Randomized Algorithms for Comparison-Based
Search: Supplementary Material

Dominique Tschopp Suhas Diggavi
AWK Group University of California Los Angeles (UCLA)
Bern, Switzerland Los Angeles, CA 90095
dom ni que. t schopp@nmai | . com suhasdi ggavi @icl a. edu
Payam Delgosha Soheil Mohajer
Sharif University of Technology Princeton University
Tehran, Iran Princeton, NJ 08544
pdel gosha@e. sharif.ir snohaj er @ri ncet on. edu
Abstract

The problem is finding the nearest neighbor (or one ofRheearest neighbors)
for a query object; in a database af objects, when only similarity comparison
questions can be asked is studied in a paper titled “Randahfgorithms for
Comparison-Based Search”. Some of the proofs and tectdaetails are skipped
in the main paper, due to the page limit. In this appendix, wes@nt all the
missing proofs and complementary material.

1 Disorder Constant of the Star Database

Proof of Lemma 1Take three nodes,y,z € 7 U {¢q} whereT denotes the set of nodes in star
shaped graph. We have to show that all four inequalities ifinRien 2 hold with D = ©(«).
However, since all the proofs are similar, we only discusditist inequality in detail. Our goal is to
show that

re(y) < D(rz(z) +r=(y)) (1)

Letd = d(z,y) denote the distance betweerandy in the graph. We first define the distance-ball
around pointe asB,(r) = {i € S|d(u,) < r}.

We consider two distinct caseé:< 1 ord > 1. If d < 1, it means that andy are in the same SN.
In this case we have,(y) < « because the distance between two nodes in a SN is smallethnan
distance between nodes in different SNs. Sinde) + r.(y) > 1, simply by substitutingd = «a,
the inequality (1) holds.

In the second case whede> 1, x andy are in different SNs. We claim th&B,(d)| < 4a%d.
First focus of the objects whose distance frarover the star graph does not excekdeven if z

is in the center of the graph, there are at mastSNs within distancel of x each hasy nodes.
Furthermore, there could be more objects that could be inligtance-balB,, (d) aroundz due to
the additional query point. If the query point were within distanegof «, it could bring in at most
2da? + o? < 3da? additional objects into the distance-ball aroundindeed, through the query
point, a pointz could be connected to at maxia + o objects on each branchd,, to d SNs on
each side of the SN containing the DN through whicls connected, each with objects inside,
anda objects inside the SN). Therefoi8, (d)| < 4a?d.

On the other hand, we claim thg#, (d/4)| > da/4. Note thatd/4 < n/a?, because the distance
between any two nodes is upper boundedhya? (this maximum is obtained when two nodes are

at the end of two different branches). Since therergi@?* SNs in a branch, each haviagnodes,
there are at leasly/4 nodes within distance less thdp4 from z, which shows our claim.

Now, we have,
rz(z) +r2(y) z,2)/2)| + |B.(d(y, 2)/2)|
z,2)/2)| + [B-(ld(z, 2) — d(y, 2)]/2)|
z max{d(x’ Z)/Q’ [d(x’ Z) - d(y, Z)]/2})|
2(d(w,2)/4)] = da/4 2
where we used the fact th@,,(d)| is an increasing function w.r.d in inequalities above.

Combining (2) with the fact that

VIV IV IV

r2(y) < Bo(d) < 40%d = 1604.%704 3

proves our claim in (1) by settin® = 16«.

2 Lower Bounds for NNS: Details and Proofs

We need a few definitions and tools which will be used in theopod the theorem. First, we fix an
arbitrarysuccessfualgorithm.4, which can find the nearest neighbor fory possible query point
in the star database. We define the set of questions thaitalgad asks in response to an input
q € M.

Definition A.1. In response to an inpuj € M, algorithm A asks a set of questiong@ =
{wi,wa,...,wn} in whichw; is a triple (a;, b;,ans) in whicha; andb; denote sides of question
(we askO(q, a;, b;)), and angis a binary number (0" for a; and “1” for b;) denoting the answer
to the question.

In fact since the answer to a question is crucial in an algoritin the following, when we talk about
a question we mean both theestiorand itsanswer Note that since we focus on the deterministic
algorithms, questions themselves do not reveal informatimre precisely, having the answers up to

any step of the algorithm, we can retrieve the next questibhis is true since theh question only
depends on the answers to questibiis: — 1. So we can assign a binary sequence to every query
node which is the sequence of answers received from thesosad contains all the information we
need about the attitude of a deterministic algorithm towainat query.

