
Efficient high-dimensional maximum entropy
modeling via symmetric partition functions

Paul Vernaza
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
pvernaza@cmu.edu

J. Andrew Bagnell
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

dbagnell@ri.cmu.edu

Abstract

Maximum entropy (MaxEnt) modeling is a popular choice for sequence analysis
in applications such as natural language processing, where the sequences are em-
bedded in discrete, tractably-sized spaces. We consider the problem of applying
MaxEnt to distributions over paths in continuous spaces of high dimensionality—
a problem for which inference is generally intractable. Our main contribution
is to show that this intractability can be avoided as long as the constrained fea-
tures possess a certain kind of low dimensional structure. In this case, we show
that the associated partition function is symmetric and that this symmetry can be
exploited to compute the partition function efficiently in a compressed form. Em-
pirical results are given showing an application of our method to learning models
of high-dimensional human motion capture data.

1 Introduction

This work aims to generate useful probabilistic models of high dimensional trajectories in continu-
ous spaces. This is illustrated in Fig. 1, which demonstrates the application of our proposed method
to the problem of building generative models of high dimensional human motion capture data. Using
this method, we may efficiently learn models and perform inferences including but not limited to the
following: (1) Given any single pose, what is the probability that a certain type of motion ever visits
this pose? (2) Given any pose, what is the distribution over future positions of the actor’s hands? (3)
Given any initial sequence of poses, what are the odds that this sequence corresponds to one action
type versus another? (4) What is the most likely sequence of poses interpolating any two states?

The maximum entropy learning (MaxEnt) approach advocated here has the distinct advantage of
being able to efficiently answer all of the aforementioned global inferences in a unified framework
while also allowing the use of global features of the state and observations. In this sense, it is analo-
gous to another MaxEnt learning method: the Conditional Random Field (CRF), which is typically
applied to modeling discrete sequences. We show how MaxEnt modeling may be efficiently ap-
plied to paths in continuous state spaces of high dimensionality. This is achieved without having
to resort to expensive, approximate inference methods based on MCMC, and without having to as-
sume that the sequences themselves lie in or near a low dimensional submanifold, as in standard
dimensionality-reduction-based methods. The key to our method is to make a natural assumption
about the complexity of the features, rather than the paths, that results in simplifying symmetries.

This idea is illustrated in Fig. 2. Here we suppose that we are tasked with the problem of comparing
two sets of paths: the first, sampled from an empirical distribution; and the second, sampled from a
learned distribution intended to model the distribution underlying the empirical samples. Suppose
first that we are to determine whether the learned distribution correctly samples the desired distribu-
tion. We claim that a natural approach to this problem is to visualize both sets of paths by projecting

1



Log prob.
 -2 * 10-11

Log prob. 
-24.6

Log prob.
 -49.9

Log prob. 
-70.0

up-phase 
jumping jack

down-phase 
jumping jack

side twist cross-toe touch

(a) True held-out class = side twist

Log prob. 
-81.6

Log prob. 
-79.0

Log prob. 
-10.6

Log prob. 
-2*10-5

up-phase 
jumping jack

down-phase 
jumping jack

side twist cross-toe touch

(b) True held-out class = down-phase jumping jack

Figure 1: Visualizations of predictions of future locations of hands for an individually held-out
motion capture frame, conditioned on classes indicated by labels above figures, and corresponding
class membership probabilities. See supplementary material for video demonstration.

Figure 2: Illustration of the constraint that paths sampled from the learned distribution should (in
expectation) visit certain regions of space exactly as often as they are visited by paths sampled from
the true distribution, after projection of both onto a low dimensional subspace. The shading of each
planar cell is proportional to the expected number of times that cell is visited by a path.

them onto a common low dimensional basis. If these projections appear similar, then we might con-
clude that the learned model is valid. If they do not appear similar, we might try to adjust the learned
distribution, and compare projections again, iterating until the projections appear similar enough to
convince us that the learned model is valid.

We then might consider automating this procedure by choosing numerical features of the projected
paths and comparing these features in order to determine whether the projected paths appear similar.
Our approach may be thought of as a way of formalizing this procedure. The MaxEnt method
described here iteratively samples paths, projects them onto a low dimensional subspace, computes
features of these projected paths, and adjusts the distribution so as to ensure that, in expectation,
these features match the desired features.

