
Collective Graphical Models
Supplementary Material

Daniel Sheldon
Oregon State University

sheldon@eecs.oregonstate.edu

Thomas G. Dietterich
Oregon State University

tgd@eecs.oregonstate.edu

1 Initialization

The overall initialization is a sequence of three algorithms. The first algorithm joins two tables
nA and nB to find a table nA∪B such that nA,nB � nA∪B . The second algorithm extends a
locally consistent configuration nA to find a single table nV ∈ tbl(V) such that nA � nV , thus
providing a constructive proof of Theorem 1. The third algorithm finds a configuration nC such that
nD � nC whenever: (i) D is decomposable, (ii) nD is consistent, and (iii) D � C; thus solving the
initialization problem.

1.1 Joining two tables

Let nA and nB be two tables having a common marginal table nA∩B � nA,nB . The join operation,
denoted nA ∨ nB , constructs a table nA∪B := nA ∨ nB ∈ tbl(A ∪ B) that extends both nA and
nB , meaning that nA,nB � nA∪B . The key observation is that for each j ∈ XA∩B , the subtable
nA∪B(·, j, ·) can be viewed as a two-dimensional table with row sums that are determined by nA,
column sums that are determined by nB , and grand total nA∩B(j). Let A′ = A \ B, B′ = B \ A.
Then nA∪B must satisfy

nA(i, j) =
∑

k∈XB′

nA∪B(i, j, k), ∀i ∈ XA′ , nB(j, k) =
∑

i∈XA′

nA∪B(i, j, k), ∀k ∈ XB′ .

By our assumption that nA∩B � nA,nB , the vectors r = (nA(i, j))i∈XA′ and c = (nB(j, k))k∈XB′

share the common grand total nA∩B(j). The problem of finding a two-dimensional table
nA∪B(·, j, ·) with rows sums r and column sums c is equivalent to finding a feasible solution to
the transportation problem [1]. Any variant of the following method is correct: start with an all-zero
table and repeatedly (1) select a row and column whose current sums are smaller than the specified
sums, (2) add an integer amount to the entry in that row and column without exceeding the specified
row and column sums. This process is repeated for each j ∈ XA∩B to provide an algorithm for the
join operation.

1.2 Constructing nV by edge contraction in TA

The join operation can be used to construct a complete contingency table nV by a sequence of
simple operations on the junction tree. Let nA be a locally consistent configuration on the junction
tree TA. Define the contraction of edge (A,B) ∈ E(TA) to be the following operation, which
simultaneously updates the collection A, junction tree TA, and tables nA, which we collect in the
tuple (A, TA,nA). First, update A by replacing the sets A and B by their union A∪B; next, update
TA by connecting A ∪ B to all former neighbors of A and B; finally, update nA by replacing nA

and nB by nA∪B = nA ∨ nB . Local consistency ensures that nA and nB agree on A ∩ B and
hence the join operation is possible. The overall algorithm for constructing nV is then quite simple:
repeatedly contract edges until A consists of the single set V , at which point the remaining table
nV ∈ tbl(V) satisfies nA � nV for all A ∈ A.

1

Proof of correctness (Theorem 1). To prove the correctness of this procedure and thus establish The-
orem 1, we must argue that the following properties hold for the tuple (A′, TA′ ,nA′) that is the result
of the contraction: (1) TA′ is a junction tree, (2) nA′ is locally consistent and (3) nA � nA′ .

To show that TA′ is a junction tree we use the characterization of junction trees that TA′ is a junction
tree if for all v ∈ V , the subgraph T ′

v induced by {A ∈ A′ : v ∈ A} is connected. Define Tv

analogously based on TA. It is straightforward to see that T ′
v is obtained from Tv by one of the

following operations: (1) if A and B are both present in Tv , then contract (A,B) into the single
clique A ∪ B to obtain T ′

v , (2) if exactly one of A or B is present in Tv , then replace that clique by
A ∪ B to obtain T ′

v , (3) otherwise, make no change to Tv . In each case, the connectedness of T ′
v

follows directly from that of Tv .