Definition A.2. For a queryq € M, definell, as the binary sequentér{, «{,..., an(q)) which
contains the answers of questions algorithtrasks from the query with as its input. Note that
m(q) is the number of questions algorithm asks from the query tbNiN ofg.

Definition A.3. For a set of question® = {(a;,b;,ans) : i = 1,...,m}, we sayQ impliesq and
denote it byg E Q, if V1 < i < m, we haveO(q,a,b) = ans. This basically means thatis
consistent with all the questions and answers revealedti@se

Assume@,, the set of questions asked by an algoritdnfior an inputg, is the same as the set of
questions asked whepis fed to the algorithm as inpuite., ¢’ = Q,. Since all the information of
guestions is available in the binary sequence of answerbawell, = II, . In fact we can define
an equivalence relation based on this concept.

Definition A.4 (alike queries) Two query pointg; andg, are calledalike and denoted by; ~ ¢
if 11, = I1g,.

In fact our algorithm behaves similarly in response to twikeabjueries as input, and of course
returns the same output for both. Therefore, two alike @seshould have the same NN although
they may differ in issues which are not important for our aidpon: DNs in other branches and their
orders.

The following lemma plays a key role in the proof of Theorem 1.

INote that although all the following notions depend on bdté query and algorithm, we can skip their
dependency o since we have already fixed the algorithm.

Lemma A.1 (Existence of a question about a DN)et ¢ be the input query to the algorithm, and
assume, (i) is a DN ofg in branch¢; which lies in supernodé. Denote byz th weight of the query
edge connectingto d,(:). If algorithm.A4 does not ask any question abdyt:) (i.e.,w = (a, b, ansg
with eithera = 6,(7) or b = §4(i)), we can obtain another query with ¢ ~ ¢*, by changingr to
any valid weightc of the form1 + O(e).

Proof of Lemma A.1To prove this lemma, we will choose a proper valuefdy the weight of the
guery edge connectg to d, and show show that changingto «* does not change the answer to
any of the questiongl asks whery. This impliesq ~ ¢*. First we present three observations.

(O1) For any node: € 7 on branchg;, there arex paths connecting it to the query point, each
through one branch, and one DN. Since the weight of edgesiegritom the center have
weightn/(a?), the shortest path fromato ¢ would be through the DN on the same branch,
¢;. Therefore the distance between any node and the queryipdi® sum of weights of
the path connecting it to the query through the same branch.

(02) If w andv are in the same branch, say; the relative distancé(q, u) — d(g, v) is independent
of the weight of the edge connectingo é,(¢), the DN ofg on ¢;. Hence the answer of the
questionO(q, u, v) is independent of this weight.

(O3) For any node: on branchg;, denote by, is the distance between the SN containingnd
the DS ong; (the SN containg,(i)). For two objects: andv on the same branch, < [,
impliesd(q,v) < d(q,u). This is due to the fact that the all the object edges;ihave the
same weight. Hence the distance between SNs play#s$herderrole in comparison, and
then the object edges and after that query edges deterngrangwer to the comparison
questions.

We want to show that by changing the valuexgfthe answer of every question @ remains the
same. Take a question= (u,v,ans,,) in Q. There are three possibilities:

1. w andv are on the same brangh: as a result o{O2) above, the answer to remains the
same, No mattef = i or j # 4.

2. v andv are on two different branches and¢;,, but: ¢ {j, k}: as a result ofO1), the
distancesi(q,«) andd(q,v) will remain the same after changing So the answer to
questionw will not change.

3. wis ong; andv is ong; with i # j: This is the case we discuss the rfg8ee Fig. A.1).

Denote the SN containsbe S, and the DS on branch; by DS,,. Note that the DN on branab;
is 04(i) € DSy, which is connected tg with weightz. The DN on branchy; is in DSy, say node
d4(j) which is connected tg with weighty. If S, = DS;_, according tqO3), v is closer to query
thanu regardless of the values ofandy, which means that by changing ans, ,, will not change.
On the other hand, if the distance betwegnand DS;; (denoted by,) is different froml,,, then
again according tgO3) ans,, , Will not change. Therefore we analyze the case wihgre [, = [
(see Figure A.1). We define,, m2, m3 andmy to be the weights of edges connectimgo S,
04(i) to DSy, v t0 S, andd,(j) to DS, respectively.

