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Abstract

We consider unsupervised estimation of mixtures of discgeaphical models,
where the class variable is hidden and each mixture compoaarhave a poten-
tially different Markov graph structure and parameters ¢ve observed variables.
We propose a novel method for estimating the mixture compisnegith provable
guarantees. Our output is a tree-mixture model which seagesgood approxi-
mation to the underlying graphical model mixture. The sanagpld computational
requirements for our method scalepasy (p, r), for anr-component mixture gf-
variate graphical models, for a wide class of models whicluitles tree mixtures
and mixtures over bounded degree graphs.
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1 Introduction

The framework of graphical models allows for parsimonioegresentation of high-dimensional
data by encoding statistical relationships among the gdetrof variables through a graph, known
as theMarkov graph Recent works have shown that a wide class of graphical rmozkel be
estimated efficiently in high dimensions [1-3]. Howevegduently, graphical models may not
suffice to explain all the characteristics of the observed.d&or instance, there may be latent or
hidden variables, which can influence the observed data machyays.

In this paper, we consider latent variable models, wheréemiaariable can alter the relationships
(both structural and parametric) among the observed Masgaln other words, we posit the observed
data as being generated from a mixture of graphical modélsreveach mixture component has a
potentially different Markov graph structure and paramseteThe choice variable corresponding
to the selection of the mixture component is hidden. Suchaascbf graphical model mixtures
can incorporateontext-specific dependenciesnd employs multiple graph structures to model the
observed data. This leads to a significantly richer classarfets, compared to graphical models.

Learning graphical model mixtures is however far more @maing than learning graphical mod-
els. State-of-art theoretical guarantees are mostlyditnio mixtures of product distributions, also
known adatent class modelsr naive Bayes model§ hese models are restrictive since they do not
allow for dependencies to exist among the observed vagabkeach mixture component. Our work
significantly generalizes this class and allows for gendiakov dependencies among the observed
variables in each mixture component.

The output of our method is a tree mixture model, which is adgaqaproximation for the underlying
graphical model mixture. The motivation behind fitting theserved data to a tree mixture is clear:
inference can be performed efficiently via belief propagain each of the mixture components.



See [4] for a detailed discussion. Thus, a tree mixture moffets a good tradeoff between using
single-tree models, which are too simplistic, and genawglgical model mixtures, where inference
is not tractable.

1.1 Summary of Results

We propose a novel method with provable guarantees for @ngiged estimation of discrete graph-
ical model mixtures. Our method has mainly three stagesphgstructure estimation, parameter
estimation, and tree approximation. The first stage inwéatimation of theinion graphstructure
Gy := U, Gp, which is the union of the Markov grapli&, } of the respective mixture components.
Our method is based on a series of rank tests, and can be vimngedeneralization of conditional-
independence tests for graphical model selection (e.®., Bl). We establish that our method is
efficient (in terms of computational and sample comples)tiezhen the underlying union graph has
sparse vertex separators. This includes tree mixtures atdnes with bounded degree graphs. The
second stage of our algorithm involves parameter estimatithe mixture components. In general,
this problem is NP-hard. We provide conditions for tracteddtimation of pairwise marginals of the
mixture components. Roughly, we exploit the conditiomalépendence relationships to convert the
given model to a series of mixtures of product distributioRarameter estimation for product dis-
tribution mixture has been well studied (e.g. [7-9]), andased orspectral decompositioraf the
observed moments. We leverage on these techniques to @staimtes of the pairwise marginals
for each mixture component. The final stage for obtaining &gproximations involves running the
standard Chow-Liu algorithm [10] on each component usiegttimated pairwise marginals of the
mixture components.

We prove that our method correctly recovers the union grapittsire and the tree structures cor-
responding to maximum-likelihood tree approximationste mixture components. Note that if
the underlying model is a tree mixture, we correctly recdkiertree structures of the mixture com-
ponents. The sample and computational complexities of aethau scale agoly(p,r), for an
r-component mixture gf-variate graphical models, when the union graph has sparsexsepara-
tors between any node pair. This includes tree mixtures artlires with bounded degree graphs.
To the best of our knowledge, this is the first work to providevable learning guarantees for
graphical model mixtures. Our algorithm is also efficient foactical implementation and some
preliminary experiments suggest an advantage over EM w#hect to running times and accuracy
of structure estimation of the mixture components. Thusapproach for learning graphical model
mixtures has both theoretical and practical implications.

