X) and Px,a = P (·|x, a). Define the concentrability coefficient of one-step
transitions w.r.t. ν by

Cν→∞ =

(
E

[
sup

(y,a′)∈X×A

∣∣∣∣ 1

πb(a′|y)

dPX,A
dνX

(y)

∣∣∣∣
]) 1

2

,

where Cν→∞ = ∞ if Px,a is not absolutely continuous w.r.t. νX for some (x, a) ∈ X × A, or
if πb(a′|y) = 0 for some (y, a′) ∈ X × A. (II) Furthermore, for an optimal policy π∗ and an
integer m ≥ 0, let ν(Pπ

∗
)m ∈M(X ×A) denote the future state-action distribution obtained after

m-steps of following π∗. Define

cν(m) ,

∥∥∥∥∥d
(
ν(Pπ

∗
)m
)

dν

∥∥∥∥∥
∞

.

If the future state-action distribution ν(Pπ
∗
)m is not absolutely continuous w.r.t. ν, we let cν(m) =

∞.

The constant Cν→∞ is large if after transition step, the future states can be highly concentrated at
some states where the probability of taking some action a′ is small or dνX is small. Hence, the name
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“concentrability of one-step transitions”. The definition of Cν→∞ is from Chapter 5 of Farahmand
[27]. The constant cν(m) shows how much we deviate from ν whenever we follow an optimal policy
π∗. It is notable that if ν happens to be the stationary distribution of the optimal policy π∗ (e.g., the
samples are generated by an optimal expert), cν(m) = 1 for all m ≥ 0.

We now provide the following result that upper bounds the error caused by using Qk (which is the
newly added atom to the dictionary) to approximate T ∗Qk. The proof is provided in Appendix B.
Lemma 1. Let (Qi)

k
i=0 ⊂ B(X × A, Qmax) be a Qmax-bounded sequence of measurable action-

value functions. Define εi , T ∗Qi −Qi+1 (0 ≤ i ≤ k − 1). Then,

‖Qk − T ∗Qk‖2ν ≤
(1 + γCν→∞)

2

1− γ

[
k−1∑
i=0

γk−1−icν(k − 1− i) ‖εi‖2ν + γk(2Qmax)
2

]
.

If there was no error at earlier iterations (i.e., ‖εi‖ν = 0 for 0 ≤ i ≤ k−1), the error ‖Qk − T ∗Qk‖2ν
would be O(γkQ2

max), which is decaying toward zero with a geometrical rate. This is similar to the
behaviour of the exact VI, i.e., ‖T ∗Qk −Qk‖∞ ≤ (1 + γ)γk ‖Q∗ −Q0‖∞.

The following result is Theorem 5.3 of Farahmand [27]. For the sake of completeness, we provide
the proof in Appendix B.

Theorem 2. Let (Qk)k−1
k=0 be a sequence of state-action value functions and define εi , T ∗Qi −

Qi+1 (0 ≤ i ≤ k). Let F |A| : X × A → R|A| be a subset of vector-valued measurable functions.
Then,

inf
Q′∈F |A|

‖Q′ − T ∗Qk‖ν ≤ inf
Q′∈F |A|

∥∥∥Q′ − (T ∗)(k+1)Q0

∥∥∥
ν

+

k−1∑
i=0

(γ Cν→∞)
k−i ‖εi‖ν .

This result quantifies the behaviour of the function approximation error and relates it to the function
approximation error of approximating (T ∗)k+1Q0 (which is a deterministic quantity depending only
on the MDP itself, the function space F |A|, and Q0) and the errors of earlier iterations. This allows
us to provide a tighter upper bound for the function approximation error compared to the so-called
inherent Bellman error supQ∈F |A| infQ′∈F |A| ‖Q′ − T ∗Q‖ν introduced by Munos and Szepesvári
[28], whenever the errors at previous iterations are small.

4.2 Finite Sample Error Bound for VPI

In this section, we provide an upper bound on the performance loss ‖Q∗ −QπK‖1,ρ. This perfor-
mance loss indicates the regret of following the policy πK instead of an optimal policy when the
initial state-action is distributed according to ρ. We define the following concentrability coefficients
similar to Farahmand et al. [29].
Definition 3 (Expected Concentrability of the Future State-Action Distribution). Given
ρ, ν ∈ M(X × A), m ≥ 0, and an arbitrary sequence of stationary policies
(πm)m≥1, let ρPπ1Pπ2 . . . Pπm ∈ M(X × A) denote the future state-action distribu-
tion obtained after m transitions, when the first state-action pair is distributed accord-
ing to ρ and then we follow the sequence of policies (πk)mk=1. For integers m1,m2 ≥
1, policy π and the sequence of policies π1, . . . , πk define the concentrability coefficients

cVI1,ρ,ν(m1,m2;π) ,

(
E

[∣∣∣∣d
(
ρ(Pπ)m1 (Pπ

∗
)m2

)
dν (X,A)

∣∣∣∣2
]) 1

2

and cVI2,ρ,ν(m1;π1, . . . , πk) ,(
E
[∣∣∣d(ρ(Pπk )m1Pπk−1Pπk−2 ···Pπ1 )

dν (X,A)
∣∣∣2]) 1

2

, where (X,A) ∼ ν. If the future state-action dis-

tribution ρ(Pπ)m1(Pπ
∗
)m2 (similarly, if ρ(Pπk)m1Pπk−1Pπk−2 · · ·Pπ1 ) is not absolutely continu-

ous w.r.t. ν, we let cVI1,ρ,ν(m1,m2;π) =∞ (similarly, cVI2,ρ,ν(m1;π1, . . . , πk) =∞).

Assumption A1 We make the following assumptions:
• For all values of 0 ≤ k ≤ K − 1, the dataset used by VPI at each iteration is
D(k)
n = {(X(k)

i , A
(k)
i , R

(k)
i , X ′i

(k)
)}ni=1 with independent and identically distributed (i.i.d.)
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samples (X
(k)
i , A

(k)
i ) ∼ ν ∈ M(X × A) and X ′i

(k) ∼ P (·|X(k)
i , A

(k)
i ) and R

(k)
i ∼

R(·, ·|X(k)
i , A

(k)
i ) for i = 1, 2, . . . , n.

• For 1 ≤ k, k′ ≤ K − 1 and k 6= k′, the datasets D(k)
n and D(k′)

n are independent.

