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Abstract

Divergence estimators based on direct approximation of density-ratios without go-
ing through separate approximation of numerator and denominator densities have
been successfully applied to machine learning tasks that involve distribution com-
parison such as outlier detection, transfer learning, and two-sample homogeneity
test. However, since density-ratio functions often possess high fluctuation, diver-
gence estimation is still a challenging task in practice. In this paper, we propose to
use relative divergences for distribution comparison, which involves approxima-
tion of relative density-ratios. Since relative density-ratios are always smoother
than corresponding ordinary density-ratios, our proposed method is favorable in
terms of the non-parametric convergence speed. Furthermore, we show that the
proposed divergence estimator has asymptotic variance independent of the model
complexity under a parametric setup, implying that the proposed estimator hardly
overfits even with complex models. Through experiments, we demonstrate the
usefulness of the proposed approach.

1 Introduction

Comparing probability distributions is a fundamental task in statistical data processing. It can be
used for, e.g., outlier detection [1, 2], two-sample homogeneity test [3, 4], and transfer learning
[5, 6].

A standard approach to comparing probability densities p(x) and p′(x) would be to estimate a
divergence from p(x) to p′(x), such as the Kullback-Leibler (KL) divergence [7]:

KL[p(x), p′(x)] :=
∫

log
(

p(x)
p′(x)

)
p(x)dx.

A naive way to estimate the KL divergence is to separately approximate the densities p(x) and p′(x)
from data and plug the estimated densities in the above definition. However, since density estimation
is known to be a hard task [8], this approach does not work well unless a good parametric model is
available. Recently, a divergence estimation approach which directly approximates the density ratio,

r(x) :=
p(x)
p′(x)

,

without going through separate approximation of densities p(x) and p′(x) has been proposed [9,
10]. Such density-ratio approximation methods were proved to achieve the optimal non-parametric
convergence rate in the mini-max sense.

However, the KL divergence estimation via density-ratio approximation is computationally rather
expensive due to the non-linearity introduced by the ‘log’ term. To cope with this problem, another
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divergence called the Pearson (PE) divergence [11] is useful. The PE divergence from p(x) to p′(x)
is defined as

PE[p(x), p′(x)] :=
1
2

∫ (
p(x)
p′(x)

− 1
)2

p′(x)dx.

The PE divergence is a squared-loss variant of the KL divergence, and they both belong to the class
of the Ali-Silvey-Csiszár divergences [which is also known as the f -divergences, see 12, 13]. Thus,
the PE and KL divergences share similar properties, e.g., they are non-negative and vanish if and
only if p(x) = p′(x).

Similarly to the KL divergence estimation, the PE divergence can also be accurately estimated based
on density-ratio approximation [14]: the density-ratio approximator called unconstrained least-
squares importance fitting (uLSIF) gives the PE divergence estimator analytically, which can be
computed just by solving a system of linear equations. The practical usefulness of the uLSIF-based
PE divergence estimator was demonstrated in various applications such as outlier detection [2], two-
sample homogeneity test [4], and dimensionality reduction [15].

In this paper, we first establish the non-parametric convergence rate of the uLSIF-based PE di-
vergence estimator, which elucidates its superior theoretical properties. However, it also reveals
that its convergence rate is actually governed by the ‘sup’-norm of the true density-ratio function:
maxx r(x). This implies that, in the region where the denominator density p′(x) takes small values,
the density ratio r(x) = p(x)/p′(x) tends to take large values and therefore the overall convergence
speed becomes slow. More critically, density ratios can even diverge to infinity under a rather simple
setting, e.g., when the ratio of two Gaussian functions is considered [16]. This makes the paradigm
of divergence estimation based on density-ratio approximation unreliable.

In order to overcome this fundamental problem, we propose an alternative approach to distribution
comparison called α-relative divergence estimation. In the proposed approach, we estimate the
quantity called the α-relative divergence, which is the divergence from p(x) to the α-mixture density
αp(x) + (1− α)p′(x) for 0 ≤ α < 1. For example, the α-relative PE divergence is given by

PEα[p(x), p′(x)] := PE[p(x), αp(x) + (1− α)p′(x)]

=
1
2

∫ (
p(x)

αp(x) + (1− α)p′(x)
− 1

)2

(αp(x) + (1− α)p′(x)) dx.