1.2 Related Work

Graphical Model Selection: Graphical model selection is a well studied problem stgrfnrom
the seminal work of Chow and Liu [10] for finding the maximuikelihood tree approximation of a
graphical model. Works on high-dimensional loopy graphivadel selection are more recent. They
can be classified into mainly two groups: non-convex localraaches [1, 2, 6] and those based on
convex optimization [3, 11]. However, these works are ncectly applicable for learning mixtures
of graphical models. Moreover, our proposed method alswiges a new approach for graphical
model selection, in the special case when there is only ortungicomponent.

Learning Mixture Models. Mixture models have been extensively studied, and thera acen-
ber of recent works on learning high-dimensional mixtueeg, [12,13]. These works provide guar-
antees on recovery under various separation constraihtsebe the mixture components and/or
have computational and sample complexities growing expibedéy in the number of mixture com-
ponents. In contrast, the so-callexpectral methodsave both computational and sample complex-
ities scaling only polynomially in the number of componenatsd do not impose stringent separation
constraints. Spectral methods are applicable for pararestienation in mixtures of discrete product
distributions [7] and more generally for latent trees [8flayeneral linear multiview mixtures [9].
We leverage on these techniques for parameter estimatiorodels beyond product distribution
mixtures.



2 Graphical Modelsand their Mixtures

A graphical model is a family of multivariate distributioNkarkov on a given undirected graph [14].
In a discrete graphical model, each node in the graphV is associated with a random variablg
taking value in a finite seY. Letd := |)| denote the cardinality of the set apd= |V| denote the
number of variables. A vector of random variab¥s= (Y3, ..., Y,) with a joint probability mass
function (pmf) P is Markov on the grapli7 if P satisfies thglobal Markov propertyor all disjoint
setsA,BCV

P(ya,yBlysw.pe) = P(yalysa,,e)P(yBlysa.pa), YA BCV:N[ANN[B]=0.

where the setS(4, B; G) is anode separatdbetweenA and B, and N[A] denotes the closed
neighborhood of4 (i.e., includingA).

Mixtures of discrete graphical models is considered. Hedenote the discrete hidden choice vari-
able corresponding to selection of a different mixture congnts, taking values im] := {1,...,r}
and letY denote the observed random vector. Denote:= [P(H = h)]; as the probability vec-
tor of the mixing weights andy,, as the Markov graph of the distributiaP(y|H = h) of each
mixture component. Given i.i.d. samplesy™ = [y1,...,y.]' from P(y), our goal is to find a
tree approximation for each mixture componéR{y|H = h)},. We do not assume any knowl-
edge of the mixing weights ;; or Markov graphq G}, }, or parameters of the mixture components
{P(y|H = h)}. Moreover, since the variabl is latent, we do not a priori know the mixture com-
ponent from which a sample is drawn. Thus, a major challemgedecomposition of the observed
statistics into the component models, and we tackle thisrieet main stages. First, we estimate the
union graphGy, := Uj,_; G}, which is the union of the Markov graphs of the componentstivée

use this graph estima@u to obtain the pairwise marginals of the respective mixtun@pgonents
{P(y|H = h)}. Finally, Chow-Liu algorithm provides tree approximatidii}, },, of each mixture
components.

3 Estimation of the Union of Component Graphs

We propose a novel method for learning graphical model mesiy first estimating the union
graphGy = Uj,_, G, which is the union of the graphs of the components. In theiapease when
G, = Gy, this gives the graph estimate of the components. Howdwvemyhion grapltz, appears
to have no direct relationship with the marginalized ma@gy). We first provide intuitions on how
G\, relates to the observed statistics.

Intuitions. We first establish the simple result that the union graphsatisfies Markov property
in each mixture component. Recall ti&tu, v; G;) denotes a vertex separator between nadsasd
vin Gu.

Fact 1 (Markov Property of G) For any two nodes, v € V such that(u, v) ¢ Gy,
Yo LY,|Ys, H, S :=S8(u,v;Gy). D

Proof:  The separator set ii, denoted bys := S(u, v; Gy), is also a vertex separator forand
v in each of the component grapts,. This is because removal 6fdisconnects: andv in each
Gy, Thus, we have Markov property in each componé&ht:l Y,|Ys,{H = h}, for eachh € [r],
and the above result follows. O

The above result can be exploited to obtain union graph estims follows: two nodes, v are

not neighbors inGy, if a separator sef can be found which results in conditional independence,
as in (1). The main challenge is indeed that the varidblis not observed and thus, conditional
independence cannot be directly inferred via observedsstat However, the effect off on the
observed statistics can be quantified as follows:

Lemma 1 (Rank Property) Given anr-component mixture of graphical models with, =
Ur_, Gy, for anyu,v € V such that(u,v) ¢ Gy andS := S(u,v; Gu), the probability matrix
M, 5.4y = [P[Yu =14,Y, = j, Ys = k]|;; has rank at most for anyk € YI5I.

