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1 Proof of Lemma 2.2

The global loss surrogate is given by:

R̂(g, f0, f1) =
1

n

n
∑

i=1

φ (g(xi))φ (yif0(xi)) +
1

n

n
∑

i=1

φ (−g(xi))φ (yif1(xi)) . (1)

The data can be viewed as training data of twice the size. Eachpoint is represented twice,once with label1 and weight
areφ (yif0(xi)) and once with label−1 with weightφ (yif1(xi)).

Note that if the loss of bothf0 and f1 is the same for both classifiers, the point does not effect thelearning of
the partitioning classifier. Otherwise, even if bothf0 andf1 produce the same sign for the output, the partitioning
classifier will attempt to place the observation in the region with the largest positive margin.

2 Proof of Theorem 2.4

The local linear classifier,F , is composed of the rejection classifiers,g1, g2, . . . , gr−1, and the region classifiers,
f1, f2, . . . , fr. As the outputF can be expressed as a boolean function of2r − 1 linear functions, each with a VC-
dimension ofd+ 1, from Lemma 2 of [1], the VC-dimension of the local linear classifier can be bounded:

V C (F ) ≤ 2(2r − 1) log(e(2r − 1))(d+ 1). (2)

3 Proof of Theorem 2.5

Consider the 4 clusters of points,C1, C2, C3, andC4, located at(1, 0), (0, 1), (−1, 0), and(0,−1), each with an
identical number of points (|C1| = |C2| = |C3| = |C4|). For the XOR, without loss of generality, let the points
in clusterC1 andC3 have a label of−1, and the points in the other cluster have a label of1. Consider the initial
random sampling of the reject region,ri, and define the rejected set in each cluster asR1, R2, R3, andR4, where
|Rj | =

∑

i∈Cj
1ri=1. Suppose we sample equally from each label, ssuch that|R1|+ |R3| = |R2|+ |R4|. Then with

high probability one of the two clusters for each label will have more points. Without loss of generality, assumeC3

has a larger rejected set than the other clusters, i.e.|R3| > |R1|, |R3| > |R2|, and|R3| > |R4|, and thereforeC1 has
a smaller rejected set than all other clusters. The class prior probabilities can be expressed:

π−1 = π1 =
1

2
.

The mean of the points labeled−1 that are not rejected can be expressed:

[µ−1, 0] =

[

|R3| − |R1|

|C1|+ |C3| − |R1| − |R3|
, 0

]T

.
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Given that more points are rejected from clusterC3, µ−1 > 0. Similarly, the mean of the points labeled1 that are
reject can be written:

[0, µ1] =

[

0,
|R4| − |R2|

|C2|+ |C4| − |R2| − |R4|

]T

.

Given that|R3| > |R2|, |R3| > |R1|, |R1| < |R2|, and|R1| < |R4|, µ−1 > |µ1|. Additionally, the covariance can be
expressed:

Σ =

[

1−µ2

−1

2
0

0
1−µ2

1

2

]

.

Points in clusterC3 have linear discriminant functions:

δ−1 =
µ−1

(µ−1 − 1)
,

and

δ1 =
µ2

1

(µ2

1
− 1)

.

C3 will be classified incorrectly if the following inequality holds:

δ−1 < δ1.

This inequality can be rewritten:

µ−1

µ−1 − 1
<

µ2

1

µ2

1
− 1

µ−1

(

µ2

1
− 1

)

< µ2

1
(µ−1 − 1)

µ2

1
< µ−1,

As −1 ≤ µ1 ≤ 1, 0 < µ−1 < 1, andµ−1 > |µ1|, the above inequality must hold, and therefore the points incluster
C3 will be classified incorrectly. Similarly, for the points inC1, the discriminant functions can be expressed:

δ−1 =
µ−1

(1 + µ−1)
,

and

δ1 =
−µ2

1

(1− µ2

1
)
.

C1 will be classified correctly if:
δ−1 > δ1.

This is equivalent to:

µ−1

(1 + µ−1)
>

−µ2

1

(1− µ2
1
)
,

which must hold, as−1 ≤ µ1 ≤ 1 and0 < µ−1 < 1.

For the rejected points, the points inC1 will be classified incorrectly and the points inC3 will be classified correctly by
f1. Therefore,C1 andC3 will have different rejection labels and will be partitioned into region0 and1, respectively.
Given these clusters are in separate regions, the data in each region is linearly separable regardless of the partitioning
of C2 andC4 and will be classified correctly.

Therefore if we reject data points equally with respect to labels, local linear classification using LDA will only fail to
converge to the correct answer if|R1| = |R2| = |R3| = |R4|.
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