• There exists a constant Qmax ≥ 1 such that for any Q ∈ B(X ×A;Qmax), |T̂ ∗Q(X,A)| ≤
Qmax almost surely (a.s).

• For all g ∈ B0, ‖g‖∞ ≤ L <∞.

• The number of atoms m used from the dictionary B0 is m = dnae for some finite a > 0.
The number of link functions m′ used at each iteration is at most m/K.

• At iteration k, each of the link functions {σi}m
′

i=1 maps βQmaxQk+1 and the dictionary
Bk
⋃
B′k to an element of the space of vector-valued Qmax-bounded measurable functions

X ×A → R|A|. At least one of the mappings returns βQmaxQk+1.

Most of these assumptions are mild and some of them can be relaxed. The i.i.d. assumption can be
relaxed using the so called independent block technique [30], but it results in much more complicated
proofs. We conjecture that the independence of datasets at different iterations might be relaxed as
well under certain condition on the Bellman operator (cf. Section 4.2 of [28]). The condition on the
number of atoms m and the number of link functions being polynomial in n are indeed very mild.

In order to compactly present our result, we define ak = (1−γ) γK−k−1

1−γK+1 for 0 ≤ k < K. Note that
the behaviour of ak ∝ γK−k−1, so it gives more weight to later iterations. Also define C1(k) ,∑k−1
i=0 γ

k−iC
2(k−i)
ν→∞ (k = 1, 2, . . . ) and C2 , (1+γCν→∞)2

1−γ . For 0 ≤ s ≤ 1, define

CVI,ρ,ν(K; s) =

(
1− γ

2
)2 sup
π′1,...,π

′
K

K−1∑
k=0

a
2(1−s)
k

[ ∑
m≥0

γm
(
cVI1,ρ,ν(m,K − k;π′K) + cVI2,ρ,ν(m+ 1;π′k+1, . . . , π

′
K)
) ]2

,

where in the last definition the supremum is taken over all policies. The following theorem is the
main theoretical result of this paper. Its proof is provided in Appendix D using tools developed in
Appendices A, B, and C.
Theorem 3. Consider the sequence (Qk)Kk=0 generated by VPI (Algorithm 1). Let Assumptions A1
hold. For any fixed 0 < δ < 1, recursively define the sequence (bi)

K
i=0 as follows:

b20 , c1Q
3
max

√
log
(
nK
δ

)
n

+ 3 inf
Q′∈BQmax (L1(B0,m;ν))

‖Q′ − T ∗Q0‖
2
ν ,

b2k , c2Q
3
max

√
log
(
nK
δ

)
n

+

c3 min

{
inf

Q′∈BQmax (L1(B0,m;ν))

∥∥Q′ − (T ∗)k+1Q0

∥∥2

ν
+ C1(k)

k−1∑
i=0

γk−ib2i ,

C2

(
k−1∑
i=0

γk−1−icν(k − 1− i) b2i + γk(2Qmax)
2

)}
, (k ≥ 1)

for some c1, c2, c3 > 0 that are only functions of Qmax and L. Then, for any k = 0, 1, . . . ,K − 1,
it holds that ‖Qk+1 − T ∗Qk‖2ν ≤ b2k, with probability at least 1 − kδ

K . Furthermore, define the
discounted sum of errors as E(s) ,

∑K−1
k=0 a2s

k bk (for s ∈ [0, 1]). Choose ρ ∈ M(X × A). The
ρ-weighted performance loss of πK is upper bounded as

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
inf

s∈[0,1]
C

1/2
VI,ρ,ν(K; s)E1/2(s) + 2γKQmax

]
,

with probability at least 1− δ.
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The value of bk is a deterministic upper bound on the error ‖Qk+1 − T ∗Qk‖ν of each iteration of
VPI. We would like bk to be close to zero, because the second part of the theorem implies that
‖Q∗ −QπK‖1,ρ would be small too. If we study b2k, we observe two main terms: The first term,

which behaves as
√

log(nK/δ)
n , is the estimation error. The second term describes the function

approximation error. For k ≥ 1, it consists of two terms from which the minimum is selected.
The first term inside min{·, ·} describes the behaviour of the function approximation error when
we only use the predefined dictionary B0,m to approximate T ∗Qk (see Theorem 2). This means
that this term ignores all learned atoms during the process.The second term describes the behaviour
of the function approximation error when we only consider Qk as the approximant of T ∗Qk (see
Lemma 1). The error caused by this approximation depends on the error made in earlier iterations.
The current analysis only considers the atom Qk from the learned dictionary, but VPI may actually
use other atoms to represent T ∗Qk. This might lead to much smaller function approximation errors.
Hence, our analysis shows that in terms of function approximation error, our method is sound and
superior to not increasing the size of the dictionary. However, revealing the full power of VPI
remains as future work. Just as an example, if B0 is complete in L2(ν), by letting n,m → ∞ both
the estimation error and function approximation error goes to zero and the method is consistent and
converges to the optimal value function. Finally, notice that the effect of (bk) on the performance
loss ‖Q∗ −QπK‖1,ρ is quite the same for all AVI procedures (cf. [29]).

5 Conclusion

This work introduced VPI, an approximate value iteration algorithm that aims to find a close to
optimal policy using a dictionary of atoms (or features). The VPI algorithm uses a modified Orthog-
onal Matching Pursuit that is equipped with a model selection procedure. This allows VPI to find a
sparse representation of the value function in large, and potentially overcomplete, dictionaries. We
theoretically analyzed VPI and provided a finite-sample error upper bound for it. The error bound
shows the effect of the number of samples as well as the function approximation properties of the
predefined dictionary, and the effect of learned atoms.

This paper is a step forward to better understanding how overcomplete dictionaries and sparsity can
effectively be used in the RL/Planning context. A more complete theory describing the effect of
adding atoms to the dictionary remains to be established. We are also planning to study VPI’s em-
pirical performance, and comparing with other feature construction methods. We note that our main
focus was on the statistical properties of the algorithm, not on computational efficiency; optimizing
computation speed will be an interesting topic for future investigation.

A Statistical Properties of Orthogonal Matching Pursuit

In this section, we first describe OMP and report a result on its approximation theoretic property.
We then focus on the regression setting and show that OMP can be used as a regression procedure.
The results of this section closely follow the paper by Barron et al. [25] with the difference that 1)
Theorem 6 holds in high probability instead of in expectation, and 2) as far as we know, Lemma 7
is new.

