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Abstract

We present a novel marginalized particle Gaussian process (MPGP) regression,
which provides a fast, accurate online Bayesian filtering framework to model the
latent function. Using a state space model established by the data construction
procedure, our MPGP recursively filters out the estimation of hidden function
values by a Gaussian mixture. Meanwhile, it provides a new online method for
training hyperparameters with a number of weighted particles. We demonstrate
the estimated performance of our MPGP on both simulated and real large data
sets. The results show that our MPGP is a robust estimation algorithm with high
computational efficiency, which outperforms other state-of-art sparse GP methods.

1 Introduction

The Gaussian process (GP) is a popular nonparametric Bayesian method for nonlinear regression.
However, the O(n3) computational load for training the GP model would severely limit its applica-
bility in practice when the number of training points n is larger than a few thousand [1]. A number
of attempts have been made to handle it with a small computational load. One typical method is a
sparse pseudo-input Gaussian process (SPGP) [2] that uses a pseudo-input data set with m inputs
(m � n) to parameterize the GP predictive distribution to reduce the computational burden. Then
a sparse spectrum Gaussian process (SSGP) [3] was proposed to further improve the performance
of SPGP while retaining the computational efficiency by using a stationary trigonometric Bayesian
model with m basis functions. However, both SPGP and SSGP learn hyperparameters offline by
maximizing the marginal likelihood before making the inference. They would take a risk to fall in
the local optimum. Another recent model is a Kalman filter Gaussian process (KFGP) [4] which re-
duces computation load by correlating function values of data subsets at each Kalman filter iteration.
But it still causes underfitting or overfitting if the hyperparameters are badly learned offline.

On the contrary, we propose in this paper an online marginalized particle filter to simultaneously
learn the hyperprameters and hidden function values. By collecting small data subsets sequentially,
we establish a novel state space model which allows us to estimate the marginal posterior distribution
(not the marginal likelihood) of hyperparameters online with a number of weighted particles. For
each particle, a Kalman filter is applied to estimate the posterior distribution of hidden function
values. We will later explain it in details and show its validity via the experiments on large datasets.

2 Data Construction

In practice, the whole training data set is usually constructed by gathering small subsets sev-
eral times. For the tth collection, the training subset (Xt,yt) consists of nt input-output pairs:
{(x1

t , y
1
t ), · · · (xnt

t , y
nt
t )}. Each scalar output yit is generated from a nonlinear function f(xit) of a

d-dimensional input vector xit with an additive Gaussian noise N(0, a20). All the pairs are separately
organized as an input matrix Xt and output vector yt. For simplicity, the whole training data with
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T collections is symbolized as (X1:T ,y1:T ). The goal refers to a regression issue - estimating the
function value of f(x) at m test inputs X? = [x1

?, · · ·xm? ] given (X1:T ,y1:T ).

3 Gaussian Process Regression

A Gaussian process (GP) represents a distribution over functions, which is a generalization of the
Gaussian distribution to an infinite dimensional function space. Formally, it is a collection of random
variables, any finite number of which have a joint Gaussian distribution [1]. Similar to a Gaussian
distribution specified by a mean vector and covariance matrix, a GP is fully defined by a mean func-
tion m(x) = E[f(x)] and covariance function k(x,x′) = E[(f(x) − m(x))(f(x′) − m(x′))].
Here we follow the practical choice that m(x) is set to be zero. Moreover, due to the spatial non-
stationary phenomena in the real world, we choose k(x,x′) as kSE(x,x′) + kNN (x,x′) where
kSE = a21exp[−0.5a−22 (x − x′)T (x − x′)] is the stationary squared exponential covariance func-
tion, kNN = a23sin

−1[a−24 x̃T x̃′((1 + a−24 x̃T x̃)(1 + a−24 x̃′T x̃′))−0.5] is the nonstationary neural
network covariance function with the augmented input x̃ = [1 xT ]T . For simplicity, all the hyper-
parameters are collected into a vector θ = [a0 a1 a2 a3 a4]T .