We have to analyze the following two cases, whetsiee~ DSy, or S, = DS,,, separately. Recall
thatm; = my = i/(4a) andms = my = j/(4a).

Case I:5,, # DS,, impliesi # 0, in this case we have,

0
dlg.u) = +1+ —

» @)
dg,v) =y +1+ =L
(g,v) =y + +

2Clearly, a similar argument holds for the case th# on¢; andv is on ¢;.

Figure A.1: comparing(q, v) andd(q, v)

and hence

i = Jl i = Jl
_ > _ _ — _

[dlg.w) = d(g.v)] 2 =5 — o~y = S5 - 0(e) (5)
sincee < 1/(4«), by changing:* so that it remains of the form+ O(e), |z — y| would be
of O(e) and the sign of the relative distance will not change whiclansethat the answer
will not change.

Case .5, # DS;, implies! = 0. Note that we assume there is no question abg} but there
is a question comparingandv, thereforeu # 6,(¢). If v is the DN in branchy;, thenv is
a Direct Node but: is not, therefore is closer to the query independent of the value of
Otherwise we have,

dqu) =z + 2

4o
o (6)

d(g,v) =y + -

’ 4o

and hence
dqu) — d(g,0)) > Iy ey 2 Il o, @)
’ ’ - A« 4oy

Again, sincee < 1/(4a), the answer will not change by changing

Using this lemma, we have the following corollary.

Corollary A.1 (Existence of a question about a DN)et .4 be a an algorithm which can find the
NNS for a query poing. A should ask at least one question involving&l(;) forall : =1, ..., .

Proof of Corollary A.1.We prove this corollary by contradiction using Lemma A.1sise there

is no question involving, (i) for somei, which is connected tg via a query edge of weight. We

can change the value efand obtain a new query* in the following way: ifé,(i) is the NN, then
increaser to obtaing* and if it is not, decrease so thatj, (i) becomes the NN af*. In both cases,
the set of questions and answersggdfandq are the same but they have different NNs. Therefore
since the algorithm is not able to distinguigtand¢*, it will gives a wrong output for at least of
them.

Note that since we warnt* to be a valid query, changingshould be in a way that it still remains
of the form1 + O(e). In this casdz — y| = O(e) and sincee <« 1/(4«), the sign of the relative
distance in two cases and the answer to the question willheige. O

Now, we first show the logarithmic lower bound on the numbeguéstions has to be asked Hdy
on average.

2.1 Proof of the Logarithmic Bound for NNS Problem

Definition A.5 (co-branch queries)For a branch¢;,1 < ¢ < « define the relation= in the

following way: for two querieg;, g2 € K we say that = ¢, ifand only if they have the same DN
in branches other than; and the ordering of their DNs are the same,, (recall Definition 3 in the

main paperﬁql (J) = 5q2 (j),Vj #iand Vo = Wy,.

It could be easily seen that this is an equivalence relatiwh divided queries into equivalence

classes, each class havingn queries. We call the class of object which satiﬁfyhei-co-branch
class

The i-co-branch queries are exactly the same unless their DNgaimch¢;, which are different.
LetC = {q1,42,---qn/a} b€ @ni-co-branch class andj, (i) be the DN ofg; in branchg;. As a
result of Lemma A.1A should ask at least one question involvifyg(i) wheng; is the input of the
algorithm.

Definition A.6. Definej\/qi be the number of questions involve at least one node on thebrg
asked by thed from the oracle, when is its input.

We claim that4 should ask aboubg(n/a) nodes in branch; on average foi-co-branch queries.
More formally, we state and prove the following lemma. Thimma basically states that for co-
branch queries the algorithm has to asks at [kagh) questions per branch on average.