Here we briefly describe the OMP algorithm. Consider a dictionary B = {g1, g2, . . . } in some
Hilbert spaceH. Assume that ‖g‖ = 1 for all g ∈ B. The OMP algorithms approximates a function
f ∈ H as follows: Let f0 = 0. For each i = 1, 2, . . . , define the residual ri−1 = f − fi−1. Let
gi = Argmaxg∈B |〈 ri−1 , g 〉|. Define Πi as the orthogonal projection onto span(gi, . . . , gi). We
then have fi = Πif . The procedure continues.

The following result quantifies the function approximation error of the OMP algorithm.
Lemma 4 (Theorem 2.3 by Barron et al. [25]). For all f ∈ H and any h ∈ L1(B; ‖·‖), the error of
the OMP algorithm satisfies

‖fi − f‖2 ≤ ‖h− f‖2 +
4 ‖h‖2L1(B;‖·‖)

i
. (i = 1, 2, . . . )

We now turn to the statistical setting and the problem of regression. Suppose we are given a dataset
Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. samples with (Xi, Yi) ∼ ν ∈ M(X × Y) with X ⊂ Rd
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and Y ⊂ R. Denote the regression function by m(x) = E [Y |X = x]. We assume that |Y | ≤ L
almost surely. Moreover, without loss of generality we assume that L ≥ 1.

We now consider an OMP procedure that uses dictionary B of size |B| and provides an estimate
m̂ of the regression function with guaranteed L2(νX ) error upper bound for ‖m− m̂‖2,νX . The
conventional OMP algorithms adds a new element from the dictionary to the representation at each
iteration. In the approximation theoretical framework, adding more elements to the representation
is desirable, but in the learning scenario it may lead to overfitting. Thus, we use a complexity
regularization-based model selection procedure to find the proper size of representation. The algo-
rithm is as follows:

1. Apply OMP using the dictionary B and the empirical inner product 〈 f , g 〉Dn to obtain a
sequence of estimates (m̂k)k≥0.

2. Define

k∗ ← argmin
k≥0

{‖Yi − βLm̂k‖2Dn + Penn(k)}, (2)

in which Penn(k) , c1
k log(n|B|)

n with some c1 > 0, which is a function of only L.
3. Return m̂ = βLm̂k∗ .

We define some functions spaces that shall be used in the statistical analysis of OMP. For any dictio-
nary B, let Λ ⊂ B and define GΛ , span{g : g ∈ Λ}. Let βLGΛ be the set of L-truncated functions
from GΛ. Define Fk ,

⋃
Λ⊂D;|Λ|≤k βLGΛ, which is the space of all L-truncated functions that can

be written as a linear combination of at most k atoms from B. Notice that Fk is the function space
to which βLm̂k belongs, i.e., βLm̂k ∈ Fk. The following lemma, which is borrowed from Barron
et al. [25], upper bounds the covering number of Fk.
Lemma 5 (Covering number of Fk – Lemma 3.3 of Barron et al. [25]). Suppose X ⊂ Rd and |B|,
the number of elements in the dictionary, is finite. For any probability measure µ ∈ M(X ), for any
0 < ε < L/4, we have

N (ε,Fk, ‖·‖1,µ) ≤ 3|B|k
(

2 eL

ε
log

(
3 eL

ε

))k+1

.

The following theorem is a slight modification of Theorem 3.1 of Barron et al. [25]. The difference
is that this current result holds with high probability instead of in expectation.
Theorem 6 (OMP). Consider the OMP procedure described above with a finite |B| and k∗ selected
according to (2). There exist c1 > 0, depending only on L, and constants c2, c3 > 0 such that for the
choice of Penn(k) = c1k log(n|B|)

n , for any 0 < δ < 1 and for all k = 1, 2, 3, . . . and h ∈ span(B),
the estimator m̂ satisfies

‖m̂−m‖2νX ≤
8 ‖h‖2L1(B;Dn)

k
+ 3 ‖h−m‖2νX +

c2 k log(n|B|) + c3 L
4 log( 1

δ )

n
,

with probability at least 1− δ.

Proof. In this proof, Dn = {Xi, Yi} ∼ ν are i.i.d. samples and (X,Y ) ∼ ν and is independent
from Dn. We decompose the error ‖m̂−m‖22,νX as∫

X
|m̂(x)−m(x)|2dνX (x) = E

[
|m̂(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]
= T1,n + T2,n

with

T1,n , E
[
|m̂(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]
− 2

(
1

n

n∑
i=1

|Yi − m̂(Xi)|2 − |Yi −m(Xi)|2 + Penn(k∗)

)
,

T2,n , 2

(
1

n

n∑
i=1

|Yi − m̂(Xi)|2 − |Yi −m(Xi)|2 + Penn(k∗)

)
.
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Since m̂ = βLm̂k∗ is the minimizer of (2) and |Y | ≤ L almost surely (so truncation does not
increase the error), for all k = 1, 2, 3, . . . , we have

T2,n = 2

(
1

n

n∑
i=1

|Yi − βLm̂k∗(Xi)|2 − |Yi −m(Xi)|2 + Penn(k)

)

≤ 2

(
1

n

n∑
i=1

|Yi − βLm̂k(Xi)|2 − |Yi −m(Xi)|2 + Penn(k)

)

≤ 2

(
1

n

n∑
i=1

|Yi − m̂k(Xi)|2 − |Yi −m(Xi)|2 + Penn(k)

)
.

Let h ∈ L2(νX ). Decompose the R.H.S. of the above inequality to T3,n + T4,n defined as

1

2
T3,n =

1

n

n∑
i=1

|Yi − m̂k(Xi)|2 − |Yi − h(Xi)|2,

1

2
T4,n =

1

n

n∑
i=1

|Yi − h(Xi)|2 − |Yi −m(Xi)|2 + Penn(k).

We now upper bound T1,n, T3,n, and T4,n.

Lemma 4 indicates that

1

2
T3,n ≤

4 ‖h‖2L1(B;Dn)

k
. (3)

We now turn to proving a high probability upper bound for T4,n. Define Wi = |h(Xi) − Yi|2 −
|m(Xi) − Yi|2, so we have 1

2T4,n = 1
n

∑n
i=1Wi + Penn(k). It can be seen that E [Wi] =

E
[
|h(Xi)−m(Xi)|2

]
. We want to show that T4,n is not much larger than its expectation. We

can use Bernstein inequality (e.g., see Lemma A.2 of Györfi et al. [31]) to provide such a guarantee
with a high probability.

