Appendix: Proof of correctness

First we note that the pseudo-code uses 1:(i) instead of (i) to denote the mapping from sort order to
storage order, to remove ambiguity. We also use object-oriented notation ~(p) to represent the set
containing p, with y(p).value denoting the value field of the set object. This value field is interpreted
as the absolute value of each of the elements of the set, with a negative value implying zero. The
value field is stored as an ancilery array in our implementation. We also need an operation that
returns the “first” element of the set, which in our datastructure is just the root of the tree that
represents the set.

We start by simplifying the notation to
n
o) 1
fla) == W) |z + 3 lle = will3,
[t
where w; = z(jy — vy, and h'(j) = h(j) — h(j —1). We want to find arg min,, f(z). First we take

the gradient when z; is not at the same value as another, and is non-zero:

af o ,,.
= —h'(j)sgn(x(;)) + x(;) — wj.
837@ P (J)sen((])) () J

Equating to zero gives:
« .
)| = ws| = — W (),
when |w;| > %h’(j), with sgn(z ;) = sgn(w;). If |w;| < %h’(j), then clearly the gradient can not
be equated to zero except at ;) = 0, where the subdifferential needs to be considered. Considering
the subdifferential at zero gives the requirement that
Wy

;h' ()
which follows from |w;| < /'(j). So essentially if |w;| — 2h/(j) < 0 we set z(;) = 0. This is
essentially the same shrinkage as performed in the proximal operator of a L, regularizer.

e[-1,1]

The above update is used for singleton sets in Algorithm 2. Now notice that when several x(;) have
the same value, say a set () of them, and none of them are zero, then equating the gradients to zero
gives a set of equations, which can be solved to give

. 1 a ..
WeQ senluy)en = o 3 (Il = 2H(0).
1€Q P
This implies that the sort ordering for equal variables doesn’t effect the solution, so a stable sort
is not necessary. The result for the singleton case where the value is negative follows also for the
grouped together variables.

It suffices to show that at termination of Algorithm 2, these equations are satisfied by the returned =*
for all 7, as this implies that 0 is in the subdifferential at z*. The assignments in Algorithm 2 clearly
ensure that this is the case under the assumption that the sort ordering of |wj| is the same as the sort
order of |x(;)| after termination of the algorithm, and likewise for the grouped variables. So we just
need to show that the assignements to the z(;) result in that ordering. We proceed by induction.

Assume that at iteration k of the first loop in Algorithm 2, the ordering is correct for each group
containing u(1) < k, i.e.

Vu(p), i(a) <k Jwp| > [wy| = 7(u(p)).value > ~(u(q)).value.
Then at iteration k, a new singleton set is created for j = y(k), with value given by |w;|—<h'(j). If

~(4)’s value is less than the value of p(k — 1), then by induction the ordering is correct. Otherwise,
the algorithm procedes by adding j to set u(k — 1), and updating the value of j’s new set to the
average discussed above. This will increase the value of the set, which may cause it’s value to
increase above that of another set. That case is handled by the recursive merging in the while loop,
in the same manner. It is clear that the while loop must terminate after no more than k merges. At
termination of the while loop the ordering is then correct up to k, as all changes in the set values that
would cause the ordering to change instead cause set merges.

