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Abstract

Variational methods provide a computationally scalable alternative to Monte Carlo
methods for large-scale, Bayesian nonparametric learning. In practice, however,
conventional batch and online variational methods quickly become trapped in lo-
cal optima. In this paper, we consider a nonparametric topic model based on the
hierarchical Dirichlet process (HDP), and develop a novel online variational in-
ference algorithm based on split-merge topic updates. We derive a simpler and
faster variational approximation of the HDP, and show that by intelligently split-
ting and merging components of the variational posterior, we can achieve substan-
tially better predictions of test data than conventional online and batch variational
algorithms. For streaming analysis of large datasets where batch analysis is in-
feasible, we show that our split-merge updates better capture the nonparametric
properties of the underlying model, allowing continual learning of new topics.

1 Introduction

Bayesian nonparametric methods provide an increasingly important framework for unsupervised
learning from structured data. For example, the hierarchical Dirichlet process (HDP) [1] provides
a general approach to joint clustering of grouped data, and leads to effective nonparametric topic
models. While nonparametric methods are best motivated by their potential to capture the details
of large datasets, practical applications have been limited by the poor computational scaling of
conventional Monte Carlo learning algorithms.

Mean field variational methods provide an alternative, optimization-based framework for nonpara-
metric learning [2, 3]. Aiming at larger-scale applications, recent work [4] has extended online
variational methods [5] for the parametric, latent Dirichlet allocation (LDA) topic model [6] to the
HDP. While this online approach can produce reasonable models of large data streams, we show that
the variational posteriors of existing algorithms often converge to poor local optima. Multiple runs
are usually necessary to show robust performance, reducing the desired computational gains. Fur-
thermore, by applying a fixed truncation to the number of posterior topics or clusters, conventional
variational methods limit the ability of purportedly nonparametric models to fully adapt to the data.

In this paper, we propose novel split-merge moves for online variational inference for the HDP
(oHDP) which result in much better predictive performance. We validate our approach on two cor-
pora, one with millions of documents. We also propose an alternative, direct assignment HDP repre-
sentation which is faster and more accurate than the Chinese restaurant franchise representation used
in prior work [4]. Additionally, the inclusion of split-merge moves during posterior inference allows
us to dynamically vary the truncation level throughout learning. While conservative truncations can
be theoretically justifed for batch analysis of fixed-size datasets [2], our data-driven adaptation of
the trunction level is far better suited to large-scale analysis of streaming data.

Split-merge proposals have been previously investigated for Monte Carlo analysis of nonparametric
models [7, 8, 9]. They have also been used for maximum likelihood and variational analysis of
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Figure 1: Directed graphical representation of a hierarchical Dirichlet process topic model, in which an un-
bounded collection of topics φk model the Nj words in each of D documents. Topics occur with frequency πj

in document j, and with frequency β across the full corpus.

parametric models [10, 11, 12, 13]. These deterministic algorithms validate split-merge proposals
by evaluating a batch objective on the entire dataset, an approach which is unexplored for nonpara-
metric models and infeasible for online learning. We instead optimize the variational objective via
stochastic gradient ascent, and split or merge based on only a noisy estimate of the variational lower
bound. Over time, these local decisions lead to global estimates of the number of topics present in a
given corpus. We review the HDP and conventional variational methods in Sec. 2, develop our novel
split-merge procedure in Sec. 3, and evaluate on various document corpora in Sec. 4.

2 Variational Inference for Bayesian Nonparametric Models

2.1 Hierarchical Dirichlet processes

The HDP is a hierarchical nonparametric prior for grouped mixed-membership data. In its simplest
form, it consists of a top-level DP and a collection of D bottom-level DPs (indexed by j) which
share the top-level DP as their base measure:

G0 ∼ DP(γH), Gj ∼ DP(αG0), j = 1, . . . , D.

Here,H is a base measure on some parameter space, and γ > 0, α > 0 are concentration parameters.
Using a stick-breaking representation [1] of the global measure G0, the HDP can be expressed as

G0 =

∞
∑

k=1

βkδφk
, Gj =

∞
∑

k=1

πjkδφk
.