It is easy to see that |Z| ≤ 4L2 a.s. Moreover, Var [Wi] ≤ E
[
|Wi|2

]
=

E
[
(h(Xi)− 2Yi +m(Xi))

2
(h(Xi)−m(Xi))

2
]

≤ (4L)2E
[
|h(Xi)−m(Xi)|2

]
=

(4L)2E [Wi], i.e., the variance of Wi is “controlled” by its expectation. This is the key to
obtain a fast rate using Bernstein inequality. For t > 0, we have the following sequence of
inequalities:

P

{
1

n

n∑
i=1

Wi − E [W1] ≥ 1

2
t+

1

2
E [W1]

}
≤ P

{
1

n

n∑
i=1

Wi − E [W1] ≥ 1

2
t+

1

32L2
Var [W1]

}

≤ exp

(
−

n
(

1
2 t+ 1

32L2 Var [W1]
)2

2Var [W1] + 2
3 (4L2)

(
1
2 t+ 1

32L2 Var [W1]
))

≤ exp

(
−

n
(

1
2 t+ 1

32L2 Var [W1]
)2

64L2
(

1
2 t+ 1

32L2 Var [W1]
)

+ 2
3 (4L2)

(
1
2 t+ 1

32L2 Var [W1]
))

= exp

(
−
n
(

1
2 t+ 1

32L2 Var [W1]
)

(64 + 8
3 )L2

)
≤ exp

(
− n t

(128 + 16
3 )L2

)
.

So for any 0 < δ1 < 1, we have

T4,n ≤ 3 ‖h−m‖2νX + 2Penn(k) +
800L2

3n
ln

(
1

δ1

)
, (4)

with probability at least 1− δ1.
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We use Theorem 10 alongside Lemma 5 to upper bound T1,n. Since k∗ is random, we use the union
bound over all k ≥ 1. For t ≥ 1/t, we have

P {T1,n > t} ≤
∑
k≥1

P

{
∃f ∈ Fk : E

[
|f(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]
−

(
1

n

n∑
i=1

|f(Xi)− Yi|2 − |m(Xi)− Yi|2
)
≥

1

2

(
t+ 2Penn(k) + E

[
|f(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

])}

≤
∑
k≥1

14 sup
x1:n

N
(

t

40L
,Fk, ‖·‖1,x1:n

)
exp

(
−

( 1
2 )2(1− 1

2 )( t2 + 2Penn(k))n

214(1 + 1
2 )L4

)

≤ 14 exp

(
−c1nt

2

)∑
k≥1

3|B|k (2eLn log(3eLn))
k+1

exp (−2c1Penn(k)n) ,

in which c1 = 1/(568L4). The first inequality is the application of the union bound on k and
reorganizing terms in T1,n. The second inequality is the application of Theorem 10 with the choice
of ε = 1/2, β = t/2 and α = t/2 + 2Penn(k). In the third inequality, we used t ≥ 1/n alongside
Lemma 5, and separated terms that are a function of k and exp(−c1nt/2).

With the choice of Penn(k) = c2k log(n|B|)
n (with c2 being a function of only L), we have

−2c1Penn(k)n + k log(3|B|) + (k + 1) log(2eLn log(3eLn)) ≤ −2 log k, which entails that the
above summation is smaller than the constant π2/6. As a result, P {T1,n > t} ≤ 7π2

3 exp(− c1nt2 ).
Thus, there exists a constant c3 > 0 such that for any fixed 0 < δ2 < 1/2, it holds that

T1,n ≤
2 log(7π2

3δ2
)

c1 n
+

1

n
≤
c3L

4 log( 1
δ2

)

n
, (5)

with probability at least 1− δ2. Let δ1 = δ2 = δ/2, and invoke (3), (4), and (5) to obtain the desired
result.

The following lemma upper bounds the L1-norm of a function w.r.t. the empirical measure Dn ∼ ν
by its L1-norm w.r.t. ν.

Lemma 7. LetDn = {X1, . . . , Xn} withXi
i.i.d.∼ ν. Consider a finite dictionary B = {g1, . . . , g|B|}

of normalized atoms (‖g‖ν = 1 for all g ∈ B). Assume that the atoms are bounded, i.e., ‖g‖∞ ≤

L < ∞ for all g ∈ B. Define the empirical dictionary B̂ =

{
g1

‖g1‖Dn
, . . . ,

g|B|

‖g|B|‖Dn

}
. Consider a

fixed function f : X → R that belongs to L1(B; ν). For any fixed 0 < δ < 1, it holds that

‖f‖L1(B̂;Dn) ≤

(
1 + L

√
8 log(|B|/δ)

3n

)
‖f‖L1(B;ν) ,

with probability at least 1− δ.

Proof. Because f ∈ L1(B; ν), we can represent it as f =
∑|B|
i=1 cigi. Likewise, since B̂ =

{ĝ1, . . . , ĝ|B|} with ĝi = gi
‖gi‖Dn

, we have f =
∑|B|
i=1 ĉiĝi with the choice of ĉi = ci ‖gi‖Dn

(note that |B̂| = |B|). We now uniformly upper bound(
ĉi
ci

)2

=
‖gi‖2Dn
‖gi‖2ν [= 1]

=
1
n

∑n
j=1 g

2
i (Xi)

E [g2
i (X)]

.
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Use the union bound and Bernstein inequality (e.g., Lemma A.2 of Györfi et al. [31]) to get that for
t > 0, we have

P

{
max

1≤i≤|B|

1
n

∑n
j=1 g

2
i (Xi)

E [g2
i (X)]

> 2 + t

}

≤|B| max
1≤i≤|B|

exp

(
−

n
(
E
[
g2
i (X)

]
(1 + t)

)2
2Var [g2

i (X)] + 2
3L

2 (E [g2
i (X)] (1 + t))

)

≤|B| max
1≤i≤|B|

exp

(
−

n
(
E
[
g2
i (X)

]
(1 + t)

)2
2L2E [g2

i (X)] + 2
3L

2 (E [g2
i (X)] (1 + t))

)

≤|B| max
1≤i≤|B|

exp

(
−

n
(
E
[
g2
i (X)

]
(1 + t)

)2
(2 + 2

3 )L2 (E [g2
i (X)] (1 + t))

)
≤ |B| max

1≤i≤|B|
exp

(
−3n(1 + t)

8L2

)
.