To see that nA′ is locally consistent, let (A ∪ B,C) ∈ E(TA′) be an edge involving the newly
created set A ∪ B, which means that either A or B was a neighbor of C in TA; assume without
loss of generality that (B,C) ∈ E(TA). Thus B is on the path from A to C in TA, and the running
intersection property implies that A ∩ C ⊆ B, which in turn implies that (A ∪ B) ∩ C = B ∩ C.
Thus the separator for this edge is B ∩C, and the consistency requirement is that nA∪B ↓ B ∩C =
nC ↓ B ∩ C.

Starting with nA∪B , we have that

nA∪B ↓ B ∩ C = (nA∪B ↓ B) ↓ B ∩ C = nB ↓ B ∩ C.

In the the first equality, we compute nA∪B ↓ B ∩C by first marginalizing onto B and then onto the
subset B ∩C, which does not change the final result. In the second equality we use the fact that the
nB � nA∪B by construction in the join operation, and hence nA∪B ↓ B = nB .

Starting with nC we have
nC ↓ B ∩ C = nB ↓ B ∩ C

by local consistency of the tables on TA. Since these expressions are equal, we have established local
consistency for the edge from (A ∪B,C) where C was chosen arbitrarily; hence, local consistency
holds for all edges involving the newly created set A ∪ B. For all other edges, the tables remain
unchanged and hence the consistency condition continues to hold from TA.

It remains only to check that nA � nA′ . The only difference between these configurations is that nA

and nB in the former were replaced by nA∪B = nA ∨ nB in the latter, for which nA,nB � nA∪B

by construction.

Because one edge is removed in each contraction while preserving the ground set V , the overall
contraction procedure will terminate in |E(T)| steps with A = {V }. The relation � is clearly
transitive, and hence we have established that nA � nV for the final table nV , which is our desired
result.

As a side comment, we note that it is slightly less work to prove Theorem 1 using a divide-and-
conquer scheme, which can be seen to be equivalent to a sequence of edge contractions, each of
which joins a leaf of TA with its unique neighbor. However, the flexibility of scheduling contractions
in any order is essential for the following algorithm.

1.3 Constructing nC from nD

Recall that our goal for initializing the Markov chain is to populate a configuration nC such that
nD � nC when D � C. We may assume that

⋃
D = V (if not, construct initial tables nv arbitrarily

for each v ∈ U := (V \
⋃
D), and the collection D augmented by the singletons v ∈ U remains

decomposable). Thus, an initialization approach that is correct but computationally infeasible is
to first build the full table nV by contracting all edges of TD and then form the marginal tables
nC = nV ↓ C. Instead, this procedure can be modified to intersperse edge contractions with
marginalization steps.

The operations are sequenced in a collect phase and a distribute phase on the junction tree TC for col-
lection C, with an arbitrarily chosen root node R. The algorithm maintains the tuple (A, TA,nA, π),
where the final entry π : A → C is a function such that A ⊆ π(A) that is a witness to the relation
A � C. When C = π(A), we refer to C as the owner of A. Initially, (A, TA,nA) = (D, TD,nD),
and π : D → C is chosen to assign each D ∈ D an owner in C.

2

The operation COLLECT(C) has the effect of conducting the following operations on the subtree
of TC rooted at C: first, contract all edges of TD with both endpoints owned by the subtree (i.e.
owned by C or one of its descendants); then marginalize each remaining table in the subtree onto C.
Following the construction of a complete table nC , the operation DISTRIBUTE(C) then completes
the tables for all descendants of C. Detailed descriptions of COLLECT and DISTRIBUTE are given in
Table 1.

The overall algorithm is to call COLLECT(R), which contracts all edges and terminates with
A = {R} and nA = {nR}. The complete table nR for the root node is then extracted, and
DISTRIBUTE(R) is called to complete the remaining tables.

INITIALIZE

1. Pick an arbitrary root clique R ∈ C
2. Execute COLLECT(R)
3. Execute DISTRIBUTE(R)

COLLECT(C)
1. For each child C ′ of C, do the following:

(a) Call COLLECT(C ′)
(b) Marginalize out the variables in C ′ \ C from each set A ∈ A:

i. Update A to replace A by A ∩ (C \ C ′)
ii. Update nA to replace nA by nA∩(C\C′) := nA ↓ A ∩ (C \ C ′)

(c) Update π to transfer ownership of all sets from child to parent: if A was owned by C ′,
then set π(A ∩ (C \ C ′)) = C

2. Repeatedly contract edges (A,B) ∈ E(TA) with π(A) = π(B) = C (both endpoints are
owned by C) and set π(A ∪B) = C until no additional contractions are possible.