A setS(A, B;G) C V is a separator of set and B if the removal of nodes i (A, B; G) separatesl
and B into distinct components.



The proof is given in [15]. Thus, the effect of marginalizithge choice variablé{ is seen in the
rank of the observed probability matricas, ,, ;s.x;. Whenu andv are non-neighbors iG:,, a
separator sef can be found such that the rankML v,{s;k} IS @t mostr. In order to use this result
as a criterion for inferring neighbors @&, we require that the rank dfl,, ,, ;s.x) for any neighbors
(u,v) € Gy be strictly larger tham. This requires the dimension of each node variabte r. We
discuss in detail the set of sufficient conditions for cotlgeiecoveringG, in Section 3.1.

TractableGraph Families: Another obstacle in using Lemma 1 to estimate gr&@phs computa-
tional: the search for separatdfdor any node pait:, v € V' is exponential iV | := p if no further
constraints are imposed. We consider graph families wheegtax separator can be found for any
(u,v) ¢ Gy with size at most). Under our framework, the hardness of learning a union giaph
parameterized by. Similar observations have been made before for graphiodefrselection [1].

There are many natural families wherés small:

1. If Gy is trivial (i.e., no edges) them = 0, we have a mixture of product distributions.

2. WhenGy is a tree, i.e., we have a mixture model Markov on the same tihean = 1,
since there is a unique path between any two nodes on a tree.

3. For an arbitrary--component tree mixture7, = U, T, where each component is a tree
distribution, we have thaj < r (since for any node pair, there is a unique path in each of
ther trees{T},}, and separating the node pair in edGhalso separates them 6#)).

4. For an arbitrary mixture of bounded degree graphs, we ha;(/ezhem Ay, whereAy, is
the maximum degree i@}, i.e., the Markov graph corresponding to compor{giiit= h}.

In generaly depends on the respective boungdor the component grapls,, as well as the extent
of their overlap. In the worst casg,can be as high aEhe[,,] 1, While in the special case when
G, = Gy, the bound remains the samg = 7. Note that for a general gragh_, with treewidth
tw(Gy) and maximum degred(G\,), we have thayy < min(A(Gy), tw(GL)).

Algorithm 1 @3 = RankTest(y"; &, »,n, r) for estimatingGy := U}, _, G}, of anr-component
mixture usingy™ samples, whereg is the bound on size of vertex separators between any node pai
in Gy and¢, , is a threshold on the singular values.

Rank(A4;¢) denotes the effective rank of matrik i.e., number of singular values more than
M, sy = [P"(Yu = 4,Y, = j, Yg = k)l;; is the empirical estimate computed usingi.d.
samplesy™. Initialize G{; = (V,0). For eachu,v € V, estimateM? ., from y" for some

configuratiork € Y!°!, if

in _Rank np) >, 2
SC\r/n\l{rL,v} al ( u,v,{S;k}" 3 ,p) r ( )
IS1<n

then addu, v) to @3.

Rank Test: Based on the above observations, we propose a rank tesin@&st, := Uy, ¢(,1Gh,

the union graph in Algorithm 1. The method is based on a sefarqiotential separatotS between
any two given nodes, v € V, based on the effective rank Mgv (s:1}- If the effective rank is-

or less, then, andv are declared as non-neighbors (and$es thelr separator). If no such sets are
found, they are declared as neighbors. Thus, the methot/es/eearching for separators for each
node pairu,v € V, by considering all set§ C V' \ {u, v} satisfying|S| < n. The computational
complexity of this procedure i©(p"*2d?), whered is the dimension of each node variabig for

i € V andp is the number of nodes. This is because the number of rarkgesgormed i€ (p"*2)
over all node pairs and conditioning sets; each rank test£ld*) complexity since it involves
performing singular value decomposition (SVD) of & d matrix.