The global weights β are drawn from a stick-breaking distribution β ∼ GEM(γ), and atoms are
independently drawn as φk ∼ H . Each Gj shares atoms with the global measure G, and the lower-
level weights are drawn πj ∼ DP(αβ). For this direct assignment representation, the k indices for
each Gj index directly into the global set of atoms. To complete the definition of the general HDP,
parameters ψjn ∼ Gj are then drawn for each observation n in group j, and observations are drawn
xjn ∼ F (ψjn) for some likelihood family F . Note that ψjn = φzjn for some discrete indicator zjn.

In this paper we focus on an application of the HDP to modeling document corpora. The top-
ics φk ∼ Dirichlet(η) are distributions on a vocabulary of W words. The global topic weights,
β ∼ GEM(γ), are still drawn from a stick-breaking prior. For each document j, document-specific
topic frequencies are drawn πj ∼ DP(αβ). Then for each word index n in document j, a topic
indicator is drawn zjn ∼ Categorical(πj), and finally a word is drawn wjn ∼ Categorical(φzjn).

2.2 Batch Variational Inference for the HDP

We use variational inference [14] to approximate the posterior of the latent variables (φ, β,π, z) —
the topics, global topic weights, document-specific topic weights, and topic indicators, respectively
— with a tractable distribution q, indexed by a set of free variational parameters. Appealing to mean
field methods, our variational distribution is fully factorized, and is of the form

q(φ, β,π, z | λ, θ,ϕ) = q(β)

∞
∏

k=1

q(φk | λk)

D
∏

j=1

q(πj | θj)

Nj
∏

n=1

q(zjn | ϕjn), (1)
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where D is the number of documents in the corpus and Nj is the number of words in document j.
Individual distributions are selected from appropriate exponential families:

q(β) = δβ∗(β)

q(φk | λk) = Dirichlet(φk | λk)

q(πj | θj) = Dirichlet(πj | θj)

q(zjn) = Categorical(zjn | ϕjn)

where δβ∗(β) denotes a degenerate distribution at the point β∗.1 In our update derivations below,
we use ϕjw to denote the shared ϕjn for all word tokens in document j of type w.

Selection of an appropriate truncation strategy is crucial to the accuracy of variational methods for
nonparametric models. Here, we truncate the topic indicator distributions by fixing q(zjn = k) = 0
for k > K , where K is a threshold which varies dynamically in our later algorithms. With this
assumption, the topic distributions with indices greater than K are conditionally independent of
the observed data; we may thus ignore them and tractably update the remaining parameters with
respect to the true, infinite model. A similar truncation has been previously used in the context of an
otherwise more complex collapsed variational method [3]. Desirably, this truncation is nested such
that increasing K always gives potentially improved bounds, but does not require the computation
of infinite sums, as in [16]. In contrast, approximations based on truncations of the stick-breaking
topic frequency prior [2, 4] are not nested, and their artifactual placement of extra mass on the final
topic K is less suitable for our split-merge online variational inference.

Via standard convexity arguments [14], we lower bound the marginal log likelihood of the observed
data using the expected complete-data log likelihood and the entropy of the variational distribution,

L(q)
def
= Eq[log p(φ, β,π, z,w | α, γ, η)]− Eq[log q(φ,π, z | λ, θ,ϕ)]

= Eq[log p(w | z,φ)] + Eq[log p(z | π)] + Eq[log p(π | αβ)] + Eq[log p(φ | η)]

+ Eq[log p(β | γ)]− Eq[log q(z | ϕ)]− Eq[log q(π | θ)]− Eq[log q(φ | λ)]

=

D
∑

j=1

{

Eq[log p(wj | zj ,φ)] + Eq[log p(zj | πj)] + Eq[log p(πj | αβ)]− Eq[log q(zj | ϕj)]

− Eq[log q(πj | θj)] +
1

D

(

Eq[log p(φ | η)] + Eq[log p(β | γ)]− Eq[log q(φ | λ)]
)}

, (2)

and maximize this quantity by coordinate ascent on the variational parameters. The expectations
are with respect to the variational distribution. Each expectation is dependent on only a subset
of the variational parameters; we leave off particular subscripts for notational clarity. Note that
the expansion of the variational lower bound in (2) contains all terms inside a summation over
documents. This is the key observation that allowed [5] to develop an online inference algorithm
for LDA. A full expansion of the variational objective is given in the supplemental material. Taking
derivatives of L(q) with respect to each of the variational parameters yields the following updates:

ϕjwk ∝ exp {Eq[logφkw ] + Eq[log πjk]} (3)

θjk ← αβk +
∑W

w=1 nw(j)ϕjwk (4)

λkw ← η +
∑D

j=1 nw(j)ϕjwk, (5)

Here, nw(j) is the number of times word w appears in document j. The expectations in (3) are

Eq[logφkw ] = Ψ(λkw)−Ψ(
∑

i λki), Eq[log πjk] = Ψ(θjk)−Ψ(
∑

i θji),

where Ψ(x) is the digamma function, the first derivative of the log of the gamma function.

In evaluating our objective, we represent β∗ as a (K + 1)-dim. vector containing the probabilities
of the first K topics, and the total mass of all other topics. While β∗ cannot be optimized in closed
form, it can be updated via gradient-based methods; we use a variant of L-BFGS. Drawing a par-
allel between variational inference and the expectation maximization (EM) algorithm, we label the
document-specific updates of (ϕj , θj) the E-step, and the corpus-wide updates of (λ, β) the M-step.

1We expect β to have small posterior variance in large datasets, and using a point estimate β∗ simplifies
variational derivations for our direct assignment formulation. As empirically explored for the HDP-PCFG [15],
updates to the global topic weights have much less predictive impact than improvements to topic distributions.
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2.3 Online Variational Inference

Batch variational inference requires a full pass through the data at each iteration, making it compu-
tationally infeasible for large datasets and impossible for streaming data. To remedy this, we adapt
and improve recent work on online variational inference algorithms [4, 5].

The form of the lower bound in (2), as a scaled expectation with respect to the document collec-
tion, suggests an online learning algorithm. Given a learning rate ρt satisfying

∑∞
t=0 ρt = ∞ and

∑∞
t=0 ρ

2
t < ∞, we can optimize the variational objective stochastically. Each update begins by

sampling a “mini-batch” of documents S, of size |S|. After updating the mini-batch of document-
specific parameters (ϕj , θj) by iterating (3,4), we update the corpus-wide parameters as

λkw ← (1− ρt)λkw + ρtλ̂kw , (6)

β∗
k ← (1− ρt)β

∗
k + ρtβ̂k, (7)

where λ̂kw is a set of sufficient statistics for topic k, computed from a noisy estimate of (5):

λ̂kw = η +
D

|S|

∑

j∈S

nw(j)ϕjwk. (8)

The candidate topic weights β̂ are found via gradient-based optimization on S. The resulting infer-
ence algorithm is similar to conventional batch methods, but is applicable to streaming, big data.

3 Split-Merge Updates for Online Variational Inference

We develop a data-driven split-merge algorithm for online variational inference for the HDP, re-
ferred to as oHDP-SM. The algorithm dynamically expands and contracts the truncation level K by
splitting and merging topics during specialized moves which are interleaved with standard online
variational updates. The resulting model truly allows the number of topics to grow with the data. As
such, we do not have to employ the technique of [4, 3] and other truncated variational approaches of
setting K above the expected number of topics and relying on the inference to infer a smaller num-
ber. Instead, we initialize with small K and let the inference discover new topics as it progresses,
similar to the approach used in [17]. One can see how this property would be desirable in an online
setting, as documents seen after many inference steps may still create new topics.

3.1 Split: Creation of New Topics

Given the result of analyzing one mini-batch q∗ =
{

(ϕj , θj)
|S|
j=1,λ, β

∗
}

, and the corresponding

value of the lower bound L(q∗), we consider splitting topic k into two topics k′, k′′.2 The split
procedure proceeds as follows: (1) initialize all variational posteriors to break symmetry between
the new topics, using information from the data; (2) refine the new variational posteriors using a
restricted iteration; (3) accept or reject the split via the change in variational objective value.

Initialize new variational posteriors To break symmetry, we initialize the new topic posteriors
(λk′ , λk′′ ), and topic weights (β∗

k′ , β∗
k′′), using sufficient statistics from the previous iteration:

λk′ = (1− ρt)λk, λk′′ = ρtλ̂k,

β∗
k′ = (1− ρt)β

∗
k , β∗

k′′ = ρtβ̂k.

