
Randomized Algorithms for Comparison-Based
Search: Supplementary Material

Dominique Tschopp
AWK Group

Bern, Switzerland
dominique.tschopp@gmail.com

Suhas Diggavi
University of California Los Angeles (UCLA)

Los Angeles, CA 90095
suhasdiggavi@ucla.edu

Payam Delgosha
Sharif University of Technology

Tehran, Iran
pdelgosha@ee.sharif.ir

Soheil Mohajer
Princeton University
Princeton, NJ 08544

smohajer@princeton.edu

Abstract

The problem is finding the nearest neighbor (or one of theR-nearest neighbors)
for a query objectq in a database ofn objects, when only similarity comparison
questions can be asked is studied in a paper titled “Randomized Algorithms for
Comparison-Based Search”. Some of the proofs and technicaldetails are skipped
in the main paper, due to the page limit. In this appendix, we present all the
missing proofs and complementary material.

1 Disorder Constant of the Star Database

Proof of Lemma 1.Take three nodesx, y, z ∈ T ∪ {q} whereT denotes the set of nodes in star
shaped graph. We have to show that all four inequalities in Definition 2 hold with D = Θ(α).
However, since all the proofs are similar, we only discuss the first inequality in detail. Our goal is to
show that

rx(y) ≤ D(rz(x) + rz(y)) (1)

Let d = d(x, y) denote the distance betweenx andy in the graph. We first define the distance-ball
around pointx asBu(r) = {i ∈ S|d(u, i) ≤ r}.

We consider two distinct cases:d ≤ 1 or d > 1. If d ≤ 1, it means thatx andy are in the same SN.
In this case we haverx(y) ≤ α because the distance between two nodes in a SN is smaller thanthe
distance between nodes in different SNs. Sincerz(x) + rz(y) ≥ 1, simply by substitutingD = α,
the inequality (1) holds.

In the second case whered > 1, x andy are in different SNs. We claim that|Bx(d)| ≤ 4α2d.
First focus of the objects whose distance fromx over the star graph does not exceedd. Even if x
is in the center of the graph, there are at mostdα SNs within distanced of x each hasα nodes.
Furthermore, there could be more objects that could be in thedistance-ballBx(d) aroundx due to
the additional query pointq. If the query point were within distanced of x, it could bring in at most
2dα2 + α2 ≤ 3dα2 additional objects into the distance-ball aroundx. Indeed, through the query
point, a pointx could be connected to at most2dα + α objects on each branch (i.e., to d SNs on
each side of the SN containing the DN through whichx is connected, each withα objects inside,
andα objects inside the SN). Therefore|Bx(d)| ≤ 4α2d.

On the other hand, we claim that|Bz(d/4)| ≥ dα/4. Note thatd/4 ≤ n/α2, because the distance
between any two nodes is upper bounded by4n/α2 (this maximum is obtained when two nodes are

1

at the end of two different branches). Since there aren/α2 SNs in a branch, each havingα nodes,
there are at leastdα/4 nodes within distance less thand/4 from z, which shows our claim.

Now, we have,

rz(x) + rz(y) ≥ |Bz(d(x, z)/2)|+ |Bz(d(y, z)/2)|

≥ |Bz(d(x, z)/2)|+ |Bz([d(x, z) − d(y, z)]/2)|

≥ |Bz(max{d(x, z)/2, [d(x, z)− d(y, z)]/2})|

≥ |Bz(d(x, z)/4)| ≥ dα/4 (2)

where we used the fact that|Bx(d)| is an increasing function w.r.t.d in inequalities above.

Combining (2) with the fact that

rx(y) ≤ Bx(d) ≤ 4α2d = 16α.
dα

4
(3)

proves our claim in (1) by settingD = 16α.

2 Lower Bounds for NNS: Details and Proofs

We need a few definitions and tools which will be used in the proof of the theorem. First, we fix an
arbitrarysuccessfulalgorithmA, which can find the nearest neighbor foranypossible query point
in the star database. We define the set of questions that algorithm A asks in response to an input
q ∈ M.
Definition A.1. In response to an inputq ∈ M, algorithmA asks a set of questionsQ =
{ω1, ω2, . . . , ωm} in whichωi is a triple (ai, bi, ansi) in whichai and bi denote sides of question
(we askO(q, ai, bi)), and ansi is a binary number (“0” for ai and “1” for bi) denoting the answer
to the question.