Lemma A.2 (i-co-branch queries on averagéYssumeC' = {qi,qo, ..., qn o} IS @ani-co-branch
class. We have,
%N%’ s 1ngg (%) ®)
— * = 2 & o

Proof of Lemma A.2Here we want to build a tree that shows the respond of our idtigoto these
co-branch queries. Each node of the tree is a subset of tmegiirethe class of our interest. At first
we put alln/« queries in the top node of the tree. Each node of the treegeptga subset éfco-
branch queries. In each level our algorithm asks a questaireiccording to its answer queries are
divided into some disjoint subsets based on the revealedanshis tree is constructed only when a
guestion involving a node afy; is asked. Take the first time that there is a question invglainode
on ¢;. Before this moment, all question are about nodes outsidgad because co-branch queries
are the same outsidg, the answer to these questions are the same foicallbranch queries. Since
our algorithm is deterministic, the first question about dam ¢; is the same for ali-co-branch
gueries. There are two possibilities at each step of thetaari®on of the tree:

1. Assume the question is about two noglgandp, that both are i;. In this situation throw
away queriegs andg;. The remaining queries are at most divided into two subSetnd
C> based on the answer of the question.

2. Let this question be about a noggon branchy; and a node outside brangh. Throw
away queryy,. The remaining queries again are divided into at most twestsd’; and
C, according to the answer of the question.

Note that so far there has not been any question from the DNaviegs inC; andC5. This process
will be continued recursively. We divide nodes staying aattiee into two partsgreennodes which
represent the set of queries that so far no question has lsked about their DNs; aned nodes
which are those we throw away at each step. For instance pheote of the tree is a green node
and the one or two node representing queries we throw awdpedirst level discussed above are
red.

Take a green nod@ at some level in the graph. It represents a set of qubtigs= {q1,¢2, - - ., g }
and their DNsNg = {04, (¢), 64, (%), - . ., 64, ()}, which are not distinguishable for the algorithm
based on the answers received so far. Now look at the questftar this pointd asks for them as
input. For questions with both sides outsiglg the answer would be the same for querie€’n,
and so these questions do not divide this set. Therefore thetpoint that there is a question with
at least one side in;, they get the same answer.

Taking the first question that at least one side igjnexactly like the root node, there are two
p055|ble cases which will result in children@fin the graph: at most two green nodég andC%

in the first case and four (or three) nodes where at most twhenfitare green({}, andC%) and two
of them are red nodes which represent the two queries thraay at this level.

Since green nodes always have children, leafs of our treesedrnodes which represent queries.
Since the set of queries for children of a node is disjoirdfdeof the tree are exactly/« i-co-
branch queries. Note that each query has at least as itsiddpthtree as questions with at least one
side in branchy;. Since in each node, tree is divided into at most four sulsfree can represent
every leaf of the graph such aswith a quaternaysequence of length, or equivalently, a binary
sequence of lengt?iy, for ¢x. All such sequences are different for non-identical queeridoreover,
we have/\/;k > . This is exactly a quaternary Huffman tree, in which therage is grater than
the entropy of a random variable that takesy values uniformly at random. Hence,

n/a n/a
n
—Zle_nZlk>—log() (9)
o k=1 o k=1
which completes the proof. O

Proof of Proposition 1.Since each question is between at most two branches, we have

QA_|M|2ZZNZ—2|M|ZZNZ (10)

i=1 qgeM
now for a fixedi, we can divide the set of all querie$/, into equivalence classes that in each class
C queries aré-co-branch. Since there ang« queries in each class, there argn| M| classes.
- 1n n
/\/l ——log —
QA—2|M|2;XC:Z 2|M|Zz2aoga
i qec i=1 (11)

1 n o
= Zlog—
“ oM |M| glos = 7los

RIS

2.2 Proof of the Quadratic Bound for NNS Problem

Definition A.7 (co-SN queries)Let.S be a SN in branchk,, define relation2 in the following way:
two queriesy; andg, are called related byi if their DNs in branchg; lie in SNS and their DNs

3without loss of generality we can re-label the queries sbttiefirstk of them belong taCc.
4A sequence with elements fro0,1,2,3.

in all other branches are the same, in addition to that theeoialy of their DNs are the sameg.,
@ = gz ifand only ifdg, (2) € S, 64,(3) € S, dq, (§) = 04,(§),Vj #tand¥,, = T,,.
It could be seen easily that this relation is an equivaleratation over queries that have a DN in

SN, hence they are divided into classes witlyueries in each class. For a given S\ we call
each of them &'-co-SN class and the queries in each class are cafle-SN queries.

Definition A.8. DefineN* to be the number of nodes that are asked in superrsénen with
querygq as the input to algorithm.