Intuitively, we expect the sufficient statistics to provide insight into how a topic was actually used

during the E-step. The minibatch-specific parameters {ϕj , θj}
|S|
j=1 are then initialized as follows,

ϕjwk′ = ωkϕjwk, ϕjwk′′ = (1 − ωk)ϕjwk,

θjk′ = ωkθjk, θjk′′ = (1 − ωk)θjk,

with the weights defined as ωk = βk′/(βk′ + βk′′).

2Technically, we replace topic k with topic k′ and add k′′ as a new topic. In practice, we found that the
order of topics in the global stick-breaking distribution had little effect on overall algorithm performance.
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Algorithm 1 Restricted iteration

1: initialize (λℓ, βℓ) for ℓ ∈ {k′, k′′}
2: for j ∈ S do
3: initialize (ϕj , θj) for ℓ ∈ {k′, k′′}
4: while not converged do
5: update (ϕj , θj) for ℓ ∈ {k′, k′′} using (3, 4)
6: end while
7: update (λℓ, βℓ) for ℓ ∈ {k′, k′′} using (6, 7)
8: end for

Restricted iteration After initializing the variational parameters for the new topics, we update
them through a restricted iteration of online variational inference. The restricted iteration consists
of restricted analogues to both the E-step and the M-step, where all parameters except those for the
new topics are held constant. This procedure is similar to, and inspired by, the “partial E-step” for
split-merge EM [10] and restricted Gibbs updates for split-merge MCMC methods [7].

All values of ϕjwℓ and θjℓ, ℓ /∈ {k
′, k′′}, remain unchanged. It is important to note that even though

these values are not updated, they are still used in the calculations for both the variational expectation
of πj and the normalization of ϕ. In particular,

ϕjwk′ =
exp {Eq[logφk′w] + Eq[log πjk′ ]}

∑

ℓ∈T exp {Eq[logφℓw] + Eq[log πjℓ]}
,

Eq[log πjk′ ] = Ψ(θjk′ )−Ψ(
∑

k∈T θjk),

where T is the original set of topics, minus k, plus k′ and k′′. The expected log word probabilities
Eq[logφk′w] and Eq[logφk′′w] are computed using the newly updated λ values.

Evaluate Split Quality Let ϕsplit for minibatch S be ϕ as defined above, but with ϕjwk replaced
by theϕjwk′ andϕjwk′′ learned in the restricted E-step. Let θsplit,λsplit and β∗

split be defined similarly.

Now we have a new model state qsplit(k) =
{

(ϕsplit, θsplit)
|S|
j=1,λsplit, β

∗
split

}

. We calculateL
(

qsplit(k)
)

,

and if L
(

qsplit(k)
)

> L(q∗), we update the new model state q∗ ← qsplit(k), accepting the split. If

L
(

qsplit(k)
)

< L(q∗), then we go back and test another split, until all splits are tested. In practice we
limit the maximum number of allowed splits each iteration to a small constant. If we wish to allow
the model to expand the number of topics more quickly, we can increase this number. Finally, it is
important to note that all aspects of the split procedure are driven by the data — the new topics are
initialized using data-driven proposals, refined by re-running the variational E-step, and accepted
based on an unbiased estimate of the change in the variational objective.

3.2 Merge: Removal of Redundant Topics

Consider a candidate merge of two topics, k′ and k′′, into a new topic k. For batch variational meth-
ods, it is straightforward to determine whether such a merge will increase or decrease the variational
objective by combining all parameters for all documents,

ϕjwk = ϕjwk′ + ϕjwk′′ , θjk = θjk′ + θjk′′ , βk = βk′ + βk′′ , λk = λk′ + λk′′ ,

and computing the difference in the variational objective before and after the merge. Because many
terms cancel, computing this bound change is fairly computationally inexpensive, but it can still be
computationally infeasible to consider all pairs of topics for large K . Instead, we identify potential
merge candidates by looking at the sample covariance of the θj vectors across the corpus (or mini-
batch). Topics with positive covariance above a certain threshold have the quantitative effects of
their merge evaluated. Intuitively, if there are two copies of a topic or a topic is split into two pieces,
they should tend to be used together, and therefore have positive covariance. For consistency in

notation, we call the model state with topics k′ and k′′ merged qmerge(k′,k′′).