In fact since the answer to a question is crucial in an algorithm. In the following, when we talk about
a question we mean both thequestionand itsanswer. Note that since we focus on the deterministic
algorithms, questions themselves do not reveal information, more precisely, having the answers up to
any step of the algorithm, we can retrieve the next questions. This is true since theith question only
depends on the answers to questions1 to i− 1. So we can assign a binary sequence to every query
node which is the sequence of answers received from the oracle and contains all the information we
need about the attitude of a deterministic algorithm towards that query.
Definition A.2. For a queryq ∈ M, defineΠq as the binary sequence1 (πq

1 , π
q
2 , . . . , π

q
m(q)) which

contains the answers of questions algorithmA asks from the query withq as its input. Note that
m(q) is the number of questions algorithm asks from the query to find NN ofq.
Definition A.3. For a set of questionsQ = {(ai, bi, ansi) : i = 1, . . . , m}, we sayQ impliesq and
denote it byq |= Q, if ∀1 ≤ i ≤ m, we haveO(q, a, b) = ansi. This basically means thatq is
consistent with all the questions and answers revealed in set Q.

AssumeQq, the set of questions asked by an algorithmA for an inputq, is the same as the set of
questions asked whenq′ is fed to the algorithm as input,i.e.,q′ |= Qq. Since all the information of
questions is available in the binary sequence of answers, wehaveΠq = Πq′ . In fact we can define
an equivalence relation based on this concept.
Definition A.4 (alike queries). Two query pointsq1 andq2 are calledalikeand denoted byq1 ∼ q2

if Πq1 = Πq2 .

In fact our algorithm behaves similarly in response to two alike queries as input, and of course
returns the same output for both. Therefore, two alike queries should have the same NN although
they may differ in issues which are not important for our algorithm: DNs in other branches and their
orders.

The following lemma plays a key role in the proof of Theorem 1.
1Note that although all the following notions depend on both the query and algorithm, we can skip their

dependency onA since we have already fixed the algorithm.

2

Lemma A.1 (Existence of a question about a DN). Let q be the input query to the algorithm, and
assumeδq(i) is a DN ofq in branchφi which lies in supernodeS. Denote byx th weight of the query
edge connectingq to δq(i). If algorithmA does not ask any question aboutδq(i) (i.e.,ω = (a, b, ans)
with eithera = δq(i) or b = δq(i)), we can obtain another queryq∗ with q ∼ q∗, by changingx to
any valid weightx of the form1 + O(ǫ).

Proof of Lemma A.1.To prove this lemma, we will choose a proper value forx∗, the weight of the
query edge connectsq∗ to d, and show show that changingx to x∗ does not change the answer to
any of the questionsA asks whenq. This impliesq ∼ q∗. First we present three observations.

(O1) For any nodeu ∈ T on branchφi, there areα paths connecting it to the query point, each
through one branch, and one DN. Since the weight of edges emitting from the center have
weightn/(α2), the shortest path fromu to q would be through the DN on the same branch,
φi. Therefore the distance between any node and the query pointis the sum of weights of
the path connecting it to the query through the same branch.

(O2) If u andv are in the same branch, sayφi, the relative distanced(q, u)− d(q, v) is independent
of the weight of the edge connectingq to δq(i), the DN ofq onφi. Hence the answer of the
questionO(q, u, v) is independent of this weight.

(O3) For any nodeu on branchφi, denote bylu is the distance between the SN containingu and
the DS onφi (the SN containsδq(i)). For two objectsu andv on the same branch,lv < lu
impliesd(q, v) < d(q, u). This is due to the fact that the all the object edges inφi have the
same weight. Hence the distance between SNs plays thefirst orderrole in comparison, and
then the object edges and after that query edges determine the answer to the comparison
questions.