A key contribution of this work is to show that that employing low dimensional features of this sort
enables tractable inference and learning algorithms, even in high dimensional spaces. Maximum
entropy learning requires repeatedly calculating feature statistics for different distributions, which
generally requires computing average feature values over all paths sampled from the distributions.
Though this is straightforward to accomplish via dynamic programming in low dimensional spaces,
it may not be obvious that the same can be accomplished in high-dimensional spaces. We will show
how this is possible by exploiting symmetries that result from this assumption.

The organization of this paper is as follows. We first review some preliminary material. We then
continue with a detailed exposition of our method, followed by experimental results. Finally, we
describe the relation of our method to existing methods and discuss conclusions.

2



2 Preliminaries

We now briefly review the basic MaxEnt modeling problem in discrete state spaces. In the ba-
sic MaxEnt problem, we have N disjoint events xi, K random variables denoted features φj(xi)
mapping events to scalars, and K expected values of these features Eφj . To continue the example
previously discussed, we will think of each xi as being a path, φj(xi) as being the number of times
that a path passes through the jth spatial region, and Eφj as the empirically estimated number of
times that a path visits the jth region.

Our goal is to find a distribution p(xi) over the events consistent with our empirical observations in
the sense that it generates the observed feature expectations:∑

i

φj(xi)p(xi) = Eφj , ∀j ∈ {1 . . .K}.

Of all such distributions, we will seek the one whose entropy is maximal [6]. This problem can be
written compactly as

max
p∈∆
−
∑
i

pi log pi s.t. Φp = Eφ, (1)

where we have defined vectors pi = p(xi) and φ, the feature matrix Φij = φi(xj), and the probabil-
ity simplex ∆. Introducing a vector of Lagrange multipliers θ, the Lagrangian dual of this concave
maximization problem is [3]

max
θ
− log

∑
i

exp(−
∑
j

Φjiθj)

− EφT θ. (2)

It is straightforward to show that the gradient of the dual objective g(θ) is given by ∇θg = Ep̄[φ |
θ]− Eφ, where p̄ is the Gibbs distribution over x defined by

p̄(xi | θ) ∝ exp

−∑
j

φj(xi)θj

 . (3)

3 MaxEnt modeling of continuous paths

We now consider an extension of the MaxEnt formalism to the case that the events are paths embed-
ded in a continuous space. The main questions to be addressed here are how to handle the transition
from a finite number of events to an infinite number of events, and how to define appropriate features.
We will address the latter problem first.

We suppose that each event x now consists of a continuous, arc-length-parameterized path, ex-
pressed as a function R+ → RN mapping a non-negative time into the state space RN . A natural
choice in this case is to express each feature φj as an integral of the following form:

φj(x) =

∫ T

0

ψj(x(s))ds, (4)

where T is the duration (or length) of x and each ψj : RN → R+ is what we refer to as a feature
potential. Continuing the previous example, if we choose ψj(x(t)) = 1 if x(t) is in region j and
ψj(x(t)) = 0 otherwise, then ψj(x) is the total time that x spends within the jth region of space.

An analogous expression for the probability of a continuous path is then obtained by substituting
these features into (3). Defining the cost function Cθ :=

∑
j θjψj and the cost functional

Sθ{x} :=

∫ T

0

Cθ(x(s))ds, (5)

we have that

p̄(x | θ) =
exp−Sθ{x}∫
exp−Sθ{x}Dx

, (6)

3



where the notation
∫

exp−Sθ{x}Dx denotes the integral of the cost functional over the space of all
continuous paths. The normalization factor Zθ :=

∫
exp−Sθ{x}Dx is referred to as the partition

function. As in the discrete case, computing the partition function is of prime concern, as it enables
a variety of inference and learning techniques.

The functional integral in (6) can be formalized in several ways, including taking an expectation
with respect to Wiener measure [12] or as a Feynman integral [4]. Computationally, evaluating Zθ
requires the solution of an elliptic partial differential equation over the state space, which can be
derived via the Feynman-Kac theorem [12, 5]. The solution, denoted Zθ(a) for a ∈ RN , gives the
value of the functional integral evaluated over all paths beginning at a and ending at a given goal
location (henceforth assumed w.l.o.g. to be the origin).