Here we used ‖gi‖∞ ≤ L in the first inequality, Var
[
g2
i (X)

]
≤ L2 in the second inequality, and

1 + t > 1 in the third inequality. Finally, we benefitted from the fact that the atoms gi ∈ B are
normalized according to ‖·‖ν , i.e., E

[
g2
i (X)

]
= 1.

Thus, for any fixed 0 < δ < 1, we get max1≤i≤|B|(
ĉi
ci

)2 ≤ 2+t ≤ 1+ 8L2 log(|B|/δ)
3n , with probability

at least 1− δ. On the event that this inequality holds, we have

‖f‖L1(B̂;Dn) = inf


|B|∑
i=1

|c̃i| : f =

|B|∑
i=1

c̃iĝi

 ≤
|B|∑
i=1

|ĉi| ≤

(
1 + L

√
8 log(|B|/δ)

3n

) |B|∑
i=1

|ci|.

Take infimum over all possible admissible (ci)
B
i=1 to get the desired result.

B Propagation of Function Approximation Error: Proofs for Section 4.1

We first present a lemma which shows that the Bellman optimality operator is Lipschitz when viewed
as an operator of the Banach space of action-value functions equipped with ‖·‖ν . This result is
Lemma 5.11 of Farahmand [27]. Afterwards, we present the proof of Lemma 1 and Theorem 2. The
former result is new to this paper, while the latter was proven as Theorem 5.3 of Farahmand [27].

Lemma 8. For any given Q1, Q2 ∈ F |A|, we have ‖T ∗Q1 − T ∗Q2‖ν ≤ γ Cν→∞ ‖Q1 −Q2‖ν .

Proof. Jensen’s inequality, followed by the application of the elementary inequality |maxθ f(θ) −
maxθ g(θ)|2 ≤ maxθ |f(θ)− g(θ)|2 gives

‖T ∗Q1 − T ∗Q2‖22,ν = γ2

∫
X×A

dν(x, a)

∣∣∣∣∫
X
dPx,a(y)

(
max
a′∈A

Q1(y, a′)−max
a′∈A

Q2(y, a′)

)∣∣∣∣2
≤ γ2

∫
X×A

dν(x, a)

∫
X
dPx,a(y)

∣∣∣∣max
a′∈A

Q1(y, a′)−max
a′∈A

Q2(y, a′)

∣∣∣∣2
≤ γ2

∫
X×A

dν(x, a)

∫
X
dPx,a(y) max

a′∈A
|Q1(y, a′)−Q2(y, a′)|2 .
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Inequality maxa′∈A |Q(y, a′)|2 ≤ maxa′′∈A[ 1
πb(a′′|y) ]

∑
a′∈A πb(a

′|y) |Q(y, a′)|2 together with a
change of measure argument gives

‖T ∗Q1 − T ∗Q2‖22,ν

≤ γ2

∫
X×A

dν(x, a)

∫
X

∑
a′∈A

dPx,a(y) max
a′′∈A

{
1

πb(a′′|y)

}
πb(a

′|y) |Q1(y, a′)−Q2(y, a′)|2

≤ γ2

∫
X×A

dν(x, a)

∫
X

∑
a′∈A

sup
(z,a′′)∈X×A

[
1

πb(a′′|z)
dPx,a
dνX

(z)

]
dνX (y)πb(a

′|y) |Q1(y, a′)−Q2(y, a′)|2

= γ2

[∫
X×A

dν(x, a) sup
(z,a′′)∈X×A

[
1

πb(a′′|z)
dPx,a
dνX

(z)

]] [∫
X×A

dν(y, a′) |Q1(y, a′)−Q2(y, a′)|2
]

= γ2C2
ν→∞ ‖Q1 −Q2‖2ν .

where in the second to last equation we exploited that πb ⊗ νX = ν.

Proof of Lemma 1. By the triangle inequality, Lemma 8 and the fact that T ∗Q∗ = Q∗, we have

‖Qk − T ∗Qk‖ν = ‖Qk − T ∗Q∗ + T ∗Q∗ − T ∗Qk‖ν ≤ ‖Qk − T
∗Q∗‖ν + ‖T ∗Q∗ − T ∗Qk‖ν

≤ ‖Qk −Q∗‖ν + (γCν→∞) ‖Q∗ −Qk‖ν = (1 + γCν→∞) ‖Qk −Q∗‖ν . (6)

It is shown by Munos [32, Equation 4.2] that

Q∗ −Qk ≤
k−1∑
i=0

γk−1−i(Pπ
∗
)k−1−iεi + γk(Pπ

∗
)k(Q∗ −Q0).

We now calculate the L2(ν)-norm of the LHS. Define N =
∑k
i=0 γ

i, and notice that the sequence
(γ

i

N )ki=0 is a probability distribution. Square both sides, use the convexity of x 7→ |x|2 to apply

Jensen’s inequality twice, once considering the sequence (γ
i

N )ki=0 and once considering the stochas-
tic operators ((Pπ

∗
)i)k−1

i=0 , to get

|Q∗ −Qk|2 ≤ N2

∣∣∣∣∣
k−1∑
i=0

γk−1−i

N
(Pπ

∗
)k−1−iεi +

γk

N
(Pπ

∗
)k(Q∗ −Q0)

∣∣∣∣∣
2

≤ N

[
k−1∑
i=0

γk−1−i(Pπ
∗
)k−1−i|εi|2 + γk(Pπ

∗
)k|Q∗ −Q0|2

]
.

We apply ν to both sides. By Radon-Nikodym theorem, ν(Pπ
∗
)k−1−i|εi|2 =∫

ν(dx)(Pπ
∗
)k−1−i(dy|x) |εi(y)|2 =

∫ d(ν(Pπ
∗

)k−1−i)
dν (y)ν(dy)|εi(y)|2 ≤∫

‖d(ν(Pπ
∗

)k−1−i)
dν ‖∞ ν(dy)|εi(y)|2 = cν(k − 1 − i) ‖εi‖2ν (cf. Definition 2). This, in addi-

tion to the fact that ‖Q∗ −Q0‖∞ ≤ 2Qmax, leads to

‖Q∗ −Qk‖2ν = ν |Q∗ −Qk|2 ≤ N

[
k−1∑
i=0

γk−1−icν(k − 1− i)ν|εi|2 + γk|2Qmax|2
]
. (7)

Combining inequalities (6) and (7) and noticing that N ≤ 1
1−γ finish the proof.