We want to show that by changing the value ofx, the answer of every question inQ remains the
same. Take a questionω = (u, v, ansu,v) in Q. There are three possibilities:

1. u andv are on the same branchφj : as a result of(O2) above, the answer toω remains the
same, no matterj = i or j 6= i.

2. u andv are on two different branchesφj andφk but i /∈ {j, k}: as a result of(O1), the
distancesd(q, u) and d(q, v) will remain the same after changingx. So the answer to
questionω will not change.

3. u is onφi andv is onφj with i 6= j: This is the case we discuss the next2 (See Fig. A.1).

Denote the SN containsv beSv and the DS on branchφj by DSφj
. Note that the DN on branchφi

is δq(i) ∈ DSφj
which is connected toq with weightx. The DN on branchφj is in DSφj

, say node
δq(j) which is connected toq with weighty. If Sv = DSφj

, according to(O3), v is closer to query
thanu regardless of the values ofx andy, which means that by changingx, ansu,v will not change.
On the other hand, if the distance betweenSv and DSφj

(denoted bylv) is different fromlu, then
again according to(O3) ansu,v will not change. Therefore we analyze the case wherelu = lv = l
(see Figure A.1). We definem1, m2, m3 andm4 to be the weights of edges connectingu to Su,
δq(i) to DSφi

, v to Sv andδq(j) to DSφj
, respectively.

We have to analyze the following two cases, whetherSu 6= DSφi
or Su = DSφi

, separately. Recall
thatm1 = m2 = i/(4α) andm3 = m4 = j/(4α).

Case I:Su 6= DSφi
impliesl 6= 0, in this case we have,

d(q, u) = x + l +
2i

4α

d(q, v) = y + l +
2j

4α

(4)

2Clearly, a similar argument holds for the case thatu is onφj andv is onφi.

3

DSφi

Su

Sv

DSφj

y

x
q
q

δq(i)

u

δq(j)

v

φi

φj

lu

lv

m1

m2

m3

m4

b

bc

bc

bc

bb

b

b

bc

bc

bc

bb

b

b

bc

bc

bc

bb

b

b

bc

bc

bc

bb

b

b

Figure A.1: comparingd(q, u) andd(q, v)

and hence

|d(q, u)− d(q, v)| ≥
|i− j|

4α
− |x− y| =

|i− j|

4α
−O(ǫ) (5)

sinceǫ≪ 1/(4α), by changingx∗ so that it remains of the form1+O(ǫ), |x−y|would be
of O(ǫ) and the sign of the relative distance will not change which means that the answer
will not change.

Case II:Su 6= DSφi
impliesl = 0. Note that we assume there is no question aboutδq(i) but there

is a question comparingu andv, thereforeu 6= δq(i). If v is the DN in branchφj , thenv is
a Direct Node butu is not, thereforev is closer to the query independent of the value ofx.
Otherwise we have,

d(q, u) = x +
2i

4α

d(q, v) = y +
2j

4α

(6)

and hence

|d(q, u)− d(q, v)| ≥
|i− j|

4α
+ |x− y| =

|i− j|

4α
+ O(ǫ). (7)

Again, sinceǫ≪ 1/(4α), the answer will not change by changingx.

Using this lemma, we have the following corollary.

Corollary A.1 (Existence of a question about a DN). LetA be a an algorithm which can find the
NNS for a query pointq. A should ask at least one question involving allδq(i) for all i = 1, . . . , α.

4

Proof of Corollary A.1.We prove this corollary by contradiction using Lemma A.1. Assume there
is no question involvingδq(i) for somei, which is connected toq via a query edge of weightx. We
can change the value ofx and obtain a new queryq∗ in the following way: ifδq(i) is the NN, then
increasex to obtainq∗ and if it is not, decreasex so thatδq(i) becomes the NN ofq∗. In both cases,
the set of questions and answers ofq∗ andq are the same but they have different NNs. Therefore
since the algorithm is not able to distinguishq andq∗, it will gives a wrong output for at least of
them.

Note that since we wantq∗ to be a valid query, changingx should be in a way that it still remains
of the form1 + O(ǫ). In this case|x − y| = O(ǫ) and sinceǫ ≪ 1/(4α), the sign of the relative
distance in two cases and the answer to the question will not change.