A discrete approximation to the partition function can therefore be computed via standard numerical
methods such as finite differences, finite elements, or spectral methods [2]. However, we proceed by
discretizing the state space as a lattice graph and computing the partition function associated with
discrete paths in this graph via a standard dynamic programming method [1, 15, 11]. Recent work
has shown that this method recovers the PDE solution in the discretization limit [5]. Concretely, the
discretized partition function is computed as the fixed point of the following iteration:

Zθ(a)← δ(a) + exp(−εCθ(a))
∑
a′∼a

Zθ(a
′), (7)

where a′ ∼ a denotes the set of a′ adjacent to a in the lattice, ε is the spacing between adjacent
lattice elements, and δ is the Kronecker delta. 1

4 Efficient inference via symmetry reduction

Unfortunately, the dynamic programming approach described above is tractable only for low dimen-
sional problems; for problems in more than a few dimensions, even storing the partition function
would be infeasible. Fortunately, we show in this section that it is possible to compute the partition
function directly in a compressed form, given that the features also satisfy a certain compressibility
property.

4.1 Symmetry of the partition function

Elaborating on this statement, we now recall Eq. (4), which expresses the features as integrals of
feature potentials ψj over paths. We then examine the effects of assuming that the ψj are compress-
ible in the sense that they may be predicted exactly from their projection onto a low dimensional
subspace—i.e., we assume that

ψj(a) = ψj(WWTa), ∀j, a, (8)
for some givenN×dmatrixW , with d < N . The following results show that compressibility of the
features in this sense implies that the corresponding partition function is also compressible, in the
sense that we need only compute it restricted to a d+ 1 dimensional subspace in order to determine
its values at arbitrary locations in N -dimensional space. This is shown in two steps. First, we show
that the partition function is symmetric about rotations about the origin that preserve the subspace
spanned by the columns ofW . We then show that there always exists such a rotation that also brings
an arbitrary point in RN into correspondence with a point in a a d + 1-dimensional slice where the
partition function has been computed.
Theorem 4.1. Let Zθ =

∫
exp−Sθ{x}Dx, with Sθ as defined in Eq. 5 and features derived from

feature potentials ψj . Suppose that ψj(x) = ψj(WWTx), ∀j, x. Then for any orthogonal R such
that RW = W ,

Zθ(a) = Zθ(Ra), ∀a ∈ RN . (9)

Proof. By definition,

Zθ(Ra) =

∫
x(0)=0
x(T )=Ra

exp

(
−
∫ T

0

Cθ(x(s))ds

)
Dx.

1In practice, this is typically done with respect to logZθ , which yields an iteration similar to a soft version
of value iteration of the Bellman equation [15]

4



The substitution y(t) = RTx(t) yields

Zθ(Ra) =

∫
y(0)=0
y(T )=a

exp

(
−
∫ T

0

Cθ(Ry(s))ds

)
Dy.

Since ψj(a) = ψj(WWTa), ∀j, a implies that Cθ(x) = Cθ(WWTx)∀x, we can make the substi-
tutions Cθ(Ry) = Cθ(WWTRy) = Cθ(WWT y) = Cθ(y) in the previous expression to prove the
result.

The next theorem makes explicit how to exploit the symmetry of the partition function by computing
it restricted to a low-dimensional slice of the state space.
Corollary 4.2. Let W be a matrix such that ψj(a) = ψj(WWTa), ∀j, a, and let ν be any vector
such that WT ν = 0 and ‖ν‖ = 1. Then

Zθ(a) = Zθ(WWTa+ ‖(I −WWT )a‖ν),∀a (10)

Proof. The proof of this result is to show that there always exists a rotation satisfying the conditions
of Theorem 4.1 that rotates b onto the subspace spanned by the columns of W and ν. We simply
choose an R such that RW = W and R(I − WWT b) = ‖I − WWT b‖ν. That this is a valid
rotation follows from the orthogonality of W and ν and the unit-norm assumption on ν. Applying
any such rotation to b proves the result.

4.2 Exploiting symmetry in DP

We proceed to compute the discretized partition function via a modified version of the dynamic
programming algorithm described in Sec. 3. The only substantial change is that we leverage Corol-
lary 4.2 in order to represent the partition function in a compressed form. This implies corresponding
changes in the updates, as these must now be derived from the new, compressed representation.