Lemma A.3 (all nodes should be asked on averadger a given SNS in branch¢; and aS-co-SN
classC = {q1, g2, - - - g }, We have

I n g _ @
a2 Nz 12)
k=1
Proof of Lemma A.3Lets denote the nodes Bby n1,no, ..., n, Whereny, = d,, (7). As a result

of Corollary A.1 there should be a question abaytin the question set of;. The arrayQy
contains the questions asks whemy, is its input, soQ,[p] denotes the" question asked from the
oracle wheny, is input of the algorithm. Let; be the first place that in array®;, for at least one
1 < k < athere is a question about a nodedni.e.,

p1 =min{p|31 < k < o, Qx[p] is about some node ii} (13)

since questions before indgx are all about nodes outsideand edges irt have the same weight,
the answer to them are the same §orq-, . . ., q., therefore questions in placésto x; — 1 and
their answers are exactly the same §or. .., q,. As a result of this and because our algorithm is
deterministic, the nodes comparedd [11] are same for all the queries but possibly its answer is
different for differentk’s. There are two possible situations:

1. questiornu, is between a nodey,, and another node in another SN.

2. this question is between two nodesSinsayny, andny; .

In the first case, since far # k1,

. o (i
4 e, (14)
4o «

and the fact thag; s are equivalent, this distance is the samefok # ki hence the answer to the

¢! question is the same for them.

d(nlﬂ) qk) =2

In the second case, using the same reasoning, the answerfodktion is the same for queries other
thangy, andgy; . Therefore

Oklpl = Qwlp] p < i,k # ki (ork # ki andk # k1 in the second case) (15)

We want to continue this procedure and exclude more quéeF@make it formal, we start with the
set of all query indexes, s&y, = {1,2,...,a} and exclude one or two queries from them to obtain
Ty, in the first cas@’ = Tp \ {k1} and in the second cagg = T; \ {k1, k1 }. ThereforeT, is the
input to ther™ level andT, ,; is its output; > 0.

Continuing this procedure inductively, in th® level whereT, # () we define
W1 = min{p > p,|3k € T, Qx[p] is about some node,,p € T} (16)

The key point to continue the procedure is that no query gaésfothe play until its direct node
is asked in a question (Corollary A.1). Therefore haviig# 0, u,..1 is well defined and the
procedure comes to an end at levewhenT)., = (.

Repeating our reasoning for= 0,

e Qilp| = Qu[p] fork, k" € T andp < pu,41.

e 1,,1™ question (but not necessarily its answer) is the same faiegi@ T,.

Again two possible situations could happen, based on whasle bappens, we defiflé; to be
eitherT: \ {ky41} or Tp\ {ky41, k.1, } wheregy, ., andgy, , are the queries that go out of the play

in levelr. Just like (15),
Qklpl = Qwlpl P < prg1, k # krgr (Or k # kyqq andk # k)., inthe second case) (17)

which says that the answer to tpEEH is the same for queries ifi. ;.

Now we are at the place to give the lower bound. Note that fareayy, if it remains in the play
up tort" level, i.e.q; € T)_1, N3 is at leastr, therefore,

z -3 Y 1=y

k=17,qr€Tr—1 r>0

18
Le/2] o2 (18)
> — >
Z o —2r > 1
r=0
hence,
1« ~g «
a2 Nz g (19)
k=1
O

Proof of Proposition 2.1f for a queryg, Ss,(;) denotes the supernode in which the direct nodg of

: . Ssoiy . . .
in branche, is, N, * is the number of nodes in the direct supernode iofbranche; that.4 asks
a question about them fgras input. Since every question covers at most two nodes, ve ha

1 Ssq(i)
> ST 2 >
Mi=1
A (20)
Ssq(i)
S
i=1 geM
now we analyzé”, J\75‘5"(” for a fixedl < i < a. DefineSy,k = 1,...,n/a? to be supern-

odes in branclky;. We know that: defines an equivalence relation over queqelsaté (i) € Sk.
Since the set of queriegthatd, (i) € Sj, are distinct for differenks and their union is\t, we can

break the summation into equivalence clasSeer all reIat|onSE, fork =1,...,n/a?. Forone
equivalence clas§, according to Lemma A.3 we know that
" S5 (i) Of2
DN > (21)
qeC

since every equivalence class haslements,

Z N&m) ZZNS&;() > Z o? |/\/l| (22)

geEM C qeC

combining this with (20) we have:

S 1
Z:Z 2|./\/l| 4 |M| (23)

which completes the proof. O

2.3 The Algorithm that Achieves the Lower Bound for the Star G-aph

In this section, we present an algorithm that achieves tiverldoound proved for the star shaped
graph.