The regression problem could be solved by the standard GP with the following two steps: First,
learning θ given (X1:T ,y1:T ). One technique is to draw samples from p(θ|X1:T ,y1:T ) using
Markov Chain Monte Carlo (MCMC) [5, 6], another popular way is to maximize the log evi-
dence p(y1:T |X1:T , θ) via a gradient based optimizer [1]. Second, estimating the distribution of
the function value p(f(X?)|X1:T ,y1:T , X?, θ). From the perspective of GP, a function f(x) could
be loosely considered as an infinitely long vector in which each random variable is the function value
at an input x, and any finite set of function values is jointly Gaussian distributed. Hence, the joint
distribution p(y1:T , f(X?)|X1:T , X?, θ) is a multivariate Gaussian distribution. Then according to
the conditional property of Gaussian distribution, p(f(X?)|X1:T ,y1:T , X?, θ) is also Gaussian dis-
tributed with the following mean vector f̄(X?) and covariance matrix P (X?, X?) [1, 7]:

f̄(X?) = Kθ(X?, X1:T )[Kθ(X1:T , X1:T ) + a20I]−1y1:T

P (X?, X?) = Kθ(X?, X?)−Kθ(X?, X1:T )[Kθ(X1:T , X1:T ) + a20I]−1Kθ(X?, X1:T )T

If there are n training inputs and m test inputs then Kθ(X?, X1:T ) denotes an m × n covariance
matrix in which each entry is calculated by the covariance function k(x,x′) with the learned θ. It is
similar to construct Kθ(X1:T , X1:T ) and Kθ(X?, X?).

4 Marginalized Particle Gaussian Process Regression

Even though GP is an elegant nonparametric method for Bayesian regression, it is commonly in-
feasible for large data sets due to an O(n3) scaling for learning the model. In order to derive a
computational tractable GP model which preserves the estimation accuracy, we firstly explore a
state space model from the data construction procedure, then propose a marginalized particle filter
to estimate the hidden f(X?) and θ in an online Bayesian filtering framework.

4.1 State Space Model

The standard state space model (SSM) consists of the state equation and observation equation. The
state equation reflects the Markovian evolution of hidden states (the hyperparamters and function
values). For the hidden static hyperparameter θ, a popular method in filtering techniques is to add an
artificial evolution using kernel smoothing which guarantees the estimation convergence [8, 9, 10]:

θt = bθt−1 + (1− b)θ̄t−1 + st−1 (1)

where b = (3δ − 1)/(2δ), δ is a discount factor which is typically around 0.95-0.99, θ̄t−1 is the
Monte Carlo mean of θ at t − 1, and st−1 ∼ N(0, r2Σt−1), r2 = 1 − b2, Σt−1 is the Monte Carlo
variance matrix of θ at t− 1. For hidden function values, we attempt to explore the relation between
the (t − 1)th and tth data subset. For simplicity, we denoted Xc

t = Xt ∪X? and f ct = f(Xc
t ). If

f(x) ∼ GP (0, k(x,x′)), then the prior distribution p(f ct , f
c
t−1|Xc

t−1, X
c
t , θt) is jointly Gaussian:

p(f ct , f
c
t−1|Xc

t−1, X
c
t , θt) = N(0,

[
Kθt(X

c
t , X

c
t ) Kθt(X

c
t , X

c
t−1)

Kθt(X
c
t , X

c
t−1)T Kθt(X

c
t−1, X

c
t−1)

]
)
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Then according to the conditional property of Gaussian distribution, we could get

p(f ct |f ct−1, Xc
t−1, X

c
t , θt) = N(G(θt)f

c
t−1, Q(θt)) (2)

where
G(θt) = Kθt(X

c
t , X

c
t−1)K−1θt (Xc

t−1, X
c
t−1) (3)

Q(θt) = Kθt(X
c
t , X

c
t )−Kθt(X

c
t , X

c
t−1)K−1θt (Xc

t−1, X
c
t−1)Kθt(X

c
t , X

c
t−1)T (4)