Now, we first show the logarithmic lower bound on the number ofquestions has to be asked byA
on average.

2.1 Proof of the Logarithmic Bound for NNS Problem

Definition A.5 (co-branch queries). For a branchφi, 1 ≤ i ≤ α define the relation
i
≡ in the

following way: for two queriesq1, q2 ∈ K we say thatq1
i
≡ q2 if and only if they have the same DN

in branches other thanφi and the ordering of their DNs are the same,i.e.,(recall Definition 3 in the
main paper)δq1(j) = δq2(j), ∀j 6= i andΨq1 = Ψq2 .

It could be easily seen that this is an equivalence relation and divided queries into equivalence

classes, each class havingn/α queries. We call the class of object which satisfy
i
≡ thei-co-branch

class.

The i-co-branch queries are exactly the same unless their DNs in branchφi, which are different.
Let C = {q1, q2, . . . qn/α} be ani-co-branch class andδqj

(i) be the DN ofqj in branchφi. As a
result of Lemma A.1,A should ask at least one question involvingδqj

(i) whenqj is the input of the
algorithm.

Definition A.6. DefineN i
q be the number of questions involve at least one node on the branchφi

asked by theA from the oracle, whenq is its input.

We claim thatA should ask aboutlog(n/α) nodes in branchφi on average fori-co-branch queries.
More formally, we state and prove the following lemma. This lemma basically states that for co-
branch queries the algorithm has to asks at leastlog(n) questions per branch on average.

Lemma A.2 (i-co-branch queries on average). AssumeC = {q1, q2, . . . , qn/α} is an i-co-branch
class. We have,

n/α
∑

k=1

N i
qk
≥

1

2

n

α
log

(n

α

)

(8)

Proof of Lemma A.2.Here we want to build a tree that shows the respond of our algorithm to these
co-branch queries. Each node of the tree is a subset of the queries in the class of our interest. At first
we put alln/α queries in the top node of the tree. Each node of the tree represents a subset ofi-co-
branch queries. In each level our algorithm asks a question that according to its answer queries are
divided into some disjoint subsets based on the revealed answer. This tree is constructed only when a
question involving a node onφi is asked. Take the first time that there is a question involving a node
on φi. Before this moment, all question are about nodes outsideφi and because co-branch queries
are the same outsideφi, the answer to these questions are the same for alli-co-branch queries. Since
our algorithm is deterministic, the first question about a node inφi is the same for alli-co-branch
queries. There are two possibilities at each step of the construction of the tree:

1. Assume the question is about two nodesps andpt that both are inφi. In this situation throw
away queriesqs andqt. The remaining queries are at most divided into two subsetsC1 and
C2 based on the answer of the question.

5

2. Let this question be about a nodeps on branchφi and a node outside branchφi. Throw
away queryqs. The remaining queries again are divided into at most two subsetsC1 and
C2 according to the answer of the question.

Note that so far there has not been any question from the DN of queries inC1 andC2. This process
will be continued recursively. We divide nodes staying on the tree into two parts:greennodes which
represent the set of queries that so far no question has been asked about their DNs; andred nodes
which are those we throw away at each step. For instance the top node of the tree is a green node
and the one or two node representing queries we throw away at the first level discussed above are
red.

Take a green nodeG at some level in the graph. It represents a set of queries3 CG = {q1, q2, . . . , qk}
and their DNsNG = {δq1(i), δq2(i), . . . , δqk

(i)}, which are not distinguishable for the algorithm
based on the answers received so far. Now look at the questions after this pointA asks for them as
input. For questions with both sides outsideφi, the answer would be the same for queries inCG,
and so these questions do not divide this set. Therefore up tothe point that there is a question with
at least one side inφi, they get the same answer.

Taking the first question that at least one side is inφi, exactly like the root node, there are two
possible cases which will result in children ofG in the graph: at most two green nodesC1

G andC2
G

in the first case and four (or three) nodes where at most two of them are green (C1
G andC2

G) and two
of them are red nodes which represent the two queries thrown away at this level.