We estimate the α-relative divergence by direct approximation of the α-relative density-ratio:

rα(x) :=
p(x)

αp(x) + (1− α)p′(x)
.

A notable advantage of this approach is that the α-relative density-ratio is always bounded above by
1/α when α > 0, even when the ordinary density-ratio is unbounded. Based on this feature, we the-
oretically show that the α-relative PE divergence estimator based on α-relative density-ratio approx-
imation is more favorable than the ordinary density-ratio approach in terms of the non-parametric
convergence speed.

We further prove that, under a correctly-specified parametric setup, the asymptotic variance of our
α-relative PE divergence estimator does not depend on the model complexity. This means that the
proposed α-relative PE divergence estimator hardly overfits even with complex models.

Through extensive experiments on outlier detection, two-sample homogeneity test, and transfer
learning, we demonstrate that our proposed α-relative PE divergence estimator compares favorably
with alternative approaches.

The rest of this paper is structured as follows. In Section 2, our proposed relative PE divergence
estimator is described. In Section 3, we provide non-parametric analysis of the convergence rate
and parametric analysis of the variance of the proposed PE divergence estimator. In Section 4,
we experimentally evaluate the performance of the proposed method on various tasks. Finally, in
Section 5, we conclude the paper by summarizing our contributions and describing future prospects.
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2 Estimation of Relative Pearson Divergence via Least-Squares Relative
Density-Ratio Approximation

In this section, we propose an estimator of the relative Pearson (PE) divergence based on least-
squares relative density-ratio approximation.

2.1 Problem Formulation

Suppose we are given independent and identically distributed (i.i.d.) samples {xi}n
i=1 from

a d-dimensional distribution P with density p(x) and i.i.d. samples {x′j}n′
j=1 from another d-

dimensional distribution P ′ with density p′(x):

{xi}n
i=1

i.i.d.∼ P,

{x′j}n′
j=1

i.i.d.∼ P ′.

The goal of this paper is to compare the two underlying distributions P and P ′ only using the two
sets of samples {xi}n

i=1 and {x′j}n′
j=1.

For 0 ≤ α < 1, let qα(x) be the α-mixture density of p(x) and p′(x):

qα(x) := αp(x) + (1− α)p′(x).

Let rα(x) be the α-relative density-ratio of p(x) and p′(x):

rα(x) :=
p(x)

αp(x) + (1− α)p′(x)
=

p(x)
qα(x)

. (1)

We define the α-relative PE divergence from p(x) to p′(x) as

PEα :=
1
2
Eqα(x)

[
(rα(x)− 1)2

]
, (2)

where Ep(x)[f(x)] denotes the expectation of f(x) under p(x):

Ep(x)[f(x)] =
∫

f(x)p(x)dx.

When α = 0, PEα is reduced to the ordinary PE divergence. Thus, the α-relative PE divergence
can be regarded as a ‘smoothed’ extension of the ordinary PE divergence.

Below, we give a method for estimating the α-relative PE divergence based on the approximation of
the α-relative density-ratio.

2.2 Direct Approximation of α-Relative Density-Ratios

Here, we describe a method for approximating the α-relative density-ratio (1).

Let us model the α-relative density-ratio rα(x) by the following kernel model:

g(x;θ) :=
n∑

`=1

θ`K(x,x`),

where θ := (θ1, . . . , θn)> are parameters to be learned from data samples, > denotes the transpose
of a matrix or a vector, and K(x,x′) is a kernel basis function. In the experiments, we use the
Gaussian kernel:

K(x,x′) = exp
(
−‖x− x′‖2

2σ2

)
, (3)

where σ (> 0) is the kernel width.
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The parameters θ in the model g(x;θ) are determined so that the following expected squared-error
J is minimized:

J(θ) :=
1
2
Eqα(x)

[
(g(x;θ)− rα(x))2

]

=
α

2
Ep(x)

[
g(x; θ)2

]
+

(1− α)
2

Ep′(x)

[
g(x; θ)2

]− Ep(x) [g(x;θ)] + Const.,

where we used rα(x)qα(x) = p(x) in the third term. Approximating the expectations by empirical
averages, we obtain the following optimization problem:

θ̂ := argmin
θ∈Rn

[
1
2
θ>Ĥθ − ĥ

>
θ +

λ

2
θ>θ

]
, (4)

where a penalty term λθ>θ/2 is included for regularization purposes, and λ (≥ 0) denotes the
regularization parameter. Ĥ is the n× n matrix with the (`, `′)-th element

Ĥ`,`′ :=
α

n

n∑

i=1

K(xi, x`)K(xi, x`′) +
(1− α)

n′

n′∑

j=1

K(x′j , x`)K(x′j , x`′). (5)

ĥ is the n-dimensional vector with the `-th element

ĥ` :=
1
n

n∑

i=1

K(xi, x`).