Proof of Theorem 2. Let Q0, . . . , QK−1 be action-value functions, εk = T ∗Qk − Qk+1, bk =
‖εk‖ν . Our goal is to bound infQ′∈F |A| ‖Q′− T ∗Qk‖ν . For this, pick any Q′ ∈ F |A|. Then, by the
triangle inequality,

‖Q′ − T ∗Qk‖ν ≤ ‖Q′ − (T ∗)k+1Q0‖ν + ‖(T ∗)k+1Q0 − T ∗Qk‖ν ,

therefore, it remains to upper bound ‖(T ∗)k+1Q0 − T ∗Qk‖ν . Since by Lemma 8, T ∗ is L ,
γCν→∞-Lipschitz w.r.t. ‖ · ‖ν , we have ‖(T ∗)k+1Q0−T ∗Qk‖ν ≤ L‖(T ∗)kQ0−Qk‖ν . Using the
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definition of εk, ‖(T ∗)kQ0−Qk‖ν = ‖(T ∗)kQ0−(T ∗Qk−1−εk−1)‖ν ≤ ‖(T ∗)kQ0−T ∗Qk−1‖+
‖εk−1‖ν ≤ L‖(T ∗)k−1Q0 −Qk−1‖+ ‖εk−1‖ν . Finishing the recursion gives

‖(T ∗)kQ0 −Qk‖ν ≤ ‖εk−1‖ν + L‖εk−2‖ν + . . .+ Lk−1‖ε0‖ν .

Combining the inequalities obtained so far, we get

‖Q′ − T ∗Qk‖ν ≤ ‖Q′ − (T ∗)kQ0‖ν +

k−1∑
i=0

Lk−i‖εi‖ν ,

from which the desired statement follows immediately.

C Error Propagation for AVI Algorithms

LetQ0, Q1, . . . , QK ⊂ B(X ×A, Qmax) be a sequence of action-value functions, perhaps generated
by some approximate value iteration procedure that approximates T ∗Qk by Qk+1. Let the error at
iteration k be

εk = T ∗Qk −Qk+1. (8)

Further, let πK be the policy greedy w.r.t. QK and p ≥ 1.

In this section, we use a slight modification of a result by Farahmand et al. [29] to relate the per-
formance loss ‖Q∗ −QπK‖p,ρ to the ν-weighted L2p-norms of the error sequence (εk)K−1

k=0 .5 This
performance loss indicates the regret of following policy πK instead of an optimal policy when the
initial state-action is distributed according to ρ.

To relate these two measures that are entangled through the MDP, we use the concentrability coef-
ficients defined as Definition 3. The concentrability coefficients are used in a change of measure
argument. Due to the dynamics of MDP and AVI, this change depends not only on ν and ρ, but also
on the transition kernels Pπ and Pπ

∗
, see e.g., Munos [32], Farahmand et al. [29].

In order to compactly present our results, we define ak = (1−γ) γK−k−1

1−γK+1 for 0 ≤ k < K. Also for

0 ≤ s ≤ 1, define the discounted sum of errors as E(ε0, . . . , εK−1; s) =
∑K−1
k=0 a2s

k ‖εk‖
2p
2p,ν and

CVI,ρ,ν(K; s) =(
1− γ

2

)2

sup
π′1,...,π

′
K

K−1∑
k=0

a
2(1−s)
k

[ ∑
m≥0

γm
(
cVI1,ρ,ν(m,K − k;π′K) + cVI2,ρ,ν(m+ 1;π′k+1, . . . , π

′
K)
) ]2

,

where in the last definition the supremum is taken over all policies. We now state the following error
propagation result.
Theorem 9 (Error Propagation for AVI – Farahmand et al. [29]). Let p ≥ 1 be a real number, K be
a positive integer, and Qmax ≤ Rmax

1−γ . Then, for any sequence (Qk)Kk=0 ⊂ B(X ×A, Qmax), and the
corresponding sequence (εk)K−1

k=0 defined in (8), we have

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

s∈[0,1]
C

1
2p

VI,ρ,ν(K; s)E
1
2p (ε0, . . . , εK−1; r) + 2γ

K
p Qmax

]
.

The significance of this result and its comparison to the previous work such as Munos [32] is pro-
vided by Farahmand et al. [29] in detail.

D Proof of Theorem 3

In the proof, c1, c2, . . . are constants whose values may change from line to line – unless specified
otherwise.

5 The modification is that as opposed to [29] who define εk as T ∗Vk − Vk+1 and provide an upper bound
on ‖V ∗ − V πk‖p,ρ, here the errors are defined according to the action-value functions.
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Proof of Theorem 3. Fix 0 < δ < 1 and let δ0 = δ1 = · · · = δK−1 = δ/K. As before, we denote
εi = T ∗Qi −Qi+1 for 0 ≤ i ≤ K − 1.

For any k = 0, 1, 2, . . . and with our choice of Penn(k), Theorem 6 states that there exists constant
c1 > 0 for all s = 1, 2, 3, . . . and any Q′ ∈ span(B̂0,m ∪ B̂′k) such that

‖εk‖2ν = ‖Qk+1 − T ∗Qk‖2ν ≤
8 ‖Q′‖2L1(B̂0,m∪B̂′k;D(k)

n )

s
+ 3 ‖Q′ − T ∗Qk‖

2
ν +

c1Q
4
maxs log(

|B̂0,m∪B̂′k|n
δk/2

)

n
,

(9)

with probability at least 1 − δk/2. We denote the event that the inequality holds by E(1)
k (for each

k).

Note that ‖Q′‖L1(B̂0,m∪B̂′k;D(k)
n )

is random, so we upper bound it by a deterministic quantity us-
ing Lemma 7. By assumption, all g ∈ B0 are bounded by L. Moreover, for any Q′ we have
‖Q′‖L1(B̂0,m∪B̂′k;D(k)

n )
≤ ‖Q′‖L1(B̂0,m;D(k)

n )
, i.e., increasing the size of the dictionary does not in-

crease a function’s L1 norm. Therefore,

‖Q′‖2L1(B̂0,m∪B̂′k;D(k)
n ) ≤ 2

1 + L2
8 log

(
|B̂0,m|
δk/2

)
3n

 ‖Q′‖2L1(B̂0,m;ν) , (10)

with probability at least 1 − δk/2. We denote the event that this inequality holds by E(2)
k (for each

k).