Combining this merge procedure with the previous split proposals leads to the online variational
method of Algorithm 2. In an online setting, we can only compute unbiased noisy estimates of the
true difference in the variational objective; split or merge moves that increase the expected varia-
tional objective are not guaranteed to do so for the objective evaluated over the entire corpus. The
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Algorithm 2 Online variational inference for the HDP + split-merge

1: initialize (λ, β∗)
2: for t = 1, 2, . . . do
3: for j ∈ minibatch S do
4: initialize (ϕj , θj)
5: while not converged do
6: update (ϕj , θj) using (3, 4)
7: end while
8: end for
9: for pairs of topics {k′, k′′} ∈ K ×K with Cov(θjk′ , θjk′′ ) > 0 do

10: if L
(

qmerge(k′,k′′)
)

> L(q) then

11: q ← qmerge(k′,k′′)

12: end if
13: end for
14: update (λ, β∗) using (6, 7)
15: for k = 1, 2, . . . ,K do
16: compute L

(

qsplit(k)
)

via restricted iteration

17: if L
(

qsplit(k)
)

> L(q) then

18: q ← qsplit(k)

19: end if
20: end for
21: end for

uncertainty associated with the online method can be mitigated to some extent by using large mini-
batches. Confidence intervals for the expected change in the variational objective can be computed,
and might be useful in a more sophisticated acceptance rule. Note that our usage of a nested family
of variational bounds is key to the accuracy and stability of our split-merge acceptance rules.

4 Experimental Results

To demonstrate the effectiveness of our split-merge moves, we compare three algorithms: batch
variational inference (bHDP), online variational inference without split-merge (oHDP), and online
variational inference with split-merge (oHDP-SM). On the NIPS corpus we also compare these
three methods to collapsed Gibbs sampling (CGS) and the CRF-style oHDP model (oHDP-CRF)
proposed by [4].3 We test the models on one synthetic and two real datasets:

Bars A 20-topic bars dataset of the type introduced in [18], where topics can be viewed as bars on
a 10 × 10 grid. The vocabulary size is 100, with a training set of 2000 documents and a test set of
200 documents, 250 words per document.

NIPS 1,740 documents from the Neural Information Processing Systems conference proceedings,
1988-2000. The vocabulary size is 13,649, and there are 2.3 million tokens in total. We randomly
divide the corpus into a 1,392-document training set and a 348-document test set.

New York Times The New York Times Annotated Corpus4 consists of over 1.8 million articles
appearing in the New York Times between 1987 and 2007. The vocabulary is pruned to 8,000 words.
We hold out a randomly selected subset of 5,000 test documents, and use the remainder for training.

All values ofK given for oHDP-SM models are initial values — the actual truncation levels fluctuate
during inference. While the truncation levelK is different from the actual number of topics assigned
non-negligible mass, the split-merge model tends to merge away unused topics, so these numbers
are usually fairly close. Hyperparameters are initialized to consistent values across all algorithms
and datasets, and learned via Newton-Raphson updates (or in the case of CGS, resampled). We use
a constant learning rate across all online algorithms. As suggested by [4], we set ρt = (τ + t)−κ

where τ = 1, κ = 0.5. Empirically, we found that slower learning rates could result in greatly
reduced performance, across all models and datasets.

3For CGS we use the code available at http://www.gatsby.ucl.ac.uk/∼ywteh/research/npbayes/npbayes-
r21.tgz, and for oHDP-CRF we use the code at http://www.cs.princeton.edu/∼chongw/software/onlinehdp.tar.gz.

4http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2008T19
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To compare algorithm performance, we use per-word heldout likelihood, similarly to the metrics
of [3, 19, 4]. We randomly split each test document in Dtest into 80%-20% pieces, wj1 and wj2.

