A Derivation of Eq. (10)

To show that Eq. (10) does indeed follow from Eq. (8), we need to compute the mean and covariance
of du;, and the derivatives of S, () with respect to p;. We start with the former. The mean of dy;,
which is given by (see Eq. (7) and (9))

(Oi) = KZgz —(9:(x))p = 0. (A1)

The covariance can be computed by noting that dy; is the mean of K uncorrelated, zero mean
random variables (see Eq. (9)), which implies that

CP.
(39:895)p = 2 1910909309y — (91}l )] = =2 (A2)

where the last equality follows from the definition given in Eq. (11a).

We next compute derivatives of the entropy with respect to the ;. Using Eq. (6) for the entropy, we
have

0Sq(pn)  Olog Z(p
= A.
B o Z u; (A3)

From the definition of log Z (), Eq. (5), it is straightforward to show that

dlog Z(p
5 Z Hig L (A.4)

Inserting Eq. (A.4) into (A.3), the first and third terms cancel, and we are left with

08,
o) _ (A.5)
Opi
The second derivative of the entropy is thus trivial,
028, O\
M - (A.6)
OO O

This quantity is hard to compute, so instead we compute its inverse, Oy ;/0);. Using the definition
of y1;,

exp 3 Aigi (%))
pi=>_ gi(x) Z(w) , (A7)
differentiating both sides with respect to \;, and applying Eq. (A.4), we find that
O,
5 AZ = (9:(x)9; (%)) q(xl) = (91 (%)) a(x10) (95 (%)) g(xlps) = CF - (A.8)

The right hand side is the covariance matrix within the model class.

Combining Eq. (A.6) with (A.8) and noting that

3>\ 8;@ - (“))\Z . q !
Z Bt B i = B = ci (A.9)
we have
PSy(1) _ gt

Inserting Egs. (A.1), (A.1), (A.5) and (A.10) into (8), we arrive at Eq. (10).
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B Alternative derivation of the within-model class bias

We present a brief alternative derivation of the within-class bias from classical results about the
asymptotic distribution of maximum likelihood estimators. Suppose that X = {xk} k=1,..K 1sa

sample of size K from the model g(x|\) with true parameter A, and that L(X') = 3, log ¢(x*|\")
is the likelihood of some parameters A’ given the data. Then, it can be shown that the asymptotic
distribution of (twice) the difference between the true log-likelihood L(A) and the log-likelihood of

a maximum likelihood-estimate A = argmax , L(X’) has a Chi-square distribution with m degrees
of freedom (where m is the number of parameters, the dimensionality of the vector A) [20],

2 (L(J\) - L(,\)) ~ X2, (B.1)

As the mean of a random variable with distribution x?, is simply m, this implies that the bias in the

estimate of the log-likelihood is ((L(A) — L(A))g(x» = 3m. Using the duality between maximum-
entropy estimation and maximum likelihood estimation 1n exponential family models, we can now
derive the entropy bias from the likelihood bias: maximizing the entropy subject to the empirically
measured moments £ is equivalent to maximizing the likelihood of model (4).

This means that maximum entropy model ¢ (x| ), which matches the empirical means £ in the data-
set, is the same model whose parameters A maximize the likelihood L(\’), and here therefore we
slightly abuse notation to use A and fi interchangeably,

- (L) - L(/\)>q

2
_ <Zlogq(x,€m> K'Y g3 loga(x/A)
k q z

= KS,(\) + <Z A g(xp) — 1og(Z(J\)> (B.2)
k

q

= KS,(\) — K <1og(2(:\) - ;\Tﬂ>

= K{S4(A) = 54(X))q

Rearranging terms, we recover our result that Bias[S] = —m/2K.

C Calculating '(0)

Here we compute b’ (0) (as in the main text, primes denote derivatives with respect to /3). Recalling
that () = (B(X))p(x|u,8). using the definition of p(x|u, 3) given in Eq. (18), and making use of
the relationship log Z'(u, B) = b+ ), ui)\’-(u, B), we have

b'(8) = Var[Bly(x|u,8) + Z X)09: (X)) p (x|, 8) i (15 B) (C.1

where A(p, 5) denotes a derivative with respect to 3.

To compute \;(p, 3), we use the fact that (g;(x)) p(x|u,5)) is independent of 3, which implies that

0= 5

= <6gi(x> p(x|p@,B) + Z 691 59] >p(x\u,ﬁ))‘;<ﬁ)' (C2)

While we can’t invert the matrix (§g;(x)dg; (X)) p(x|u,s) for arbitrary 3, we can invert it when 8 = 0,
since (0gi(x)dg;(x))s=0 = C};. Setting 3 to 0 in Eq. (C.2), we have

)\/ N, ZC 593 (X)>q(x|p.) (C.3)

where we used the fact that p(x|u,0) = g(x|p). Inserting this expression into Eq. (C.1), setting 3
to zero, and replacing p(x|u, 0) with ¢(x|pt), we recover Eq. (23).
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