This conditional density (2) could be transformed into a linear equation of the function value with
an additive Gaussian noise vft ∼ N(0, Q(θt)):

f ct = G(θt)f
c
t−1 + vft (5)

Finally, the observation (output) equation could be directly obtained from the tth data collection:

yt = Htf
c
t + vyt (6)

where Ht = [Int
0] is an index matrix to make Htf

c
t = f(Xt) since yt is only obtained from the

tth training inputsXt. The noise vyt ∼ N(0, R(θt)) is from the section 2 whereR(θt) = a20,tI . Note
that a0 is a fixed unknown hyperparameter. We use the symbol a0,t just because of the consistency
with the artificial evolution of θ. To sum up, our SSM is fully specified by (1), (5), (6).

4.2 Bayesian Inference by Marginalized Particle Filter

In contrast to the GP regression with a two-step offline inference in section 3, we propose an online
filtering framework to simultaneously learn hyperparameters and estimate hidden function values.
According to the SSM before, the inference problem refers to compute the posterior distribution
p(f ct , θ1:t|X1:t, X?,y1:t). One technique is MCMC, but MCMC usually suffers from a long con-
vergence time. Hence we choose another popular technique - particle filter. However, for our SSM,
the traditional sampling importance resampling (SIR) particle filter will introduce the unnecessary
computational load due to the fact that (5) in the SSM is a linear structure given θt. This inspires us
to apply a more efficient marginalized particle filter (also called Rao-Blackwellised particle filter)
[9, 11, 12, 13] to deal with the estimation problem by combining Kalman filter into particle filter.
Using Bayes rule, the posterior could be factorized as

p(f ct , θ1:t|X1:t, X?,y1:t) = p(θ1:t|X1:t, X?,y1:t)p(f
c
t |θ1:t, X1:t, X?,y1:t)

p(θ1:t|X1:t, X?,y1:t) refers to a marginal posterior which could be solved by particle filter. After
obtaining the estimation of θ1:t, the second term p(f ct |θ1:t, X1:t, X?,y1:t) could be computed by
Kalman filter since f ct is the hidden state in the linear substructure (equation (5)) of SSM.

The detailed inference procedure is as follows: First, p(θ1:t|X1:t, X?,y1:t) should be factorized in
a recursive form so that it could be applied into sequential importance sampling framework:

p(θ1:t|X1:t, X?,y1:t) ∝ p(yt|y1:t−1, θ1:t, X1:t, X?)p(θt|θt−1)p(θ1:t−1|X1:t−1, X?,y1:t−1)

At each iteration of the sequential importance sampling, the particles for the hyperparameter vector
are drawn from the proposal distribution p(θt|θt−1) (easily obtained from equation (1)), then the
importance weight for each particle at t could be computed according to p(yt|y1:t−1, θ1:t, X1:t, X?).
This distribution could be solved analytically:

p(yt|y1:t−1, θ1:t, X1:t, X?) =

∫
p(yt, f

c
t |y1:t−1, θ1:t, X1:t, X?)df

c
t

=

∫
p(yt|f ct , θt, Xt, X?)p(f

c
t |y1:t−1, θ1:t, X1:t, X?)df

c
t

=

∫
N(Htf

c
t , R(θt))N(f ct|t−1, P

c
t|t−1)df ct

= N(Htf
c
t|t−1, HtP

c
t|t−1H

T
t +R(θt)) (7)

where p(yt|f ct , θt, Xt, X?) follows a Gaussian distributionN(Htf
c
t , R(θt)) (refers to equation (6)),

p(f ct |y1:t−1, θ1:t, X1:t, X?) = N(f ct|t−1, P
c
t|t−1) is the prediction step of Kalman filter for f ct which

is also Gaussian distributed with the predictive mean f ct|t−1 and covariance P ct|t−1.
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Second, we explain how to compute p(f ct |θ1:t, X1:t, X?,y1:t) using the prediction-update Kalman
filter. According to the recursive Bayesian filtering, this posterior could be factorized as:

p(f ct |θ1:t, X1:t, X?,y1:t) =
p(yt|f ct , θt, Xt, X?)p(f

c
t |y1:t−1, θ1:t, X1:t, X?)