We can find the DS in each branch by using a binary search meBwwdh given branck, denote
the supernodes on it by;, So, ..., .5, /42 (S1 is the closest to the center of the star, andS$hg,-

is the last SN). We can divide these supernodes into two &ilSse= {Si,...,5, 2.2} and

So = {S14n/(2a2); - - » Sn/a2 }- Pick anoder; from the SN at the middle of, (i.e., S, /(442)) and

a noden, from the SN at the middle a$», (i.e., S3,,/(4q2)) @and compare them using one question
from the oracle. According t¢O3) in the proof of Lemma A.1, ifr; is closer to the query, we
may conclude that DS of branehis in segmens;, otherwise the DS belongs &. This process
of partitioning and binary search will be recursively contd inO(logn/a?) steps until we find
the DS on branclp. The same procedure can be repeated for each branch. Hersteould ask
O(alogn/a?) questions to find all the DSs.

There arex nodes in each DS. Therefore usingjuestion we can find the DN in each DS, which
yields in a total ofa? questions to find all the DNs. Finally we can find the NN amoregiDNs
usinga comparisons. Hence, we nead + o = O(a?) questions for this phase of the algorithm.
Therefore this algorithm runs i@(a? + alogn/a?) questions from the oracle.

3 Additional details for the Hierarchical Algorithm

3.1 Background algorithms

We first present the missing macros which are used in theifepatgorithm.

A heap is a binary tree structure. Every node of the tree redtim an element of an array. A heap
is a nearly complete binary tree, meaning that it is compldilied on all levels except possibly the
lowest.

The array containing the node valués, has two attributes length/) which is the length of the ar-
ray and heap-siZél) which is the number of tree nodes. Thereféff, . .., heap-siz€H)] contain
heap values and the datafifiheap-sizeH) + 1, .. .,length(H)] are not valid.

The root of the tree i¢[1]. Every node, except the nodes at the lowest level has two children, the
left child left(¢) = 2: and the right child right) = 2i + 1. Therefore the parent node of noflés

parentj) = [j/2].

There are two kinds of binary heaps: min-heaps and max-hedpsa min-heap we have
Hparenti)] < HJ[i] for all nodei, and in a max-heap we hav[parenti)] > HJ[i]. In this
paper we work with min-heaps, therefore from now on we asseweey heap is a min-heap. An
example of a min-heap is depicted in Fig. A.2.

A heap ofn elements is based on a complete binary tree, hence the tafighth a heap is of
O(logn). Now we explain three basic algorithms to build, maintaid ase a min-heap (the proce-
dure for max-heap is the same, hence all following algorghwiill be explained for min-heap).
e Heapi f y: modifies the heap to maintain the heap property and retor®$lbg n) time.
e Bui | dHeap: builds a heap from unordered data.
e Extract M n: extracts the minimum element (which is the root node) andifigs the
other elements to make a new heap and rurig(log »).

The Heapify algorithm (Algorithm 1) takes an arrBlyand an index. It assumes that the sub-trees
rooted at lefti) and righti) are heaps but possibif[¢] is bigger than its children and violates the
heap property. The algorithm lets the value of noéflew down to maintain the heap property.

We use this algorithm recursively to implemdhti | dHeap (Algorithm 2).