It is easy to confirm that the solution of Eq.(4) can be analytically obtained as

θ̂ = (Ĥ + λIn)−1ĥ,

where In denotes the n-dimensional identity matrix. Finally, a density-ratio estimator is given as

r̂α(x) := g(x; θ̂) =
n∑

`=1

θ̂`K(x,x`). (6)

When α = 0, the above method is reduced to a direct density-ratio estimator called unconstrained
least-squares importance fitting [uLSIF; 14]. Thus, the above method can be regarded as an exten-
sion of uLSIF to the α-relative density-ratio. For this reason, we refer to our method as relative
uLSIF (RuLSIF).

The performance of RuLSIF depends on the choice of the kernel function (the kernel width σ in
the case of the Gaussian kernel) and the regularization parameter λ. Model selection of RuLSIF is
possible based on cross-validation with respect to the squared-error criterion J , in the same way as
the original uLSIF [14].

2.3 α-Relative PE Divergence Estimation Based on RuLSIF

Using an estimator of the α-relative density-ratio rα(x), we can construct estimators of the α-
relative PE divergence (2). After a few lines of calculation, we can show that the α-relative PE
divergence (2) is equivalently expressed as

PEα = −α

2
Ep(x)

[
rα(x)2

]− (1− α)
2

Ep′(x)

[
rα(x)2

]
+ Ep(x) [rα(x)]− 1

2

=
1
2
Ep(x) [rα(x)]− 1

2
.

Note that the first line can also be obtained via Legendre-Fenchel convex duality of the divergence
functional [17].

Based on these expressions, we consider the following two estimators:

P̂Eα := − α

2n

n∑

i=1

r̂(xi)2 − (1− α)
2n′

n′∑

j=1

r̂(x′j)
2 +

1
n

n∑

i=1

r̂(xi)− 1
2
, (7)

P̃Eα :=
1
2n

n∑

i=1

r̂(xi)− 1
2
. (8)
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We note that the α-relative PE divergence (2) can have further different expressions than the above
ones, and corresponding estimators can also be constructed similarly. However, the above two
expressions will be particularly useful: the first estimator P̂Eα has superior theoretical properties
(see Section 3) and the second one P̃Eα is simple to compute.

2.4 Illustrative Examples

Here, we numerically illustrate the behavior of RuLSIF (6) using toy datasets. Let the numerator
distribution be P = N(0, 1), where N(µ, σ2) denotes the normal distribution with mean µ and
variance σ2. The denominator distribution P ′ is set as follows:

(a) P ′ = N(0, 1): P and P ′ are the same.

(b) P ′ = N(0, 0.6): P ′ has smaller standard deviation than P .

(c) P ′ = N(0, 2): P ′ has larger standard deviation than P .

(d) P ′ = N(0.5, 1): P and P ′ have different means.

(e) P ′ = 0.95N(0, 1) + 0.05N(3, 1): P ′ contains an additional component to P .

We draw n = n′ = 300 samples from the above densities, and compute RuLSIF for α = 0, 0.5, and
0.95.

Figure 1 shows the true densities, true density-ratios, and their estimates by RuLSIF. As can be seen
from the graphs, the profiles of the true α-relative density-ratios get smoother as α increases. In
particular, in the datasets (b) and (d), the true density-ratios for α = 0 diverge to infinity, while
those for α = 0.5 and 0.95 are bounded (by 1/α). Overall, as α gets large, the estimation quality of
RuLSIF tends to be improved since the complexity of true density-ratio functions is reduced.

Note that, in the dataset (a) where p(x) = p′(x), the true density-ratio rα(x) does not depend on
α since rα(x) = 1 for any α. However, the estimated density-ratios still depend on α through the
matrix Ĥ (see Eq.(5)).