p(yt|y1:t−1, θ1:t, X1:t, X?)
(8)

In the prediction step, the goal is to compute p(f ct |y1:t−1, θ1:t, X1:t, X?) which is an integral:

p(f ct |y1:t−1, θ1:t, X1:t, X?) =

∫
p(f ct , f

c
t−1|y1:t−1, θ1:t, X1:t, X?)df

c
t−1

=

∫
p(f ct |f ct−1, θt, Xt−1:t, X?)p(f

c
t−1|y1:t−1, θ1:t−1, X1:t−1, X?)df

c
t−1

=

∫
N(G(θt)f

c
t−1, Q(θt))N(f ct−1|t−1, P

c
t−1|t−1)df ct−1

= N(G(θt)f
c
t−1|t−1, G(θt)P

c
t−1|t−1G(θt)

T +Q(θt)) (9)

where p(f ct |f ct−1, θt, Xt−1:t, X?) is directly from (2), and p(f ct−1|y1:t−1, θ1:t−1, X1:t−1, X?) =
N(f ct−1|t−1, P

c
t−1|t−1) is the posterior estimation for f ct−1. Since p(f ct |y1:t−1, θ1:t, X1:t, X?) could

also be expressed as N(f ct|t−1, P
c
t|t−1), then the prediction step is summarized as:

f ct|t−1 = G(θt)f
c
t−1|t−1, P ct|t−1 = G(θt)P

c
t−1|t−1G(θt)

T +Q(θt) (10)

In the update step, the current observation density p(yt|f ct , θt, Xt, X?) = N(Htf
c
t , R(θt)) is used

to correct the prediction. Putting (7) and (9) into (8), p(f ct |θ1:t, X1:t, X?,y1:t) = N(f ct|t, P
c
t|t) is

actually Gaussian distributed with the Kalman Gain Γt where:

Γt = P ct|t−1H
T
t (HtP

c
t|t−1H

T
t +R(θt))

−1 (11)

f ct|t = f ct|t−1 + Γt(yt −Htf
c
t|t−1), P ct|t = P ct|t−1 − ΓtHtP

c
t|t−1 (12)

Finally, the whole algorithm (t = 1, 2, 3, ....) is summarized as follows:

• For i = 1, 2, ...N

– Drawing θit ∼ p(θt|θ̃it−1) according to (1)
– Using θit to specify k(x,x′) in GP to construct G(θit), Q(θit), R(θit) in (3-4) and (6)
– Kalman Predict: Using f̃ c,it−1|t−1, P̃ c,it−1|t−1 into (10) to compute f c,it|t−1, P c,it|t−1
– Kalman Update: Using f c,it|t−1 and P c,it|t−1 into (11) and (12) to compute f c,it|t and P c,it|t
– Putting f c,it|t−1, P c,it|t−1, R(θit) into (7) to compute the importance weight w̄it

• Normalizing the weight: wit = w̄it/(
∑N
i=1 w̄

i
t) (i = 1, ...N)

• Hyperparameter and Hidden function value estimation:
θ̂t =

∑N
i=1 w

i
tθ
i
t, f̂ ct|t =

∑N
i=1 w

i
tf
c,i
t|t ⇒ f̂?t|t = H?

t f̂
c
t|t

P̂ ct|t =
∑N
i=1 w

i
t(P

c,i
t|t + (f c,it|t − f̂

c
t|t)(f

c,i
t|t − f̂

c
t|t)

T )⇒ P̂ ?t|t = H?
t P̂

c
t|t(H

?
t )T

where H?
t = [0 Im] is an index matrix to get the function value estimation at X?