We now turn to choose a Q′ for the right hand side (9). The goal is to make sure the first two terms
behave reasonably. The case of k = 0 is simpler than k ≥ 1 because for k = 0 the dictionary
B0,m is fixed (ignoring the normalization by ‖·‖D(0)

n
), but in later iterations we have to deal with the

random dictionary B0,m ∪ B′k. So we start with k = 0.

For k = 0, we choose Q′ to belong to the ball BQmax (L1(B0,m; ν)) and use inequalities (9) and (10)
to get that on the event E(1)

0 ∪ E(2)
0 we have

‖Q1 − T ∗Q0‖2ν ≤
16Q2

max

s

(
1 +

8L2 log( 2m
δ0

)

3n

)
+ 3 inf

Q′∈BQmax (L1(B0,m;ν))
‖Q′ − T ∗Q0‖

2
ν

+
c2Q

4
maxs log( nδ0 )

n
,

for some c2 > 0. Here we used the fact that since m = dnae (a > 0), the size of the dictionary
|B̂0,m ∪ B̂′k| = |B̂0,m| is equal to dnae to simplify the RHS. By s = c3

Qmax

√
n

log(n/δ0) , we get that on

the event E(1)
0 ∪ E(2)

0 , it holds that

‖ε0‖2ν = ‖Q1 − T ∗Q0‖2ν ≤ b
2
0 , c4Q

3
max

√
log(n/δ0)

n
+ 3 inf

Q′∈BQmax (L1(B0,m;ν))
‖Q′ − T ∗Q0‖

2
ν

(11)

for some constant c4 > 0. Note that the term 128Q3
maxL

2

c3

(
log(n/δ0)

n

)3/2

has been dominated by the
slower terms.

For k ≥ 1, we choose Q′ to belong to the ball BQmax (L1(B0,m ∪ B′k; ν)), and then upper bound
the function approximation error ‖Q′ − T ∗Qk‖2ν when Q′ is confined to the specified ball. In cases
when Qk is a good approximation to T ∗Qk, one may choose Q′ = Qk. Otherwise, one may choose
a function from the predefined dictionary B0,m. Thus, we have

inf
Q′∈BQmax(L1(B0,m∪B′k;ν))

‖Q′ − T ∗Qk‖
2 ≤ min

{
inf

Q′∈BQmax (L1(B0,m;ν))
‖Q′ − T ∗Qk‖

2
,

inf
Q′∈BQmax(L1(B′k;ν))

‖Q′ − T ∗Qk‖
2
}
. (12)
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We use Theorem 2 to upper bound infQ′∈BQmax (L1(B0,m;ν)) ‖Q′ − T ∗Qk‖
2 as

inf
Q′∈BQmax (L1(B0,m;ν))

‖Q′ − T ∗Qk‖
2 ≤

[
inf

Q′∈BQmax (L1(B0,m;ν))

∥∥Q′ − (T ∗)k+1Q0

∥∥
ν

+

k−1∑
i=0

(γCν→∞)k−i ‖T ∗Qi −Qi+1‖ν

]2

≤ 2 inf
Q′∈BQmax (L1(B0,m;ν))

∥∥Q′ − (T ∗)k+1Q0

∥∥
ν

+(
k−1∑
i=0

γk−iC2(k−i)
ν→∞

)(
k−1∑
i=0

γk−i ‖εi‖2ν

)
, (13)

where we used the Cauchy-Schwarz inequality in the last step.

To upper bound the second term inside the min{·, ·} in (12), note that if we choose Q′ = Qk =
Qk
‖Qk‖ν

‖Qk‖ν , since Qk
‖Qk‖ν

belongs to the dictionary B′k (which is normalized according to ‖·‖ν and
not ‖·‖D(k)

n
), according to the definition of the L1(B′k; ν)-norm, we have ‖Q′‖L1(B′k;ν) ≤ ‖Qk‖ν .

Consequently, we upper bound ‖Qk‖ν by its supremum norm to get ‖Q′‖L1(B′k;ν) ≤ Qmax. Thus,
Q′ belongs to BQmax(L1(B′k; ν)), as desired. Because of the truncation, all elements of the sequence
(Qi)

k
i=0 are bounded by Qmax, so we can use Lemma 1 to get

inf
Q′∈BQmax(L1(B′k;ν))

‖Q′ − T ∗Qk‖
2 ≤ ‖Qk − T ∗Qk‖2ν ≤

(1 + γCν→∞)2

1− γ

[
k−1∑
i=0

γk−1−icν(k − 1− i) ‖εi‖2ν + γk(2Qmax)2

]
. (14)

Substitute (13) and (14) in (12) to provide an upper bound on the function approximation error
infQ′∈BQmax (L1(B0,m;ν)) ‖Q′ − T ∗Qk‖

2, in which Q′ is restricted to have L1(Bm,0∪B′k; ν)-norm of
at most Qmax. By Lemma 7, and similar to inequality (10), we know that the empirical L1(Bm,0 ∪
B′k;D(k)

n ) is not much larger (only by a factor of 1 + L
√

log(2m/δk)
3n ) than the one w.r.t. ν either,

which is less than Qmax. We can now plug all these results into (9) and set sk = c3
Qmax

√
n

log(n/δk) to

obtain that on the event
⋃
k=0,...,K−1

(
E(1)
k ∪ E(2)

k

)
, which holds with probability at least 1− δ, for

any k ≥ 1, we have

‖Qk+1 − T ∗Qk‖2ν ≤ b
2
k ,c4Q

3
max

√
log
(
nK
δ

)
n

+ c5 min

{
inf

Q′∈BQmax (L1(B0,m;ν))

∥∥Q′ − (T ∗)k+1Q0

∥∥2

ν
+ C1(k)

k−1∑
i=0

γk−ib2i ,

C2

(
k−1∑
i=0

γk−1−icν(k − 1− i) b2i + γk(2Qmax)2

)}
,

with C1(k) ,
∑k−1
i=0 γ

k−iC
2(k−i)
ν→∞ and C2 , (1+γCν→∞)2

1−γ .

The second part of the theorem is the direct application of Theorem 9 with the choice of p = 1.