3 Theoretical Analysis

In this section, we analyze theoretical properties of the proposed PE divergence estimators. More
specifically, we provide non-parametric analysis of the convergence rate in Section 3.1, and para-
metric analysis of the estimation variance in Section 3.2. Since our theoretical analysis is highly
technical, we focus on explaining practical insights we can gain from the theoretical results here; we
describe all the mathematical details of the non-parametric convergence-rate analysis in Appendix A
and the parametric variance analysis in Appendix B.

For theoretical analysis, let us consider a rather abstract form of our relative density-ratio estimator
described as

argmin
g∈G


 α

2n

n∑

i=1

g(xi)2 +
(1− α)

2n′

n′∑

j=1

g(x′j)
2 − 1

n

n∑

i=1

g(xi) +
λ

2
R(g)2


 , (9)

where G is some function space (i.e., a statistical model) and R(·) is some regularization functional.

3.1 Non-Parametric Convergence Analysis

First, we elucidate the non-parametric convergence rate of the proposed PE estimators. Here, we
practically regard the function space G as an infinite-dimensional reproducing kernel Hilbert space
[RKHS; 18] such as the Gaussian kernel space, and R(·) as the associated RKHS norm.

3.1.1 Theoretical Results

Let us represent the complexity of the function space G by γ (0 < γ < 2); the larger γ is, the
more complex the function class G is (see Appendix A for its precise definition). We analyze the
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Figure 1: Illustrative examples of density-ratio approximation by RuLSIF. From left to right: true
densities (P = N(0, 1)), true density-ratios, and their estimates for α = 0, 0.5, and 0.95.
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convergence rate of our PE divergence estimators as n̄ := min(n, n′) tends to infinity for λ = λn̄

under

λn̄ → o(1) and λ−1
n̄ = o(n̄2/(2+γ)).

The first condition means that λn̄ tends to zero, but the second condition means that its shrinking
speed should not be too fast.

Under several technical assumptions detailed in Appendix A, we have the following asymptotic
convergence results for the two PE divergence estimators P̂Eα (7) and P̃Eα (8):

P̂Eα − PEα = Op(n̄−1/2c‖rα‖∞ + λn̄ max(1, R(rα)2)), (10)

and

P̃Eα − PEα = Op

(
λ

1/2
n̄ ‖rα‖1/2

∞ max{1, R(rα)}

+ λn̄ max{1, ‖rα‖(1−γ/2)/2
∞ , R(rα)‖rα‖(1−γ/2)/2

∞ , R(rα)}
)
, (11)

where Op denotes the asymptotic order in probability,

c := (1 + α)
√
Vp(x)[rα(x)] + (1− α)

√
Vp′(x)[rα(x)], (12)

and Vp(x)[f(x)] denotes the variance of f(x) under p(x):

Vp(x)[f(x)] =
∫ (

f(x)−
∫

f(x)p(x)dx

)2

p(x)dx.

3.1.2 Interpretation

In both Eq.(10) and Eq.(11), the coefficients of the leading terms (i.e., the first terms) of the asymp-
totic convergence rates become smaller as ‖rα‖∞ gets smaller. Since

‖rα‖∞ =
∥∥∥
(
α + (1− α)/r(x)

)−1
∥∥∥
∞

< 1
α for α > 0,

larger α would be more preferable in terms of the asymptotic approximation error. Note that when
α = 0, ‖rα‖∞ can tend to infinity even under a simple setting that the ratio of two Gaussian
functions is considered [16, see also the numerical examples in Section 2.4 of this paper]. Thus,
our proposed approach of estimating the α-relative PE divergence (with α > 0) would be more
advantageous than the naive approach of estimating the plain PE divergence (which corresponds to
α = 0) in terms of the non-parametric convergence rate.

The above results also show that P̂Eα and P̃Eα have different asymptotic convergence rates. The
leading term in Eq.(10) is of order n̄−1/2, while the leading term in Eq.(11) is of order λ

1/2
n̄ , which

is slightly slower (depending on the complexity γ) than n̄−1/2. Thus, P̂Eα would be more accurate
than P̃Eα in large sample cases. Furthermore, when p(x) = p′(x), Vp(x)[rα(x)] = 0 holds and
thus c = 0 holds (see Eq.(12)). Then the leading term in Eq.(10) vanishes and therefore P̂Eα has
the even faster convergence rate of order λn̄, which is slightly slower (depending on the complexity
γ) than n̄−1. Similarly, if α is close to 1, rα(x) ≈ 1 and thus c ≈ 0 holds.