• Resampling: For i = 1, ...N , resample θit, f
c,i
t|t , P

c,i
t|t with respect to the importance weight

wit to obtain θ̃it, f̃
c,i
t|t , P̃

c,i
t|t for the next step

At each iteration, our marginalized particle Gaussian process (MPGP) uses a small training subset
to estimate f(X?) by Kalman filters, and learn hyperparameters online by weighted particles. The
computational cost of the marginalized particle filter is governed by O(NTS3) [10] where N is the
number of particles, T is the number of data collections, S is the size of each collection. This could
largely reduce the computational load. Moreover, the MPGP propagates the previous estimation to
improve the current accuracy in the recursive filtering framework. From the algorithm above, we
also find that f(X?) is estimated as a Gaussian mixture at each iteration since each hyperparam-
eter particle accompanies with a Kalman filter for f(X?). Hence the MPGP could accelerate the
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(r)(q)(p)(o)(n)

t=50 t=50

Figure 1: Estimation result comparison. (a-b) show the estimation for f1 at t = 10 by SE-KFGP
(blue line with blue dashed interval in (a)), SE-MPGP (red line with red dashed interval in (a)),
SENN-KFGP (blue line with blue dashed interval in (b)), SENN-MPGP (red line with red dashed
interval in (b)). The black crosses are the training outputs at t = 10, the black line is the true f(X?).
The denotation of (c-d),(e-f),(g-h) is same as (a-b) except that (c-d) are for f2 at t = 10, (e-f) are for
f1 at t = 100, (g-h) are for f2 at t = 50. (i-m), (n-r) are the estimation of the log hyperparameters
(log(a0) to log(a4)) for f1, f2 over time.

computational speed, while preserving the accuracy. Additionally, it is worth to mention that the
Kalman filter GP (KFGP) [4] is a special case of our MPGP since the KFGP firstly trains the hy-
perparamter vector offline and uses it to specify the SSM, then estimates p(f ct |θ1:t, X1:t, X?,y1:t)
by Kalman filter. But the offline learning procedure in KFGP will either take a long time using a
large extra training data or fall into an unsatisfactory local optimum using a small extra training data.
In our MPGP, the local optimum could be used as the initial setting of hyperparameters, then the
underlying θ could be learned online by the marginalized particle filter to improve the performance.
Finally, to avoid confusion, we should clarify the difference between our MPGP and the GP mod-
eled Bayesian filters [14, 15]. The goal of GP modeled Bayesian filters is to use GP modeling for
Bayesian filtering, on the contrary, our MPGP is to use Bayesian filtering for GP modeling.

5 Experiments

Two Synthetic Datasets: The proposed MPGP is firstly evaluated on two simulated one-
dimensional datasets. One is a function with a sharp peak which is spatially inhomogeneously
smooth [16]: f1(x) = sin(x) + 2 exp(−30x2). For f1(x), we gather the training data with 100
collections. For each collection, we randomly select 30 inputs from [-2, 2], then calculate their
outputs by adding a Gaussian noise N(0, 0.32) to their function values. The test input is from -2
to 2 with 0.05 interval. The other function is with a discontinuity [17]: if 0 ≤ x ≤ 0.3, f2(x) =
N (x; 0.6, 0.22)+N (x; 0.15, 0.052), if 0.3 < x ≤ 1, f2(x) = N (x; 0.6, 0.22)+N (x; 0.15, 0.052)+
4. For f2(x), we gather the training data with 50 collections. For each collection, we randomly se-
lect 60 inputs from [0, 1], then calculate their outputs by adding a Gaussian noiseN(0, 0.82) to their
function values. The test input is from 0 to 1 with 0.02 interval.

The first experiment aims to evaluate the estimation performance in comparison of KFGP in [4].
We denote SE-KFGP, SENN-KFGP as KFGP with the covariance function kSE , KFGP with the
covariance function kSE + kNN . Similarly, SE-MPGP and SENN-MPGP are MPGP with kSE ,
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Figure 2: The NMSE and MNLP of KFGP and MPGP for f1, f2 over time.
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Figure 3: The NMSE and MNLP of MPGP as a function of the number of particles. The first row is
for f1, the second row is for f2.

