## Supplementary Material for paper Bandit Algorithms boost motor-task selection for Brain Computer Interfaces

## **A** The UCB - classif algorithm

## A.1 Some intuition on bandit algorithms

Figure 3 illustrates how the UCB-classif algorithm works.



Figure 3: This figure represents two snapshots, a time t and t+1, of a bandit with 2 arms. Although arm 1 is the best arm  $(r_1^* > r_2^*)$ , represented by the red stars), at time t,  $B_{1,t} < B_{2,t}$ , therefore the arm 2 is selected. Pulling the arm 2 gives a better estimate  $\hat{r}_{2,t+1}$  of  $r_2^*$  and reduces the confidence interval. At time t+1,  $B_{1,t+1}$  will be greater than  $B_{2,t+1}$ , so arm 1 will be selected.

## A.2 Proof of Theorem 1

**Reminder of Vapnik-Chervonenkis's bound in classification** Let  $\mathcal{D}$  be a probability distribution in  $\mathbb{R}^d \times \{0, 1\}$ . Let  $\mathcal{H}$  be the set of binary linear classifiers in  $\mathbb{R}^d$ , i.e. if  $(X, Y) \sim \mathcal{D}$ , (i.e. are drawn from  $\mathcal{D}$ ) then h(X) is the inferred class of the sample while the true class is Y.

We define the  $\{0,1\}$  loss of a classifier h (which is not always equal to the loss l(.,.) of the SVM classifier) as

$$L_{\mathcal{D}}(h) = \mathbb{E}_{(X,Y)\sim\mathcal{D}}[\mathbf{1}\{h(X)\neq Y\}].$$

Let  $h^*$  be the best linear classifier on  $\mathcal{D}$  for the  $\{0, 1\}$  loss, i.e.

$$h^* = \arg\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h).$$

Let now  $\mathcal{X} = \{(X_1, Y_1), \dots, (X_T, Y_T)\}$  be T i.i.d. points in  $\mathbb{R}^d \times \{0, 1\}$ , sampled from  $\mathcal{D}$ .

We define the  $\{0, 1\}$  empirical loss of a classifier h as

$$\hat{L}_{\mathcal{X}}(h) = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1} \{ h(X_t) \neq Y_t \}$$

Let  $\hat{h} \in \mathcal{H}$  be the linear SVM classifier on  $\mathcal{X}$  in  $\mathcal{H}$ . We have the following Theorem (see [15] for a survey on this).

**Theorem 2 (Vapnik, 1982)** We have with probability  $1 - 2\delta$  a bounded error on the (0, 1) loss in generalization, and a bounded error in the estimate of the (0, 1) loss, that is to say

$$L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}(h^*) \le \sqrt{\frac{d(\log(2T/d) + 1) + \log(4/\delta)}{T}}$$

and

$$|L_{\mathcal{D}}(h^*) - \hat{L}_{\mathcal{X}}(\widehat{h})| \le 2\sqrt{\frac{d(\log(2T/d) + 1) + \log(4/\delta)}{T}}$$

Adaptation of Vapnik-Chervonenkis's bound in our context Write  $\hat{R}_{k,t}$  the empirical estimate of the linear SVM classifier's classification error on the t first samples of task k (and with any samples of idle condition).

Define the following event

$$\xi = \bigcap_{k \le K} \bigcap_{t \le n} \left\{ |r_k^* - \hat{R}_{k,t}| \le 2\sqrt{\frac{d(\log(2t/d) + 1) + \log(8NK/\delta)}{t}} \right\}.$$
(3)

The previous Theorem states that this event is of probability at least  $1 - \delta$  (by an union bound).

In our setting and for task k, we have  $1 - r_k^*$  which is the  $\{0, 1\}$  loss of the best classifier for task k and  $1 - \hat{r}_{k,t}$  which is the empirical  $\{0, 1\}$  loss of the linear SVM classifier for task k with  $T_{k,t}$  samples. As a corollary, we obtain that with probability  $1 - \delta$ , for any task k and any time t,

$$|r_k^* - \hat{r}_{k,t}| \le 2\sqrt{\frac{d(\log(2T_{k,t}/d) + 1) + \log(8NK/\delta)}{T_{k,t}}},$$

where d is the number of features.

**Overview of the way the algorithm works** As  $T_{k,t} < N$ , we have on  $\xi$  that for any task k and any time t,

$$|r_k^* - \hat{r}_{k,t}| \le 2\sqrt{\frac{d(\log(2N/d) + 1) + \log(8NK/\delta)}{T_{k,t}}} \le \sqrt{\frac{a\log(8NK/\delta)}{T_{k,t}}},$$

where a = 5(d + 1).

We thus have on  $\xi$ 

$$r_k^* \le \hat{r}_{k,t} + \sqrt{\frac{a \log(8NK/\delta)}{T_{k,t}}} \le r_k^* + 2\sqrt{\frac{a \log(8NK/\delta)}{T_{k,t}}}.$$

Note here that  $B_{k,t} = \hat{r}_{k,t} + \sqrt{\frac{a \log(8NK/\delta)}{T_{k,t}}}$  is an upper bound on  $\xi$  on  $r_k^*$ .

In the event  $\xi$  of large probability such that this is true for any k and any N, we know that we pull at time t a sub-optimal arm k if for the best arm \* with reward  $r^*$ ,  $B_{*,t} \leq B_{k,t}$ , which according to the last equation leads to:

$$r^* \le B_{*,t} \le B_{k,t} \le r_k^* + 2\sqrt{\frac{a\log(8NK/\delta)}{T_{k,t}}},$$

This means by a simple computation that on  $\xi$  we pull a sub-optimal arm k only if

$$T_{k,t} \le 4 \frac{a \log(8NK/\delta)}{(r^* - r_k^*)^2}.$$

We then pull with probability  $1-\delta$  the suboptimal arms only a number of times in  $O(\log(8NK/\delta))$ , as  $T_{k,N} \leq 4\frac{a \log(8NK/\delta)}{(r^*-r_k^*)^2}$  and thus pull the optimal arm  $N - O(\log(8NK/\delta))$  times, more precisely at least  $N - \sum_{k \neq *} 4\frac{a \log(8NK/\delta)}{(r^*-r_k^*)^2}$ .

Finally, the error of the empirical classifier on the best arm is such that with probability  $1-\delta$ 

$$|r^* - \hat{r}^*| \le \sqrt{\frac{a \log(8NK/\delta)}{N - \sum_{k \neq *} 4 \frac{a \log(8NK/\delta)}{(r^* - r_k^*)^2}}}.$$

If for instance we choose  $\delta = 1/N$ , we have that with probability at least 1 - N, the best arm is pulled at least  $N - \sum_{k \neq *} 8 \frac{a \log(8NK)}{(r^* - r_k^*)^2}$