Then, using φ̄ as the variational expectation of the topics from training, we learn π̄j on wj1 and

approximate the probability of wj2 as
∏

w∈wj2

∑

k π̄jkφ̄kw. The overall test metric is then

E =

∑

j∈Dtest

∑

w∈wj2
log

(
∑

k π̄jkφ̄kw
)

∑

j∈Dtest |wj2|

4.1 Bars

For the bars data, we initialize eight oHDP-SM runs with K = {2, 5, 10, 20, 40, 50, 80, 100}, eight
runs of oHDP with K = 20, and eight runs with K = 50. As seen in Figure 2(a), the oHDP
algorithm converges to local optima, while the oHDP-SM runs all converge to the global optimum.
More importantly, all split-merge methods converge to the correct number of topics, while oHDP
uses either too few or too many topics. Note that the data-driven split-merge procedure allows
splitting and merging of topics to mostly cease once the inference has converged (Figure 2(d)).

4.2 NIPS

We compare oHDP-SM, oHDP, bHDP, oHDP-CRF, and CGS in Figure 2. Shown are two runs of
oHDP-SM with K = {100, 300}, two runs each of oHDP and bHDP with K = {300, 1000}, and
one run each of oHDP-CRF and CGS with K = 300. All the runs displayed are the best runs from a
larger sample of trials. Since oHDP and bHDP will use only a subset of topics under the truncation,
setting K much higher results in comparable numbers of topics as oHDP-SM. We set |S| = 200 for
the online algorithms, and run all methods for approximately 40 hours of CPU time.

The non split-merge methods reach poor local optima relatively quickly, while the split-merge al-
gorithms continue to improve. Notably, both oHDP-CRF and CGS perform much worse than any
of our methods. It appears that the CRF model performs very poorly for small datasets, and CGS
reaches a mode quickly but does not mix between modes. Even though the split-merge algorithms
improve in part by adding topics, they are using their topics much more effectively (Figure 2(h)).
We speculate that for the NIPS corpus especially, the reason that models achieve better predictive
likelihoods with more topics is due to the bursty properties of text data [20]. Figure 3 illustrates the
topic refinement and specialization which occurs in successful split proposals.

4.3 New York Times

As batch variational methods and samplers are not feasible for such a large dataset, we compare
two runs of oHDP with K = {300, 500} to a run of oHDP-SM with K = 200 initial topics. We
also use a larger minibatch size of |S| = 10,000; split-merge acceptance decisions can sometimes
be unstable with overly small minibatches. Figure 2(c) shows an inherent problem with oHDP for
very large datasets — when truncated to K = 500, the algorithms uses all of its available topics and
exhibits overfitting. For the oHDP-SM, however, predictive likelihood improves over a substantially
longer period and overfitting is greatly reduced.

5 Discussion

We have developed a novel split-merge online variational algorithm for the hierarchical DP. This
approach leads to more accurate models and better predictive performance, as well as a model that
is able to adapt the number of topics more freely than conventional approximations based on fixed
truncations. Our moves are similar in spirit to split-merge samplers, but by evaluating their quality
stochastically using streaming data, we can rapidly adapt model structure to large-scale datasets.

While many papers have tried to improve conventional mean field methods via higher-order vari-
ational expansions [21], local optima can make the resulting algorithms compare unfavorably to
Monte Carlo methods [3]. Here we pursue the complementary goal of more robust, scalable op-
timization of simple variational objectives. Generalization of our approach to more complex hier-
archies of DPs, or basic DP mixtures, is feasible. We believe similar online learning methods will
prove effective for the combinatorial structures of other Bayesian nonparametric models.

Acknowledgments We thank Dae Il Kim for his assistance with the experimental results.
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Figure 2: Trace plots of heldout likelihood and number of topics used. Across all datasets, common color
indicates common algorithm, while for NIPS and New York Times, line type indicates different initializations.
Top: Test log likelihood for each dataset. Middle: Number of topics used per iteration. Bottom: A plot of
per-word log likelihood against number of topics used. Note particularly plot (h), where for every cardinality
of used topics shown, there is a split-merge method outperforming a conventional method.
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Figure 3: The evolution of a split topic. The left column shows the topic directly prior to the split. After
240,000 more documents have been analyzed, subtle differences become apparent: the top topic covers terms
relating to general neuronal behavior, while the bottom topic deals more specifically with neuron firing.
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