3.1 Analysisof the Rank Test

We now provide guarantees for the success of rank testsimagsig G,. As noted before, we
require that the number of componentand the dimension of each node variable satisfly > r.
Moreover, we assume bounds on the size of separatorsets)(1). This includes tree mixtures
and mixtures over bounded degree graphs. In addition, thewiog parameters determine the
success of the rank tests.

(Al) Rank condition for neighbors: Let M, ,, 5.1y := [P(Yu = 4,Y, = j, Y5 = k)]; ; and

Or+1 (Mu,u,{S;k:}) >0, (3)

Pmin = min max
(u,w)EGU,|S|<n keYIS!
ScV\{u,v}

whereo, 11 () denotes thér + 1)" singular value, when the singular values are arranged in
the descending ordert; (1) > o2(-) > ...04(-). This ensures that the probability matrices
for neighborgu, v) € Gy have (effective) rank of at leastt- 1, and thus, the rank test can
correctly distinguish neighbors from non-neighbors. lesuout the presence of spurious
low rank matrices between neighboring nodes5in (for instance, when the nodes are
marginally independent or when the distribution is degateyr

(A2) Choiceof threshold &: The threshold on singular values is chosen@s= 25,
(A3) Number of Samples: Givené € (0, 1), the number of samplessatisfies

2
1 2
n > NRank(0; p) := max <t_2 (2logp +1logd " +log2), ( t> ) ., @
Pmin —

for somet € (0, pmin) (€.9.t = pmin/2,) Wherep is the number of nodes.

We now provide the result on the success of recovering thenugriaphG,, := U; _; G.

Theorem 1 (Success of Rank Tests) The RankTest(y™;&,n,r) recovers the correct grapld,
which is the union of the component Markov graphs, under-{@43) with probability at least
1—9.

A special case of the above result is graphical model selectihere there is a single graphical
model(r = 1) and we are interested in estimating its graph structure.

Corollary 1 (Application to Graphical Model Selection) Given n i.i.d. samples y”, the
RankTest(y™; ¢, n, 1) is structurally consistent under (A1)—(A3) with probatyilat leastl — 4.

Remarks: Thus, the rank test is also applicable for graphical modeksen. Previous works (see
Section 1.2) have proposed tests based on conditionalémdigmce, using either conditional mutual
information or conditional variation distances, see [1,Hje rank test above is thus an alternative
test for conditional independence in graphical modelgyltieg in graph structure estimation. In
addition, it extends naturally to estimation of union gratucture of mixture components. Our
above result establishes that our method is also efficiehigin dimensions, since it only requires
logarithmic samples for structural consisteriey= Q(log p)).

4 Parameter Estimation of Mixture Components

Having obtained an estimate of the union graph, we now describe a procedure for estimating
parameters of the mixture componefiB(y|H = h)}. Our method is based on spectral decom-
position, proposed previously for mixtures of productidlisttions [7—9]. We recap it briefly below
and then describe how it can be adapted to the more gendmgsaftgraphical model mixtures.

Recap of Spectral Decomposition in Mixtures of Product Distributions: Consider the case
whereV = {u,v,w}, andY,, L Y, L Y,|H. For simplicity assume that = r, i.e., the hidden

and observed variables have the same dimension. This assamjll be removed subsequently.
DenoteM,, y := [P(Y, = i|H = j)]; j, and similarly forM,, ;, M, ; and assume that they are



full rank. Denote the probability matrice¥., , := [P(Y. = i,Y, = j)li; and M, , (wik} =
[P(Y. = i,Y, = j, Yy = k)]i;. The parameters (i.e., matrics, ;, M, y, M, ) can be
estimated as:

Lemma 2 (Mixtureof Product Distributions) Given the above model, letA® =
[Agk’), e )\ff’)]T be the column vector with theeigenvalues given by

A" .= Eigenvalues (M, , (vt} Mus), k€. (5)
LetA := AD|IA@] . |A@)] be a matrix where thé™ column corresponds ta*). We have
My = [P(Yy =ilH=j);; =AT. (6)

For the proof of the above result and for the general algorifvhend > r), see [9]. Thus, if
we have a general product distribution mixture over nodeg inve can learn the parameters by
performing the above spectral decomposition over diffetrgplets {u, v, w}. However, an obstacle
remains: spectral decomposition over different triplgisv, w} results in different permutations
of the labels of the hidden variablé. To overcome this, note that any two tripléis v, w) and
(u,v’',w’) share the same set of eigenvectors in (5) when the “left” nodehe same. Thus, if we
consider a fixed node. € V as the “left” node and use a fixed matrix to diagonalize (5)dibr
triplets, we obtain a consistent ordering of the hiddenlgbeer all triplet decompositions.