To extract the minimum of the heap (or the root node), we @Epthe root with the last elementin
the array and calHeapi f y procedure on root. This is explained in Algorithm 3.

input : An arrayH and an index, assuming sub-tred$|left(¢)] and H [right(i)] are
min-heaps.
output: Array H with sub-tree at nodébeing a min-heap

1 — left(4);
r «— right(¢);
if | < heap-sizeH) andH[l] < H|i] then
| smallest «— I
else
| smallest «— 1;
end
if r < heap-siz€H) and H[r] < H[smallest] then
| smallest «— r;
end
if smallest # i then
exchangd{[i] «— H[smallest];
Heapify(H, smallest);
end

Algorithm 1 : Heapify

input : Array H with length lengtfiil)
output: min-heapH
heap-sizéH) «— length H);
for i — |length H)/2| downto 1 do
| Heapify(H,1)
end

Algorithm 2 : BuildHeap

input : A heapH
output: H with its root extracted
if heap-sizeH) < 1 then

| error heap underflow;
end
min — HJ[1];
A[l] « Alheap-siz€H)];
heap-sizéA) «— heap-siz€A) — 1;
Heapify(4, 1);

return man

Algorithm 3 : ExtractMin

10

1 2 3 4 5 6 7 8 9 10

—_—
|1]5]6]9[14]7]910]17]15]
—_

Figure A.2: An example of a min-heap with 10 nodes and its @ng@ntation in an array

3.2 Success of the Algorithm

We first prove two technical lemmas that we will need to proeeima 2.

Lemma A.4. If we throwm = ablogn balls intob bins, each chosen uniformly at random, then the
first bin will contain at least one ball with probability motean1 — nl—a

Proof of Lemma A.4The probability that a bin contains no ball is

P [a bin contains no bgll = (1 — %)ab logn

e~ ¢ logn

A

1

O

Lemma A.5. We throwm balls inton bins, each chosen uniformly at random. We number the bins
from 1 to n. Then, the probability that the total number of balls in bingo % being more than

(14 7)m/cor less than1 — 7)m/c is at mose =" m/3¢.

Proof of Lemma A.5We throw the balls one after the other into the bins. Ket= 1 if the i** ball
falls in one of theZ first bins, and) else. LetX = >, X;. Clearly, we haveE€ [X] = m/c, as
P[X; =1] = 1/cand allX;’s are independent. By the Chernoff Bound (see for instaheohge

67), we haveP [|X — E [X]| > m/c] < 2¢=7 m/3¢, O

Proof of Lemma 2Fix an objectp and a level. To visualize the proof, place all objects in the
database on a line, such that the objeatith rank r,(u,7) = r is located at distance from

p (see Fig. A.3). Property 1 tells us that at least one of thepsesrat leveli will be such that
its rank w.r.t. p is smaller tham\;;; i.e.,3s € S; s.t. ,(s) < Aiy1. Clearly, by Lemma A.4,
this is true with probability at leadt — n—la (setm = m; andb = (2D)* = ALH in the lemma).
Property 2 tells us that not too many objects can have rarktlem\; at leveli w.rt. o. Let

¢ = = (2D)""'. Now, by Lemma A.5 (seir = m; = a(2D)" logn andr = 1), the probability
that more thaa(2D)" logn/(2D)"~! = 4aDlog n samples are among the = 2 closest samples
to p is less tharge—2ePloen/3 — - The proof of Property 3 is identical, except that we
replace); by \;_1. Then, we have = (2D)"~2, 27"7“ = 16a.D3logn, and the probability that
|Si+1 N Bp(Ni—1)| > 16aD3logn is smaller thanﬁ, as before. For Property 4, we expect
8aD logn objects to be sampled at levehmong thel)\; closest objects t@. Again, by setting

7 = 0.5 in Lemma A.5, the probability that less than half that manjeots get sampled is at most
ﬁ. Finally, the proof of Property 5 is almost identical to theqf of Property 2. By choosing
large enough, we can make sure that the five properties ardéarall objects and all levels w.h.p.
(take the union bound over theobjects and thé, = 13?2% levels). Roughly speaking, there are of
ordern logn inequalities, using union bound we realize that if we take 3, the error probability
will be of orderl/n. As we seeq is a constant independent fromand D.

O

11

1234 ... ranks with respecttoo — n

Level 0

Samples that could be the closest one to one of the samples with rank <\ at level i

Level i1

LeVel i o™ ot o N Nt e Moo S N

i
Samples that could be associated to a samples with rank <A_atlevel i-1

Samples that could be the closest one to the nn

Lowest .. |
level L] 1=A,
Nearest neighbor (nn)

{3 samples

Figure A.3: We place all objects on the line such that theahjavith rankr, (v, 7) = r is located
at distance: from p.

References

[1] M. Mitzenmacher and E. UpfaProbability and Computing: Randomized Algorithms and Riabstic
Analysis Cambridge University Press, 2005.

12