MPGP with kSE + kNN . The number of particles in MPGP is set to 10. The evaluation criterion
is the test Normalized Mean Square Error (NMSE) and the test Mean Negative Log Probability
(MNLP) as suggested in [3]. First, it is shown in Figure 1 that the estimation performance for both
KFGP and MPGP is getting better and attempts to convergence over time (refers to (a-h)) since
the previous estimation would be incorporated into the current estimation in the recursive Bayesian
filtering. Second, for both f1 and f2, the estimation of MPGP is better than KFGP via the NMSE and
MNLP comparison in Figure 2. The KFGP uses offline learned hyperparameters all the time. On
the contrary, MPGP initializes hyperparameters using the ones by KFGP, then online learns the true
hyperparameters (refers to (i-r) in Figure 1). Hence the MNLP of MPGP is much lower than KFGP.
Finally, if we only focus on our MPGP, then we could find SENN-MPGP is better than SE-MPGP
since SENN-MPGP takes the spatial nonstationary phenomenon into account.

The second experiment aims to illustrate the average performance of SE-MPGP and SENN-MPGP
when the number of particles increases. For each number of particles, we run the SE-MPGP and
SENN-MPGP 5 times and compute the average NMSE and MNLP. From Figure 3, we find: First,
with increasing the number of particles, the NMSE and MNLP of SE-MPGP and SENN-MPGP
would decrease at the beginning and become convergence while the running time increases over
time. The reason is that the estimation accuracy and computational load of particle filters will
increase when the number of particles increases. Second, the average performance of SENN-MPGP
is better than SE-MPGP since it captures the spatial nonstationarity, but SENN-MPGP needs more
running time since the size of the hyperparameter vector to be inferred will increase.

The third experiment aims to compare our MPGP with the benchmarks. The state-of-art sparse
GP methods we choose are: sparse pseudo-input Gaussian process (SPGP) [2] and sparse spectrum
Gaussian process (SSGP) [3]. Moreover, we also want to examine the robustness of our MPGP
since we should clarify whether the good estimation of our MPGP heavily depends on the order
of training data collection. Hence, we randomly interrupt the order of training subsets we used
before, then implement SPGP with 5 pseudo inputs (5-SPGP), SSGP with 10 basis functions (10-
SSGP), SE-MPGP with 5 particles (5-SE-MPGP), SENN-MPGP with 5 particles (5-SENN-MPGP).
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Table 1: Benchmarks Comparison for Synthetic Datasets. The NMSEi, MNLPi, RTimei represent
the NMSE, MNLP and running time for the function fi (i = 1, 2)

Method NMSE1 MNLP1 RTime1 NMSE2 MNLP2 RTime2

5-SPGP 0.2243 0.5409 28.6418s 0.5445 1.5950 30.3578s
10-SSGP 0.0887 0.1606 18.8605s 0.1144 1.1208 10.2025s
5-SE-MPGP 0.0880 1.6318 12.5737s 0.1687 1.3524 12.4801s
5-SENN-MPGP 0.0881 0.1820 18.7513s 0.1289 1.1782 11.5909s

Table 2: Benchmarks Comparison. Data1 is the temperature dataset. Data2 is the pendulum dataset.

Data1 NMSE MNLP RTime Data2 NMSE MNLP RTime

5-SPGP 0.48 1.62 181.3s 10-SPGP 0.61 1.98 16.54s
10-SSGP 0.27 1.33 97.16s 10-SSGP 1.04 10.85 23.59s
5-SE-MPGP 0.11 1.05 50.99s 20-SE-MPGP 0.63 2.20 7.04s
5-SENN-MPGP 0.10 1.16 59.25s 20-SENN-MPGP 0.58 2.12 8.60s

In Table 1, our 5-SE-MPGP mainly outperforms SPGP except that its MNLP1 is worse than the one
of SPGP. The reason is the synthetic functions are nonstationary but SE-MPGP uses a stationary SE
kernel. Hence we perform 5-SENN-MPGP with a nonstationary kernel to show that our MPGP is
competitive with SSGP, and much better with shorter running time than SPGP.