Since green nodes always have children, leafs of our trees are red nodes which represent queries.
Since the set of queries for children of a node is disjoint, leafs of the tree are exactlyn/α i-co-
branch queries. Note that each query has at least as its depthin the tree as questions with at least one
side in branchφi. Since in each node, tree is divided into at most four sub trees, we can represent
every leaf of the graph such asqk with a quaternary4 sequence of lengthlk, or equivalently, a binary
sequence of length2lk for qk. All such sequences are different for non-identical queries. Moreover,
we haveN i

qk
≥ lk. This is exactly a quaternary Huffman tree, in which their average is grater than

the entropy of a random variable that takesn/α values uniformly at random. Hence,

1
n
α

n/α
∑

k=1

N i
qk
≥

1
n
α

n/α
∑

k=1

lk ≥
1

2n
α

log
(n

α

)

(9)

which completes the proof.

Proof of Proposition 1.Since each question is between at most two branches, we have

QA ≥
1

|M|

1

2

∑

q∈M

α
∑

i=1

N i
q =

1

2|M|

α
∑

i=1

∑

q∈M

N i
q (10)

now for a fixedi, we can divide the set of all queries,M, into equivalence classes that in each class
C queries arei-co-branch. Since there aren/α queries in each class, there areα/n|M| classes.

QA ≥
1

2|M|

α
∑

i=1

∑

C

∑

q∈C

N i
q ≥

1

2|M|

α
∑

i=1

∑

C

1

2

n

α
log

n

α

=
1

2|M|
α

α

n
|M|

n

α

1

2
log

n

α
=

α

4
log

n

α

(11)

2.2 Proof of the Quadratic Bound for NNS Problem

Definition A.7 (co-SN queries). LetS be a SN in branchφi, define relation
S
≡ in the following way:

two queriesq1 andq2 are called related by
S
≡ if their DNs in branchφi lie in SNS and their DNs

3Without loss of generality we can re-label the queries so that the firstk of them belong toCG.
4A sequence with elements from{0,1,2,3}.

6

in all other branches are the same, in addition to that the ordering of their DNs are the same;i.e.,

q1
S
≡ q2 if and only ifδq1(i) ∈ S, δq2(i) ∈ S, δq1(j) = δq2(j), ∀j 6= i andΨq1 = Ψq2 .

It could be seen easily that this relation is an equivalence relation over queries that have a DN in
SNS, hence they are divided into classes withα queries in each class. For a given SNS, we call
each of them aS-co-SN class and the queries in each class are calledS-co-SN queries.

Definition A.8. DefineÑS
q to be the number of nodes that are asked in supernodeS when with

queryq as the input to algorithm.

Lemma A.3 (all nodes should be asked on average). For a given SNS in branchφi and aS-co-SN
classC = {q1, q2, . . . qα}, we have

1

α

α
∑

k=1

ÑS
qk
≥

α

4
(12)

Proof of Lemma A.3.Lets denote the nodes inS by n1, n2, . . . , nα wherenk = δqk
(i). As a result

of Corollary A.1 there should be a question aboutnk in the question set ofqk. The arrayQk

contains the questionsA asks whenqk is its input, soQk[p] denotes thepth question asked from the
oracle whenqk is input of the algorithm. Letµ1 be the first place that in arraysQk for at least one
1 ≤ k ≤ α there is a question about a node inS, i.e.,

µ1 = min{p|∃ 1 ≤ k ≤ α, Qk[p] is about some node inS} (13)

since questions before indexµ1 are all about nodes outsideS and edges inS have the same weight,
the answer to them are the same forq1, q2, . . . , qα, therefore questions in places1 to µ1 − 1 and
their answers are exactly the same forq1, . . . , qα. As a result of this and because our algorithm is
deterministic, the nodes compared inQk[µ1] are same for all the queries but possibly its answer is
different for differentk’s. There are two possible situations:

1. questionµ1 is between a nodenk1 and another node in another SN.

2. this question is between two nodes inS, saynk1 andnk′

1
.