Figure 3 illustrates the algorithm applied to computing the partition function associated with a con-
stant C(x) in a two-dimensional space. The partition function is represented by its values on a
regular lattice lying in the low-dimensional slice spanned by the columns of W and ν, as defined in
Corollary 4.2. In the illustrated example, W is empty, and ν is any arbitrary line. At each iteration
of the algorithm, we update each value in the slice based on adjacent values, as before. However, it
is now the case that some of the adjacent nodes lie off of the slice. We compute the values associated
with such nodes by rotating them onto the slice (according to Corollary 4.2) and interpolating the
value based on those of adjacent nodes within the slice.

An explicit formula for these updates is readily obtained. Suppose that b is a point contained within
the slice and y := b + δ is an adjacent point lying off the slice whose value we wish to compute.
By assumption, WT δ = νT δ = 0. We therefore observe that δT (I −WWT )b = 0, since (I −
WWT )b ∝ ν. Hence,

V (y) = V (WWT (b+ δ) + ‖(I −WWT )(b+ δ)‖ν)

= V (WWT b+ ‖(I −WWT )b+ δ‖ν) (11)

= V (WWT b+
√
‖(I −WWT )b‖2 + ‖δ‖2ν).

An interesting observation is that this formula depends on y only through ‖δ‖. Therefore, assuming
that all nodes adjacent to b lie at a distance of δ from it, all of the updates from the off-slice neighbors
will be identical, which allows us to compute the net contribution due to all such nodes simply by
multiplying the above value by their cardinality. The computational complexity of the algorithm is
in this case independent of the dimension of the ambient space.

A detailed description of the algorithm is given in Algorithm 1.

4.3 MaxEnt training procedure

Given the ability to efficiently compute the partition function, learning may proceed in a way ex-
actly analogous to the discrete case (Sec. 2). A particular complication in our case is that exactly

5



Figure 3: Illustration of dynamic programming update (constant cost example). The large sphere
marked goal denotes origin with respect to which partition function is computed. Partition function
in this case is symmetric about all rotations around the origin; hence, any value can be computed by
rotation onto any axis (slice) where the partition function is known (ν). Contributions from off-slice
and on-slice points are denoted by off and on, respectively. Symmetry implies that value updates
from off-axis nodes can be computed by rotation (proj) onto the axis. See supplementary material
for video demonstration.

computing feature expectations under the model distribution is not as straightforward as in the low
dimensional case, as we must account for the symmetry of the partition function. As such, we
compute feature expectations by sampling paths from the model given the partition function.

Algorithm 1 PartitionFunc(xT , Cθ,W,N, d)

Z : Rd+1 → R : y 7→ 0 {initialize partition function to zero}
ν ← (ν | 〈ν, ν〉 = 1,WT ν = 0) {choose an appropriate ν}
lift : Rd+1 → RN : y 7→ [W ν]y + xT {define lifting and projection operators}

proj : RN → Rd+1 : x 7→
(

WT (x− xT )
‖(I −WWT )(x− xT )‖

)
while Z not converged do

for y ∈ G ⊂ Zd+1 do
zon ←

∑
{δ∈Zd+1|‖δ‖=1} Z(y′ + δ) {calculate on-slice contributions}

zoff ← 2(N − d− 1)Z(y1, . . . , yd,
√
y2
d+1 + 1) {calculate off-slice contributions}

Z(y)← zon+zoff+2Nδ(y)
2N(exp εCθ(lift(y))) {iterate fixed-point equation}

end for
end while
Z ′ : RN → R : x 7→ Z(proj(x)) {return partition function in original coordinates}
return Z ′

5 Results

We implemented the method and applied it to the problem of modeling high dimensional motion cap-
ture data, as described in the introduction. Our training set consisted of a small sample of trajectories
representing four different exercises performed by a human actor. Each sequence is represented as a
123-dimensional time series representing the Cartesian coordinates of 41 reflective markers located
on the actor’s body.

The feature potentials employed consisted of indicator functions of the form

φj(a) = {1 if WTa ∈ Cj , 0 otherwise}, (12)
where the Cj were non-overlapping, rectangular regions of the projected state space. A W was cho-
sen with two columns, using the method proposed in [13], which is effectively similar to performing
PCA on the velocities of the trajectory.