3. Let AC = π−1(C) be the members of A owned by C after contraction. Save the corre-
sponding tables nAC

for use in the distribute phase.
DISTRIBUTE(C)

1. Assume that the table nC has been constructed
2. For each child C ′ of C, do the following:

(a) Let S = C ∩ C ′, and let nS = nC ↓ S

(b) Suppose that nAC′ = {nA1 , . . . ,nA`
}

(c) Let nC′ = nS ∨ nA1 ∨ . . . ∨ nA`
(joins may be done in any order)

Table 1: Initialization

Theorem S.1. The algorithm INITIALIZE in Table 1 terminates with a consistent configuration nC
such that nD � nC .

Proof. The proof of correctness must first argue that the tables involved in each join operation are
consistent. To do this, we show that during the collect phase, each operation preserves the invariant
that TA is a junction tree and nA is consistent. We already showed in the proof of Theorem 1
that edge contractions preserve these properties. The only other modifications are made by the
marginalization operations in Step 1(b) of COLLECT, which remove the variables in (C \ C ′) from
every set in TA and each table in nA (by marginalization). These operations clearly preserve the
running intersection property of junction trees, as well as local consistency.

In the distribute phase, we will show that the configuration {nS ,nA1 , . . . ,nA`
} is locally consistent

on the “star” junction tree T ∗ where S is connected to each other set, and hence the joins may be
viewed as edge contractions. To see that T ∗ is indeed a junction tree, let A1, A1 ∈ AC′ and let
(A, TA,nA, π) be the state variables from the point in time immediately following the execution
COLLECT(C ′). Then it must be the case that A1, A2 ∈ A and the path from A1 to A2 in TA contains
some set A3 for which π(A3) 6= C ′; otherwise the entire path would have been contracted. Thus,

3

from the running intersection property of TA, we have that

A1 ∩A2 ⊆ A3.

Furthermore, π(A3) is not a descendant of C ′, because all sets owned by descendants have been
transferred to C ′. Thus the unique path from C ′ to π(A3) in TC must go through the parent C,
implying by the running intersection property of TC that

C ′ ∩ π(A3) ⊆ S.

Finally, we have by the definition of ownership that A1 ⊆ C ′ and A3 ⊆ π(A3), so we may write the
following chain of equalities and inclusions:

A1 ∩A2 = A1 ∩ (A1 ∩A2)
⊆ A1 ∩A3

⊆ π(A1) ∩ π(A3)

= C ′ ∩ π(A3)
⊆ S.

This establishes the running intersection property on T ∗.

To see that the configuration {nS ,nA1 , . . . ,nA`
} is locally consistent on T ∗, we note that Ai∩S =

Ai ∩ (C \ C ′) because Ai ⊆ C ′. By construction in COLLECT(C ′), we have that

nAi∩S = nAi∩(C\C′) � nAi .

Then, by construction in DISTRIBUTE(C) (for the parent), we have that

nAi∩S = nAi∩(C\C′) � nS .

This establishes consistency for each join operation executed by COLLECT and DISTRIBUTE.

To verify the final consistency of nC , it is easy to see in the distribute phase that nS � nC ,nC′

and hence the configuration nC is locally consistent by construction, and thus globally consistent by
Theorem 1. Finally, to check that nD � nC , suppose that π(D) = C. Then, after COLLECT(C),
there is some D′ obtained from one or more join operations involving D such that D ⊆ D′ ∈
AC , and hence nD � nD′ . The execution of DISTRIBUTE(C) conducts further joins on D′ but
guarantees that nD′ � nC , so that nD � nC . This proves the result.