In the first case, since fork 6= k1,

d(nk1 , qk) = 2
i

4α
+ 1 +

Ψqk
(i)

α
ǫ (14)

and the fact thatqks are equivalent, this distance is the same forqk, k 6= k1 hence the answer to the
µth

1 question is the same for them.

In the second case, using the same reasoning, the answer to the question is the same for queries other
thanqk1 andqk′

1
. Therefore

Qk[p] = Qk′ [p] p ≤ µ1, k 6= k1 (or k 6= k1 andk 6= k′
1 in the second case) (15)

We want to continue this procedure and exclude more queries.To make it formal, we start with the
set of all query indexes, sayT0 = {1, 2, . . . , α} and exclude one or two queries from them to obtain
T1, in the first caseT1 = T0 \ {k1} and in the second caseT1 = T0 \ {k1, k

′
1}. ThereforeTr is the

input to therth level andTr+1 is its output,r ≥ 0.

Continuing this procedure inductively, in therth level whereTr 6= ∅ we define

µr+1 = min{p > µr|∃ k ∈ Tr, Qk[p] is about some nodenp, p ∈ Tr} (16)

The key point to continue the procedure is that no query goes out of the play until its direct node
is asked in a question (Corollary A.1). Therefore havingTr 6= ∅, µr+1 is well defined and the
procedure comes to an end at levelrf whenTrf

= ∅.

Repeating our reasoning forr = 0,

• Qk[p] = Qk′ [p] for k, k′ ∈ Tr andp < µr+1.

7

• µr+1
th question (but not necessarily its answer) is the same for queries inTr.

Again two possible situations could happen, based on which case happens, we defineTr+1 to be
eitherTr \{kr+1} or Tr \{kr+1, k

′
r+1} whereqkr+1 andqk′

r+1
are the queries that go out of the play

in levelr. Just like (15),

Qk[p] = Qk′ [p] p ≤ µr+1, k 6= kr+1 (or k 6= kr+1 andk 6= k′
r+1 in the second case) (17)

which says that the answer to theµth
r+1 is the same for queries inTr+1.

Now we are at the place to give the lower bound. Note that for a queryqk, if it remains in the play
up torth level, i.e.qk ∈ Tr−1, ÑS

qk
is at leastr, therefore,

α
∑

k=1

ÑS
qk
≥

α
∑

k=1

∑

r,qk∈Tr−1

1 =
∑

r≥0

|Tr|

≥

⌊α/2⌋
∑

r=0

α− 2r ≥
α2

4

(18)

hence,
1

α

α
∑

k=1

ÑS
qk
≥

α

4
(19)

Proof of Proposition 2.If for a queryq, Sδq(i) denotes the supernode in which the direct node ofq

in branchφi is, Ñ
Sδq(i)

q is the number of nodes in the direct supernode ofq in branchφi thatA asks
a question about them forq as input. Since every question covers at most two nodes, we have,

QA ≥
1

2

1

|M|

∑

q∈M

α
∑

i=1

Ñ
Sδq(i)

q

=
1

2|M|

α
∑

i=1

∑

q∈M

Ñ
Sδq(i)

q

(20)

now we analyze
∑

q∈M Ñ
Sδq(i)

q for a fixed1 ≤ i ≤ α. DefineSk, k = 1, . . . , n/α2 to be supern-

odes in branchφi. We know that
Sk
≡ defines an equivalence relation over queriesq thatδq(i) ∈ Sk.

Since the set of queriesq thatδq(i) ∈ Sk are distinct for differentks and their union isM, we can

break the summation into equivalence classesC for all relations
Sk
≡, for k = 1, . . . , n/α2. For one

equivalence classC, according to Lemma A.3 we know that

∑

q∈C

Ñ
Sδq(i)

q ≥
α2

4
(21)

since every equivalence class hasα elements,

∑

q∈M

Ñ
Sδq(i)

q =
∑

C

∑

q∈C

Ñ
Sδq(i)

q ≥
∑

C

α2

4
=
|M|

α

α2

4
=

α

4
|M| (22)

combining this with (20) we have:

QA ≥
1

2|M|

α
∑

i=1

α

4
|M| =

1

2|M|

α2

4
|M| =

1

8
α2 (23)

which completes the proof.