Parameter Estimation in Graphical Model Mixtures: We now adapt the above procedure for
estimating components of a general graphical model mixivefirst make a simple observation on
how to obtain mixtures of product distributions by considgrseparators on the union gragh,.
For any three nodes v, w € V, which are not neighbors ds_, let S,,,., denote anultiwayvertex
separator, i.e., the removal of nodesSip,,, disconnects, v andw in Gy. On lines of Fact 1,

Y, LY, L KU|YS1L1/1U , H, V’U,, V,w : (u7 ’U), (’U, w)7 (’LU, u) ¢ Gu. (7)

Thus, by fixing the configuration of nodes #,,.,, we obtain a product distribution mixture over
{u, v, w}. If the previously proposed rank test is successful in esfimy G, then we possess cor-
rect knowledge of the separato$s,.,. In this case, we can obtain estimateB(Yy,|Ys.,..,

k,H = h)}, by fixing the nodes inS,,., and using the spectral decomposition described in
Lemma 2, and the procedure can be repeated over differplets{ v, v, w}.

An obstacle remains, viz., the permutation of hidden labgkr different triplet decompositions
{u,v,w}. In case of product distribution mixture, as discussediptesly, this is resolved by fixing
the “left” node in the triplet to some, € V and using the same matrix for diagonalization over
different triplets. However, an additional complicatiofsas when we consider graphical model
mixtures, where conditioning over separators is requind@. require that the permutation of the
hidden labels be unchanged upon conditioning over diftaraiues of variables in the separator set
Su.vw- This holds when the separator $&t .., has no effect on node,, i.e., we require that

Ju. € Vysit. Yy, L Yy, |H, (8)
which implies that... is isolated from all other nodes in graph;.

Condition (8) is required for identifiability if we only opate on statistics over different triplets
(along with their separator sets). In other words, if we resw operations over only low order
statistics, we require additional conditions such as (8)dentifiability. However, our setting is a
significant generalization over the mixtures of productriistions, where (8) is required to hold
for all nodes.

Finally, since our goal is to estimate pairwise marginalhefmixture components, in place of node
w in the triplet{u, v, w} in Lemma 2, we need to consider a node palr € V. The general algo-
rithm allows the variables in the triplet to have differeimhdnsions, see [9] for details. Thus, we
obtain estimates of the pairwise marginals of the mixtur@gonents. For details on implementa-
tion, refer to [15].

4.1 Analysisand Guarantees

In addition to (A1)—(A3) in Section 3.1 to guarantee cormestovery ofGG, and the conditions
discussed above, the success of parameter estimationdsepethe following quantities:



(A4) Non-degeneracy: For each node pait,b € V, and any subset C V \ {a,b} with
|S| < 2nandk € YIS, the probability matrixM . p) w154y = [P(Yap = ilH =
5 Ys=k)i;€ R%*" has rank.

(A5) Spectral Bounds and Number of Samples: Refer to various spectral bounds used to
obtain K (d; p,d, r) in (??) in [15], whered € (0, 1) is fixed. Given any fixed € (0,1),
assume that the number of samples satisfies

2(5.
n > g8, €5, d,7) o= T ERET) ©
Note that (A4) is a natural condition required for successpafctral decomposition and has been
previously imposed for learning product distribution nuises [7—9]. Moreover, when (A4) does not
hold, i.e., when the matrices are not full rank, parametémesion is computationally at least as
hard as learning parity with noise, which is conjecturedeéacbmputationally hard [8]. Condition
(A5) is required for learning product distribution mixtsrg], and we inherit it here.

We now provide guarantees for estimation of pairwise maiginf the mixture components. Let
|| - ||2 on a vector denote th norm.

Theorem 2 (Parameter Estimation of Mixture Components) Under the assumptions (A1)—(A5),

the spectral decomposition method outpﬁfgect(Ya,YHH = h), for eacha, b € V, such that for
all h € [r], there exists a permutatior(h) € [r] with

[P (Y, Yo | H = h) — P(Ya, YolH = 7(h))]2 < ¢, (10)
with probability at leastl — 44.