2 Markov basis (Theorem 3)

Proof of Theorem 3. Let n,n′ ∈ F∗
nD . We will prove the special case when U = {U}. Let

{x(m) : m = 1, . . . ,M} be an arbitrarily ordered sample corresponding to contingency table n
and define x′(m) analogously for the table n′. Define z(m) ∈ Md=1(U,W) to have the nonzero
entries z(x(m)

U ,x(m)
W) = −1 and z(x′(m)

U ,x(m)
W) = 1; this move updates x(m) to match x′(m) on the

variables in U . The moves may be executed in any order and maintain a valid sample and hence a
non-negative table. The table also remains in F∗

nD because the entire nW marginal is preserved, and
the nU marginal is unrestricted. Define n′′ = n +

∑M
m=1 z(m). By construction, we now have that

n′′ ↓ U = n′ ↓ U , and we have maintained the property that n′′ ↓ D = n ↓ D = n′ ↓ D for all
D ∈ D.

Since D and U are decomposable on disjoint ground sets, D′ = D ∪ U is decomposable. By
construction,

⋃
D′ = V , so the conditions are met for the Dobra basis MD′ . Hence there is a

sequence of moves in MD′ connecting n′′ to n′, which proves the result.

The generalization to arbitrary decomposable collections U is straightforward by repeating the ar-
gument we just made to adjust the variables in sequence for each set U ∈ U in an order dictated by
a junction tree TU .

Proposition S.1. For any degree two move z generated by the partition (A,S,B), the set of cliques
C ∈ C such that z ↓ C is nonzero form a connected subtree of TC .

4

Proof. By the junction tree property, the cliques containing A induce a connected subtree of TC , as
do the cliques containing B. The intersection of two subtrees is also a tree.

Proposition S.2. For any degree one move z, the set of cliques C such that z ↓ C is nonzero form
a connected subtree of TC .

Proof. The fact that the cliques that intersect A form a subtree is a direct consequence of the junction
tree property.

3 Log-concavity (Theorem 4)

Before proving Theorem 4, we state and prove the following lemma.

Lemma S.1. Let z be a degree-two move from Md=2(A,S,B). Then for all F ⊆ V , it is either
the case that z ↓ F is also a degree-two move, from the set Md=2(A ∩ F, S ∩ F,B ∩ F), or that
z ↓ F = 0. Similarly, for a degree-one move z ∈ Md=1(A,B), it is either the case that z ↓ F is a
degree-one move from the set Md=1(A ∩ F,B ∩ F), or that z ↓ F = 0.

Proof of Lemma S.1. We can write the degree two move defined in (4) as z = z+ − z− where z+

and z− each have two positive entries

I(z+) = {(i, j, k), (i′, j, k′)}, I(z−) = {(i′, j, k), (i, j, k′)},

We then have that z ↓ F = (z+ ↓ F)− (z− ↓ F) where

I(z+ ↓ F) = {(iF , jF , kF), (i′F , jF , k′F)},

I(z− ↓ F) = {(i′F , jF , kF), (iF , jF , k′F)}.
In this case we use the notation that iF ∈ XA\F is the subvector of i corresponding to variables in
A ∩ F , and use similar notation for jF , kF , etc. If either iF = i′F or kF = k′F , then I(z+ ↓ F) =
I(z− ↓ F) which implies that z ↓ F = 0. Otherwise, the four entries are unique and z ↓ F has the
form of a degree two move from Md=2(A ∩ F, S ∩ F,B ∩ F).

The proof for degree-one moves is similar.

Proof of Theorem 4. We must show that p(δ)2 ≥ p(δ − 1)p(δ + 1) for all δ ∈ {δmin, . . . , δmax}.
Defining r(δ) = p(δ)/p(δ−1), it is equivalent to show that r(δ) ≥ r(δ +1). From the factorization
in (6), we can write

r(δ) =
∏

C∈C(z)

rC(δ)
∏

S∈S(z)

rS(δ)

where rA(δ) = pA(δ)/pA(δ − 1) for A ∈ C ∪ S.

From (7) we see that

rC(δ) =
∏

i∈I+(zC)

µC(i)
(nC(i) + δ)

∏
j∈I−(zC)

(nC(j)− δ + 1)
µC(j)

∝
∏

i∈I+(zC)

(nC(i) + δ)−1
∏

j∈I−(zC)

(nC(j)− δ + 1) (S.1)

where in the final expression we ignore terms that are constant with respect to δ. All terms in (S.1)
are non-negative for δ in the specified range, and each is decreasing in δ, and thus rC(δ) > rC(δ+1)
for each C. Thus, pC(δ) is log-concave for all C.