8

2.3 The Algorithm that Achieves the Lower Bound for the Star Graph

In this section, we present an algorithm that achieves the lower bound proved for the star shaped
graph.

We can find the DS in each branch by using a binary search method: For a given branchφ, denote
the supernodes on it byS1, S2, . . . , Sn/α2 (S1 is the closest to the center of the star, and theSn/α2

is the last SN). We can divide these supernodes into two subsets S1 = {S1, . . . , Sn/(2α2)} and
S2 = {S1+n/(2α2), . . . , Sn/α2}. Pick a noden1 from the SN at the middle ofS, (i.e.,Sn/(4α2)) and
a noden2 from the SN at the middle ofS2, (i.e.,S3n/(4α2)) and compare them using one question
from the oracle. According to(O3) in the proof of Lemma A.1, ifn1 is closer to the query, we
may conclude that DS of branchφ is in segmentS1, otherwise the DS belongs toS2. This process
of partitioning and binary search will be recursively continued inO(log n/α2) steps until we find
the DS on branchφ. The same procedure can be repeated for each branch. Hence weshould ask
O(α log n/α2) questions to find all theα DSs.

There areα nodes in each DS. Therefore usingα question we can find the DN in each DS, which
yields in a total ofα2 questions to find all the DNs. Finally we can find the NN among the α DNs
usingα comparisons. Hence, we needα2 + α = O(α2) questions for this phase of the algorithm.
Therefore this algorithm runs inO(α2 + α log n/α2) questions from the oracle.

3 Additional details for the Hierarchical Algorithm

3.1 Background algorithms

We first present the missing macros which are used in the learning algorithm.

A heap is a binary tree structure. Every node of the tree is stored in an element of an array. A heap
is a nearly complete binary tree, meaning that it is completely filled on all levels except possibly the
lowest.

The array containing the node values,H , has two attributes length(H) which is the length of the ar-
ray and heap-size(H) which is the number of tree nodes. ThereforeH [1, . . . , heap-size(H)] contain
heap values and the data inH [heap-size(H) + 1, . . . , length(H)] are not valid.

The root of the tree isH [1]. Every nodei, except the nodes at the lowest level has two children, the
left child left(i) = 2i and the right child right(i) = 2i + 1. Therefore the parent node of nodej is
parent(j) = ⌊j/2⌋.

There are two kinds of binary heaps: min-heaps and max-heaps. In a min-heap we have
H [parent(i)] ≤ H [i] for all nodei, and in a max-heap we haveH [parent(i)] ≥ H [i]. In this
paper we work with min-heaps, therefore from now on we assumeevery heap is a min-heap. An
example of a min-heap is depicted in Fig. A.2.

A heap ofn elements is based on a complete binary tree, hence the heightof such a heap is of
Θ(log n). Now we explain three basic algorithms to build, maintain and use a min-heap (the proce-
dure for max-heap is the same, hence all following algorithms will be explained for min-heap).

• Heapify: modifies the heap to maintain the heap property and returns in O(log n) time.

• BuildHeap: builds a heap from unordered data.

• ExtractMin: extracts the minimum element (which is the root node) and modifies the
other elements to make a new heap and runs inO(log n).

The Heapify algorithm (Algorithm 1) takes an arrayH and an indexi. It assumes that the sub-trees
rooted at left(i) and right(i) are heaps but possiblyH [i] is bigger than its children and violates the
heap property. The algorithm lets the value of nodei flow down to maintain the heap property.

We use this algorithm recursively to implementBuildHeap (Algorithm 2).

To extract the minimum of the heap (or the root node), we replace the root with the last element in
the array and callHeapify procedure on root. This is explained in Algorithm 3.