6



0

100

200

lo
g 

od
ds

 ra
tio

0

100

200

lo
g 

od
ds

 ra
tio

0

100

200

lo
g 

od
ds

 ra
tio

0

100

200

lo
g 

od
ds

 ra
tio

correct discrimination threshold

log. reg. 

fraction of path revealed

�
�

� �
�

�
�

�

�
�

�
�

�
���

�

�

�

�
�

� �
�

�� �

�

�

�
��

��

�

�
�

��
��

�
�

�

�

�
�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

� �
� �

�

�

�

�

��
��

�
��

�

�
�

�

�
�

��

�
�� �

�

�

�

��
��

�

�
�

��
��

� ��

�

�

�

�
�

� �
� �

�
�

�

�

�
�

�

�

�

�

�
�

�
�

� �
� �

�

�

�

�

��

�
�
�

�

�
�

�
�

� �

�
�

�

�
�� �

�

�

�

��

��

�

�
�

��

�
�

� �

�

�

�

�

��
�

�

�
�

�
� � �

�

�

�

�

�

�

�
�

�

�

� �
� �

�

�

�

�

��

�
�

� �

��

�

�

�
�

�

�
�

�
�� �

�

�

�

��

��

�

�
�

��

��

� �

�

�

�
�

�
�

�
�

�
�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

� �
� �

�

�

�

�

��
���

�
�
� � � �

�

� �
�

�
�� �

�

�

�

��

��

�

�
�

��

��

� �

�

�

�

�

��� �
� � � �

�
�

�

�

�

�

�

�

�
�

�

�

log. reg.

fraction of path revealed

� �
� �

�

�

�

�

����

�
���

�
�

�

��
��

�
�� �

�

�

�
��

��

�

��
��

��

� �

�
�

�

�

�

�

� � � �
�

�

�

�

�
�

�

�

�

�

��
�

�

�
�

� �
�

�
�

�

�
�

�
�

�
���

�

�

�

�
�

� �
�

�� �

�

�

�
��

��

�

�
�

��
��

�
�

�

�

�
�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

� �
� �

�

�

�

�

��

�
�

�
�

��

� �
� �

��
�

�
�� �

�

�

�

��

��

�

�
�

��

��

� �

�

�

�
�

�
�

�
�

�
� �

� � �

�

�

�

�

�

�

�
�

�

�

� �
� �

�

�

�

�

��
��

�

�
�
� �

�
�

�
� ��

�
�� �

�

�

�

��

��

�

�
�

��

��

� �

�

�

�

�

�
�

� �
�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �
� �

�

�

�

�

�
�

�
�

��
��

�
�

� � �
�

�

�
�� �

�

�

�

��

��

�

�
�

��

��

� �

�

�

�
�

�

�

�
�

�
�

�
� � �

�

�

�

�

�

�

�
�

�

�

log. reg. 

fraction of path revealed

� �
� �

�

�

�

�

��

�
� �

� ��

� � � �
�

��

�
�� �

�

�

�

��
��

�

�
�

��
��

� �

�
�

�

�

���
�

�
� � � � �

�
�

�

�

�

�

�
�

�
�

� �� �

�

�

�

�

�

�����
��

�

�
�����

�
�

� �

�

�

�

��
��

�

�
�

��
��

� �
�

�

�

�

�
� � � �

�

�
���

�
�

�

�

�
�

�
�

�
�

� �� �

�

�

�

�

��
��

� �� �

�
�

��
�

��

� �
� �

�

�

�

��
��

�

�
�

��
��

� �

� �

�

�

��
� �

� �
�

���

�
�

�

�

�
�

�
�

�
�

� �� �

�

�

�

�

��

�
� � �� �

� � � �
�

��

� �� �

�

�

�

��
��

�

�
�

��
��

� �

�
�

�

�

���
�

�
� � � � �

�
�

�

�

�

�

�
�

�
�

� �� �

�

�

�

�

�
�

������
�

�
��� ��

� �
� �

�

�

�

��
��

�

�
�

��
��

� �

�

�

�

�

� � � �
� �

�
���

�
�

�

�

�
�

�
�

�
�

log. reg. 