Global Surface Temperature Dataset: We present here a preliminary analysis of the Global Sur-
face Temperature Dataset in January 2011 (http://data.giss.nasa.gov/gistemp/). We first gather the
training data with 100 collections. For each collection, we randomly select 90 data points where the
input vector is the longitude and latitude location, the output is the temperature (oC). There are two
test data sets: the first one is a grid test input set (Longitude: -180:40:180, Latitude: -90:20:90) that
is used to show the estimated surface temperature. The second test input set (100 points) is randomly
selected from the data website after obtaining all the training data.

The first experiment aims to show the predicted surface temperature at the grid test inputs. We set the
number of particles in the SE-MPGP and SENN-MPGP as 20. From Figure 4, the KFGP methods
stuck in the local optimum: SE-KFGP seems underfitting since it does not model the cold region
around the location (100, 50), SENN-KFGP seems overfitting since it unexpectedly models the cold
region around (-100, -50). On the contrary, SE-MPGP and SENN-MPGP suitably fit the data set via
the hyperparameter online learning.

The second experiment is to evaluate the estimation error of our MPGP using the second test data.
We firstly run all the methods to compute the NMSE and MNLP over iteration. From the first row of
Figure 5, the NMSE and MNLP of MPGP are lower than KFGP. Moreover, SENN-MPGP is much
lower than SE-MPGP, which shows that SENN-MPGP successfully models the spatial nonstation-
arity of the temperature data. Then we change the number of particles. For each number, we run
SE-MPGP, SENN-MPGP 3 times to evaluate the average NMSE, MNLP and running time. It shows
that SENN-MPGP fits the data better than SE-MPGP but the trade-off is the longer running time.

The third experiment is to compare our MPGP with the benchmarks. All the denotations are same as
the third experiment of the simulated data. We also randomly interrupt the order of training subsets
for the robustness consideration. From Table 2, the comparison results show that our MPGP uses a
shorter running time with a better estimation performance than SPGP and SSGP.

Pendulum Dataset: This is a small data set which contains 315 training points. In [3], it is men-
tioned that SSGP model seems to be overfitting for this data due to the gradient ascent optimization.
We are interested in whether our method can successfully capture the nonlinear property of this
pendulum data. We firstly collect the training data 9 times, and 35 training data for each collec-
tion. Then, 100 test points are randomly selected for evaluating the performance. From Table 2, our
SENN-MPGP obtains the estimation with the fastest speed and the smallest NMSE among all the
methods, and the MNLP is competitive to SPGP.
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Figure 4: The temperature estimation at t = 100. The first row (from left to right): the temperature
value bar, the full training observation plot, the grid test output estimation by SE-KFGP, SENN-
KFGP, SE-MPGP, SENN-MPGP. The black crosses are the observations at t = 100. The second
row (from left to right) is the estimation of log hyperparameters (log(a0) to log(a4)).
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Figure 5: The NMSE and MNLP evaluation. The first row: the NMSE and MNLP over iteration.
The second row: the average NMSE, MNLP, Running time as a function of the number of particles.

6 Conclusion

We have proposed a novel Bayesian filtering framework for GP regression, which is a fast and accu-
rate online method. Our MPGP framework does not only estimate the function value successfully,
but it also provides a new technique for learning the unknown static hyperparameters by online es-
timating the marginal posterior of hyperparameters. The small training set at each iteration would
largely reduce the computation load while the estimation performance is improved over iteration due
to the fact that recursive filtering would propagate the previous estimation to enhance the current es-
timation. In comparison with other benchmarks, we have shown that our MPGP could provide a
robust estimation with a competitively computational speed. In the future, it would be interesting to
explore the time-varying function estimation with our MPGP.
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