9

input : An arrayH and an indexi, assuming sub-treesH [left(i)] andH [right(i)] are
min-heaps.

output: Array H with sub-tree at nodei being a min-heap

l← left(i);
r ← right(i);
if l ≤ heap-size(H) andH [l] < H [i] then

smallest← l;
else

smallest← i;
end
if r ≤ heap-size(H) andH [r] < H [smallest] then

smallest← r;
end
if smallest 6= i then

exchangeH [i]↔ H [smallest] ;
Heapify(H, smallest);

end

Algorithm 1 : Heapify

input : Array H with length length(H)
output: min-heapH

heap-size(H)← length(H);
for i← ⌊length(H)/2⌋ downto 1 do

Heapify(H, i)
end

Algorithm 2 : BuildHeap

input : A heapH
output: H with its root extracted
if heap-size(H) < 1 then

error heap underflow;
end
min← H [1];
A[1]← A[heap-size(H)];
heap-size(A)← heap-size(A)− 1;
Heapify(A, 1);
return min

Algorithm 3 : ExtractMin

10

1

5 6

9 14 7 9

10 17 15

1 5 6 9 14 7 9 10 17 15

1 2 3 4 5 6 7 8 9 10

Figure A.2: An example of a min-heap with 10 nodes and its implementation in an array

3.2 Success of the Algorithm

We first prove two technical lemmas that we will need to prove Lemma 2.

Lemma A.4. If we throwm = ab log n balls intob bins, each chosen uniformly at random, then the
first bin will contain at least one ball with probability morethan1− 1

na

Proof of Lemma A.4.The probability that a bin contains no ball is

P [a bin contains no ball] = (1− 1
b)ab log n

≤ e−a log n

= 1
na

Lemma A.5. We throwm balls inton bins, each chosen uniformly at random. We number the bins
from 1 to n. Then, the probability that the total number of balls in bins1 to n

c being more than

(1 + τ)m/c or less than(1− τ)m/c is at most2e−τ2m/3c.

Proof of Lemma A.5.We throw the balls one after the other into the bins. LetXi = 1 if the ith ball
falls in one of then

c first bins, and0 else. LetX =
∑

i Xi. Clearly, we haveE [X] = m/c, as
P [Xi = 1] = 1/c and allXi’s are independent. By the Chernoff Bound (see for instance [1], page
67), we haveP [|X − E [X]| > τm/c] < 2e−τ2m/3c.

Proof of Lemma 2.Fix an objectp and a leveli. To visualize the proof, place all objects in the
database on a line, such that the objectu with rank rp(u, T) = r is located at distancer from
p (see Fig. A.3). Property 1 tells us that at least one of the samples at leveli will be such that
its rank w.r.t. p is smaller thanλi+1 i.e., ∃s ∈ Si s.t. rp(s) ≤ λi+1. Clearly, by Lemma A.4,
this is true with probability at least1 − 1

na (setm = mi andb = (2D)i = n
λi+1

in the lemma).
Property 2 tells us that not too many objects can have rank less thanλi at level i w.r.t. o. Let
c = n

λi
= (2D)i−1. Now, by Lemma A.5 (setm = mi = a(2D)i log n andτ = 1), the probability

that more than2a(2D)i log n/(2D)i−1 = 4aD log n samples are among theλi = n
c closest samples

to p is less than2e−2aD log n/3 = 1
nΩ(a) . The proof of Property 3 is identical, except that we

replaceλi by λi−1. Then, we havec = (2D)i−2, 2mi+1

c = 16aD3 log n, and the probability that
|Si+1 ∩ Bp(λi−1)| > 16aD3 log n is smaller than 1

nΩ(a) , as before. For Property 4, we expect
8aD log n objects to be sampled at leveli among the4λi closest objects top. Again, by setting
τ = 0.5 in Lemma A.5, the probability that less than half that many objects get sampled is at most

1
nΩ(a) . Finally, the proof of Property 5 is almost identical to the proof of Property 2. By choosinga
large enough, we can make sure that the five properties are true for all objects and all levels w.h.p.
(take the union bound over then objects and theL = log n

log 2D levels). Roughly speaking, there are of
ordern log n inequalities, using union bound we realize that if we takea ≥ 3, the error probability
will be of order1/n. As we see,a is a constant independent fromn andD.

11

Figure A.3: We place all objects on the line such that the object u with rankrp(u, T) = r is located
at distancer from p.

References

[1] M. Mitzenmacher and E. Upfal,Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

12