fraction of path revealed

� �� �

�

�

�

�

��
��

� ���

� � � �

�
�

�

�
�� �

�

�

�

��
��

�

�
�

��
��

� �

�

�

�

�

� �
� �

�
� � � � �

�
�

�

�

�

�

�
�

�
�

�
�

� �
�

�

��
�

�

�
�

�
�

��

�

�

�

�

� �
�

� �

� �

�

�

�

��
��

�

�
�

��
��

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

� �

� ���
�

�

�����
�

��
�

�
�

�
� ��� �

� �

�

�

�

��
��

�

�
�

��
��

� �

�

�

�

�

� � � � � �
�

�
�

�

�
�

�

�

�

�

�
�

�
�

� �
� �

�

� �

�

��
��

�

� � � � �

� �
� �

�

�

�

��
��

�

�
�

��
��

� � �

�

�

�
� �

� � � � �

�
�

�

�

�

�

�
�

�
�

�
�

� ���

�
�

��

�
�

��
��

�

�

�

�

� ��

� �

� �

�

�

�

��
��

�

�
�

��
��

�
�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

up-phase jumping jack down-phase jumping jack side twist cross-toe touch

HDMaxEnt
HDMaxEnt

HDMaxEnt

HDMaxEnt

correct discrimination threshold correct discrimination threshold
correct discrimination threshold

Figure 4: Results of classification experiment given progressively revealed trajectories. Title in-
dicates true class of held-out trajectory. Abscissa indicates the fraction of the trajectory revealed
to the classifiers. Samples of held-out trajectory at different points along abscissa are illustrated
above fraction of path revealed. Ordinate shows predicted log-odds ratio between correct class and
next-most-probable class.

We applied our method to train a maximum entropy model independently for each of the four classes.
Given our ability to efficiently compute the partition function, this enables us to normalize each
of these probability distributions. Classification can then be performed simply by evaluating the
probability of a held-out example under each of the class models. Knowing the partition function
also enables us to perform various marginalizations of the distribution that would otherwise be in-
tractable. [8, 15]

In particular, we performed an experiment consisting of evaluating the probability of a held-out
trajectory under each model as it was progressively revealed in time. This can be accomplished by
evaluating the following quantity:

P (x0)γt exp

(
−

t∑
i=1

εCθ(xi)

)
Zθ(xt)

Zθ(x0)
, (13)

where x0, . . . , xt represents the portion of the trajectory revealed up to time t, P (x0) is the prior
probability of the initial state, and ε is the spacing between successive samples. Results of this
experiment are shown in Fig. 4, which plots the predicted log-odds ratio between the correct and
next-most-probable classes.

For comparison, we also implemented a classifier based on logistic regression. Features for this
classifier consisted of radial basis functions centered around the portion of each training trajectory
revealed up to the current time step. Both methods also employed the same prior initial state proba-
bility P (x0), which was constructed as a single isotropic Gaussian distribution for each class. Both
classifiers therefore predict the same class distributions at time t = 0.

In the first three held-out examples, the initial state was distinctive enough to unambiguously predict
the sequence label. The logistic regression predictions were generally inaccurate on their own, but
the the confidence of these predictions was so low that these probabilities were far outweighed
by the prior—the log-odds ratio in time therefore appears almost flat for logistic regression. Our
method (denoted HDMaxEnt in the figure), on the other hand, demonstrated exponentially increasing
confidence as the sequences were progressively revealed.

In the last example, the initial state appeared more similar to that of another class, causing the prior
to mispredict its label. Logistic regression again exhibited no deviation from the prior in time. Our
method, however, quickly recovered the correct label as the rest of the sequence was revealed.

Figures 1(a) and 1(b) show the result of a different inference—here we used the same learned class
models to evaluate the probability that a single held-out frame was generated by a path in each
class. This probability can be computed as the product of forward and backwards partition functions
evaluated at the held-out frame divided by the partition function between nominal start and goal
positions. [15] We also sampled trajectories given each potential class label, given the held-out
frame as a starting point, and visualized the results.

7



The first held-out frame, displayed in Fig. 1(a), is distinctive enough that its marginal probability
under the correct class, is far greater than its probability under any other class. The visualizations
make it apparent that it is highly unlikely that this frame was sampled from one of the jumping jack
paths, as this would require an unnatural excursion from the kinds of trajectory normally produced
by those classes, while it is slightly more plausible that the frame could have been taken from a path
sampled from the cross-toe touch class.

Fig. 1(b) shows a case where the held-out frame is ambiguous enough that it could have been gen-
erated by either the jumping jack up or down phases. In this case, the most likely prediction is
incorrect, but it is still the case that the probabilities of the two plausible classes far outweigh those
of the visibly less-plausible classes.