However, the same reasoning implies that pS is log-concave for all S, and because these terms
appear in the denominator of (6), a further argument is required to show that p(δ) is log-concave.
Consider an arbitrary separator S = C ∩ C ′ with (C,C ′) ∈ E(TC). If zS is nonzero, then both zC

and zC′ are nonzero, because zS is a marginal move of each. Thus we may assign each separator

5

S ∈ S(z) to a unique clique C ∈ C(z) by orienting the edges of TC toward an arbitrary root clique
and assigning S to its parent. We can then write

p(δ) =
L∏

`=1

pC`
(δ)

pS`
(δ)

L′∏
`=L+1

pC`
(δ)

where S` ⊆ C` for ` = 1, . . . , L and the cliques C` for ` > L are those that are not assigned a
separator. Since a product of log-concave distributions is log-concave, and we have already shown
that each pC`

(δ) is log-concave, it now suffices to show that pC`
(δ)/pS`

(δ) is log-concave for each
` = 1, . . . , L.

To that end, fix ` and let C = C` and S = S`. We will show that pC(δ)/pS(δ) is log-concave by
using Lemma S.1 to match terms of rC(δ) and rS(δ). Consider first the case when z is a degree-two
move. Then both zC and zS , which are nonzero, are also degree-two moves with two positive and
two negative entries. For zS , write the positive indices as I+(zS) = {i11, i22} and the negative
indices as I−(zS) = {i12, i21} to match the 2× 2 visualization + −

− + .

Because zS(i11) =
∑

j∈XC\S
zC(i11, j) = 1 and we know that no cancellation occurs in the sum

because both zC and zS have four nonzero entries, there is a unique j11 such that zC(i11, j11) = 1.
This argument clearly extends to find the unique jab such that zS(iab) = zC(iab, jab) for a, b ∈
{1, 2}. Now, for shorthand, write nab

S = nS(iab) and nab
C = nC(iab, jab). It is clearly the case that

nab
C ≤ nab

S because the latter is a marginal total that include the former. At this point we can rewrite
(S.1) as

rC(δ) ∝ (n12
C − δ + 1)(n21

C − δ + 1)
(n11

C + δ)(n22
C + δ)

(S.2)

Using (S.2) and the analogous derivation for rS(δ), we obtain

rC(δ)
rS(δ)

∝ (n12
C − δ + 1)

(n12
S − δ + 1)

· (n21
C − δ + 1)

(n21
S − δ + 1)

· (n11
S + δ)

(n11
C + δ)

· (n22
S + δ)

(n22
C + δ)

The first two terms are of the form a−δ
b−δ for 0 ≤ a ≤ b, and thus are decreasing in δ. The latter

two terms have the form b+δ
a+δ for 0 ≤ a ≤ b, and are also decreasing in δ. Thus, rC(δ)/rS(δ) is

decreasing, which implies that pC(δ)/pS(δ) is log-concave. This proves the result for degree-two
moves. The proof is similar for degree-one moves.

4 Experiments

4.1 Details of convergence experiments

The additional details of the convergence experiments are as follows. Each Bayes net had 10 binary
variables, a random graph structure (directed, acyclic, indegree at most 3) and random parameters.
To derive the CGM, a junction tree was found for each net by the standard process of moralization
and triangulation.

We then ran K = 30 trials for each net. In the kth trial, we generated observations nk
D by sampling

from the CGM distribution, and then used our sampler to produce estimates n̂k,t
C of E[nC | nk

D] as a
function of the number of MCMC steps t. We wish to explore the convergence of the estimate n̂k,t

C
with respect to t, but do not know another algorithm to compute the correct answer for comparison.

To get around this, we use the fact that E[E[nC | nD]] = E[nC] (a basic property of conditional
expectation) which implies that, if our estimates of the conditional expectation are correct, then
averaging over enough trials will give us back the unconditional expectation E[nC] = MµC , which
we know from the model parameters. Specifically, n̄t

C := K−1
∑K

k=1 n̂k,t
C converges to E[nC] as

K and t go to infinity. The plots show relative error ||n̄t
C −MµC ||/||MµC || as a function of t for

K = 30.

References
[1] V. Chvátal. Linear Programming. W.H. Freeman, New York, NY, 1983.

6