Remark: Recall thatp denotes the number of variables, is the number of mixture
components,d is the dimension of each node variable andis the bound on separa-
tor sets between any node pair in the union graph. We edtalhiat K (d;p,d,r) is

O (p*"*2d?7r56~ ! poly log(p,d,,6~')) in [15]. Thus, we require the number of samples in (9)
scaling asn = Q (p*71T*d*r'%6~2¢ =2 poly log(p, d,r,6~')). Since we consider models where
n = O(1) is a small constant, this implies that we have a polynomialga complexity inp, d, r.

Tree Approximation of Mixture Components. The final step involves using the estimated pair-
wise marginals of each compone®r<°*(Y,, Y,|H = h)} to obtain tree approximation of the
component via Chow-Liu algorithm [10]. We now impose a stadccondition of non-degeneracy
on each mixture component to guarantee the existence ofqaeitriee structure corresponding to
the maximum-likelihood tree approximation to the mixtuoergponent.

(AB) Separation of Mutual Information: Let 7}, denote the maximume-likelihood tree approx-
imation corresponding to the modBly|H = h) when exact statistics are input and let

¥ := min min min (I(Yy,Yy|H=h)—I(Ya,Ys|H = h)), (11)
helr] (a,b)¢Th (u,v)€Path(a,b;T}h)
wherePath(a, b; T}, ) denotes the edges along the path conneetisugdb in T}, Intuitively
¥ denotes the “bottleneck” where errors are most likely taioattree structure estimation.
See [16] for a detailed discussion.

(A7) Number of Samples: Givenetre defined in [15], we require
n > nspect (57 etree; pa da T)a (12)

wherengpect is given by (9). Intuitively,e™ provides the bound on distortion of the
estimated pairwise marginals of the mixture componendgiired for correct estimation of
tree approximations, and dependstbim (11).

Theorem 3 (Tree Approximations of Mixture Components) Under (A1)—(A7), the Chow-Liu al-
gorithm outputs the correct tree structures correspondmgnaximume-likelihood tree approxima-
tions of the mixture componert® (y|H = h)} with probability at leastl — 44, when the estimates

of pairwise marginals{ﬁsPeCt(Ya, Yy|H = h)} from spectral decomposition method are input.
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5 Experiments

Experimental results are presented on synthetic data. Weats the graph using proposed algo-
rithm and compare the performance of our method with EM [4mPrehensive results based on
the normalized edit distances and log-likelihood scorewéen the estimated and the true graphs
are presented. We generate samples from a mixture over fieoetlit trees«{ = 2) with mixing
weightsm = [0.7,0.3] using Gibbs sampling. Each mixture component is generated the stan-
dard Potts model op = 60 nodes, where the node variables are terndry @), and the number of
samples: € [2.5 x 103,10%]. The joint distribution of nodes in each mixture componergiven by

P(X[H=h)ocexp | > Jijn@Y;=Y;) = 1)+ > Kin,
(i,5)€G 2%

wherel is the indicator function and;, := {J; ;;»} are the edge potentials in the model. For the
first componentq = 1), the edge potential$; are chosen uniformly frorfs, 5.05], while for the
second componenf{ = 2), J, are chosen fronf0.5,0.55]. We refer to the first component as
strongand the second ageaksince the correlations vary widely between the two modetstduhe
choice of parameters. Thode potentialsire all set to zerok;., = 0) except at the isolated node
u4 in the union graph. The performance of the proposed methoahigpared with EM. We consider
10 random initializations of EM and run it to convergence. ®&o evaluated EM by utilizing
proposed result as the initial point (referred to as ProgpeE# in the figures). We observe in Fig 1a
that the overall likelihood under our method is comparalita &M. Intuitively this is because EM
attempts to maximize the overall likelihood. However, olgoaithm has significantly superior
performance with respect to the edit distance which is therén estimating the tree structure in
the two components, as seen in Fig 2. In fact, EM never managesxover the structure of the
weak components(i.e., the component with weak correlgfidntuitively, this is because EM uses
the overall likelihood as criterion for tree selection. énthe above choice of parameters, the weak
component has a much lower contribution to the overallilledd, and thus, EM is unable to recover
it. We also observe in Fig 1b and Fig 1c, that our proposedoadilas superior performance in terms
of conditional likelihood for both the components. Classifion error is evaluated in Fig 2a. We
could get smaller classification errors than EM method.

The above experimental results confirm our theoreticalyaigbnd suggest the advantages of our
basic technique over more common approaches. Our metheitipsoa point of tractability in the
spectrum of probabilistic models, and extending beyondctags we consider here is a promising
direction of future research.
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