6 Related work

Our work bears the most relation to the extensive literature on maximum entropy modeling in se-
quence analysis. A well-known example of such a technique is the Conditional Random Field [9],
which is applicable to modeling discrete sequences, such as those encountered in natural language
processing. Our method is also an instance of MaxEnt modeling applied to sequence analysis; how-
ever, our method applies to high-dimensional paths in continuous spaces with a continuous notion
of (potentially unbounded) time (as opposed to the discrete notions of finite sequence length or hori-
zon). These considerations necessitate the development of the formulation and inference techniques
described here.

Also notable are latent variable models that employ Gaussian process regression to probabilistically
represent observation models and the latent dynamics [14, 10, 7]. Our method differs from these
principally in two ways. First our method is able to exploit global, contextual features of sequences
without having to model how these features are generated from a latent state. Although the features
used in the experiments shown here were fairly simple, we plan to show in future work how our
method can leverage context-dependent features to generalize across different environments. Sec-
ond, global inferences in the aforementioned GP-based methods are intractable, since the state dis-
tribution as a function of time is generally not a Gaussian process, unless the dynamics are assumed
linear. Therefore, expensive, approximate inference methods such as MCMC would be required to
compute any of the inferences demonstrated here.

7 Conclusions

We have demonstrated a method for efficiently performing inference and learning for maximum-
entropy modeling of high dimensional, continuous trajectories. Key to the method is the assumption
that features arise from potentials that vary only in low dimensional subspaces. The partition func-
tions associated with such features can be computed efficiently by exploiting the symmetries that
arise in this case. The ability to efficiently compute the partition function enables tractable learning
as well as the opportunity to compute a variety of inferences that would otherwise be intractable.
We have demonstrated experimentally that the method is able to build plausible models of high
dimensional motion capture trajectories that are well-suited for classification and other prediction
tasks.

As future work, we would like to explore similar ideas to leverage more generic types of low dimen-
sional structure that might arise in maximum entropy modeling. In particular, we anticipate that the
method described here might be leveraged as a subroutine in future approximate inference methods
for this class of problems. We are also investigating problem domains such as assistive teleoperation,
where the ability to leverage contextual features is essential to learning policies that generalize.

8 Acknowledgments

This work is supported by the ONR MURI grant N00014-09-1-1052, Distributed Reasoning in Re-
duced Information Spaces.

8



References

[1] T. Akamatsu. Cyclic flows, markov process and stochastic traffic assignment. Transportation
Research Part B: Methodological, 30(5):369–386, 1996.

[2] J.P. Boyd. Chebyshev and Fourier spectral methods. Dover, 2001.
[3] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ Pr, 2004.
[4] R.P. Feynman, A.R. Hibbs, and D.F. Styer. Quantum Mechanics and Path Integrals: Emended

Edition. Dover Publications, 2010.
[5] S. Garcı́a-Dı́ez, E. Vandenbussche, and M. Saerens. A continuous-state version of discrete

randomized shortest-paths, with application to path planning. In CDC and ECC, 2011.
[6] E.T. Jaynes. Information theory and statistical mechanics. The Physical Review, 106(4):620–

630, 1957.
[7] J. Ko and D. Fox. Gp-BayesFilters: Bayesian filtering using Gaussian process prediction and

observation models. Autonomous Robots, 27(1):75–90, 2009.
[8] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT

Press, 2009.
[9] J. Lafferty. Conditional random fields: Probabilistic models for segmenting and labeling se-

quence data. In ICML, 2001.
[10] N.D. Lawrence and J. Quiñonero-Candela. Local distance preservation in the GP-LVM through

back constraints. In Proceedings of the 23rd international conference on Machine learning,
pages 513–520. ACM, 2006.

[11] A. Mantrach, L. Yen, J. Callut, K. Francoisse, M. Shimbo, and M. Saerens. The sum-over-paths
covariance kernel: A novel covariance measure between nodes of a directed graph. PAMI,
32(6):1112–1126, 2010.

[12] B.K. Øksendal. Stochastic differential equations: an introduction with applications. Springer
Verlag, 2003.

[13] P. Vernaza, D.D. Lee, and S.J. Yi. Learning and planning high-dimensional physical trajecto-
ries via structured lagrangians. In ICRA, pages 846–852. IEEE, 2010.

[14] J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models. NIPS, 18:1441,
2006.

[15] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In AAAI, pages 1433–1438, 2008.

9