E Auxiliary Results

We use the following relative deviation inequality (or the modulus of continuity of the empirical
process) in the proof of Theorem 6. This result is Theorem 11.4 of Györfi et al. [31], which is based
on Theorem 3 by Lee et al. [33]. In this result, we have the same regression setup as in Appendix A.
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Theorem 10 (Relative Deviation Inequality – Theorem 11.4 of Györfi et al. [31]). Assume |Y | ≤ L
a.s. and L ≥ 1. Let F be a set of functions f : Rd → R with ‖f‖∞ ≤ L. For each n ≥ 1, we have

P

{
∃f ∈ F : E

[
|f(X)− Y |2

]
− E

[
|m(X)− Y |2

]
− 1

n

n∑
i=1

[
|f(Xi)− Yi|2 − |m(Xi)− Yi|2

]
≥ ε

(
α+ β + E

[
|f(X)− Y |2

]
− E

[
|m(X)− Y |2

])}

≤ 14 sup
x1:n

N
(
βε

20L
,F , ‖·‖1,x1:n

)
exp

(
− ε2(1− ε)αn

214(1 + ε)L4

)
,

where α, β > 0 and 0 < ε ≤ 1
2 .

F Markov Decision Processes

In this section, we summarize the definitions required to describe MDPs and RL. The reader is
referred to Bertsekas and Tsitsiklis [34], Sutton and Barto [35], Buşoniu et al. [36], Szepesvári [24]
for the background information on MDP and RL.

For a space Ω, with σ-algebra σΩ,M(Ω) denotes the set of all probability measures over σΩ. B(Ω)
denotes the space of bounded measurable functions w.r.t. σΩ and B(Ω, L) denotes the subset of
B(Ω) with bound 0 < L <∞.

A finite-action discounted MDP is a 5-tuple (X ,A, P,R, γ), where X is a measurable state space,
A is a finite set of actions, P : X ×A →M(X ) is the transition probability kernel,R : X ×A → R
is the reward function, and γ ∈ [0, 1) is a discount factor. Let r(x, a) = E [R(·|x, a)], and assume
that r is uniformly bounded by Rmax. A measurable mapping π : X → A is called a deterministic
Markov stationary policy, or just a policy for short. Following a policy π means that at each time
step, At = π(Xt).

A policy π induces two transition probability kernels Pπ : X → M(X ) and Pπ : X × A →
M(X × A). For a measurable subset S of X and a measurable subset S′ of X × A, we define
(Pπ)(S|x) ,

∫
P (dy|x, π(x))I{y∈S} and (Pπ)(S′|x, a) ,

∫
P (dy|x, a)I{(y,π(y))∈S′}. The m-

step transition probability kernel (Pπ)m : X ×A →M(X ×A) for m = 2, 3, · · · are inductively
defined as (Pπ)m(S′|x, a) ,

∫
X P (dy|x, a)(Pπ)m−1(B|y, π(y)) (similarly for (Pπ)m : X →

M(X )).

Given probability transition kernels P : X → M(X ) and P : X × A → M(X × A), de-
fine the right-linear operators P · : B(X ) → B(X ) and P · : B(X × A) → B(X × A)

by (PV )(x) ,
∫
X P (dy|x)V (y) and (PQ)(x, a) ,

∫
X×A P (dy, da′|x, a)Q(y, a′). In words,

(PV )(x) is the expected value of V after the transition P . For a probability measure ρ ∈ M(X )
and a measurable subset S of X , define the left-linear operator ·P : M(X ) → M(X ) by
(ρP )(S) =

∫
ρ(dx)P (dy|x)I{y∈A}. In words, ρP represents the distribution over states when

the initial state distribution is ρ and we follow P for a single step. Similarly, for a probability
measure ρ ∈ M(X × A) and a measurable subset B of X × A, define the left-linear operator
·P : M(X × A) →M(X × A) by (ρP )(B) =

∫
ρ(dx, da)P (dy, da′|x, a)I{(y,a′)∈B}. A typical

choice of P is (Pπ)m for m ≥ 1.

The value function V π and the action-value function Qπ of a policy π are defined as fol-
lows: Let (Rt; t ≥ 1) be the sequence of rewards when the Markov chain is started from
state X1 (or state-action (X1, A1) for Qπ) drawn from a positive probability distribution over X
(X × A) and the agent follows the policy π. Then V π(x) , E

[∑∞
t=1 γ

t−1Rt

∣∣∣X1 = x
]

and

Qπ(x, a) , E
[∑∞

t=1 γ
t−1Rt

∣∣∣X1 = x,A1 = a
]
. The value of V π and Qπ are uniformly bounded

by Qmax = Rmax/(1− γ), independent of the choice of π.

The optimal value and optimal action-value functions are defined as V ∗(x) = supπ V
π(x) for

all x ∈ X and Q∗(x, a) = supπ Q
π(x, a) for all (x, a) ∈ X × A. A policy π∗ is optimal if

V π
∗

= V ∗. A policy π is greedy w.r.t. an action-value function Q, denoted π = π̂(·;Q), if
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π(x) = argmaxa∈AQ(x, a) holds for all x ∈ X (if there exist multiple maximizers, one of them
is chosen in an arbitrary deterministic manner). Note that a greedy policy w.r.t. the optimal action-
value function Q∗ is an optimal policy.

For a fixed policy π, the Bellman operators Tπ : B(X )→ B(X ) and Tπ : B(X ×A)→ B(X ×A)

(for the action-value functions) are defined as (TπV )(x) , r(x, π(x)) + γ
∫
X V (y)P (dy|x, π(x))

and (TπQ)(x, a) , r(x, a) + γ
∫
X Q(y, π(y))P (dy|x, a). The fixed point of the Bellman operator

is the (action-)value function of the policy π, i.e., TπQπ = Qπ and TπV π = V π . Similarly, the
Bellman optimality operators T ∗ : B(X ) → B(X ) and T ∗ : B(X × A) → B(X × A) (for the
action-value functions) are defined as (T ∗V )(x) , maxa

{
r(x, a) + γ

∫
R×X V (y)P (dr, dy|x, a)

}
and (T ∗Q)(x, a) , r(x, a) + γ

∫
R×X maxa′ Q(y, a′)P (dr, dy|x, a). Again, these operators enjoy

a fixed-point property similar to that of the Bellman operators: T ∗Q∗ = Q∗ and T ∗V ∗ = V ∗.
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