When n̄ is not large enough to be able to neglect the terms of o(n̄−1/2), the terms of O(λn̄) matter.
If ‖rα‖∞ and R(rα) are large (this can happen, e.g., when α is close to 0), the coefficient of the
O(λn̄)-term in Eq.(10) can be larger than that in Eq.(11). Then P̃Eα would be more favorable than
P̂Eα in terms of the approximation accuracy.

3.1.3 Numerical Illustration

Let us numerically investigate the above interpretation using the same artificial dataset as Sec-
tion 2.4.

Figure 2 shows the mean and standard deviation of P̂Eα and P̃Eα over 100 runs for α = 0, 0.5, and
0.95, as functions of n (= n′ in this experiment). The true PEα (which was numerically computed)
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Figure 2: Illustrative examples of divergence estimation by RuLSIF. From left to right: true density-
ratios for α = 0, 0.5, and 0.95 (P = N(0, 1)), and estimation error of PE divergence for α = 0,
0.5, and 0.95.
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is also plotted in the graphs. The graphs show that both the estimators P̂Eα and P̃Eα approach the
true PEα as the number of samples increases, and the approximation error tends to be smaller if α
is larger.

When α is large, P̂Eα tends to perform slightly better than P̃Eα. On the other hand, when α is
small and the number of samples is small, P̃Eα slightly compares favorably with P̂Eα. Overall,
these numerical results well agree with our theory.

3.2 Parametric Variance Analysis

Next, we analyze the asymptotic variance of the PE divergence estimator P̂Eα (7) under a parametric
setup.

3.2.1 Theoretical Results

As the function space G in Eq.(9), we consider the following parametric model:

G = {g(x; θ) | θ ∈ Θ ⊂ Rb},
where b is a finite number. Here we assume that the above parametric model is correctly specified,
i.e., it includes the true relative density-ratio function rα(x): there exists θ∗ such that

g(x;θ∗) = rα(x).

Here, we use RuLSIF without regularization, i.e., λ = 0 in Eq.(9).

Let us denote the variance of P̂Eα (7) by V[P̂Eα], where randomness comes from the draw of
samples {xi}n

i=1 and {x′j}n′
j=1. Then, under a standard regularity condition for the asymptotic

normality [see Section 3 of 19], V[P̂Eα] can be expressed and upper-bounded as

V[P̂Eα] =
1
n
Vp(x)

[
rα − αrα(x)2

2

]
+

1
n′
Vp′(x)

[
(1− α)rα(x)2

2

]
+ o

(
1
n

,
1
n′

)
(13)

≤ ‖rα‖2∞
n

+
α2‖rα‖4∞

4n
+

(1− α)2‖rα‖4∞
4n′

+ o

(
1
n

,
1
n′

)
. (14)

Let us denote the variance of P̃Eα by V[P̃Eα]. Then, under a standard regularity condition for the
asymptotic normality [see Section 3 of 19], the variance of P̃Eα is asymptotically expressed as

V[P̃Eα] =
1
n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]>U−1

α ∇g

2

]

+
1
n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]>U−1

α ∇g

2

]
+ o

(
1
n

,
1
n′

)
, (15)

where ∇g is the gradient vector of g with respect to θ at θ = θ∗, i.e.,

(∇g(x;θ∗))j =
∂g(x; θ∗)

∂θj
.

The matrix Uα is defined by

Uα = αEp(x)[∇g∇g>] + (1− α)Ep′(x)[∇g∇g>].

3.2.2 Interpretation

Eq.(13) shows that, up to O
(

1
n , 1

n′
)
, the variance of P̂Eα depends only on the true relative density-

ratio rα(x), not on the estimator of rα(x). This means that the model complexity does not affect the
asymptotic variance. Therefore, overfitting would hardly occur in the estimation of the relative PE
divergence even when complex models are used. We note that the above superior property is appli-
cable only to relative PE divergence estimation, not to relative density-ratio estimation. This implies
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that overfitting occurs in relative density-ratio estimation, but the approximation error cancels out in
relative PE divergence estimation.

On the other hand, Eq.(15) shows that the variance of P̃Eα is affected by the model G, since the
factor Ep(x)[∇g]>U−1

α ∇g depends on the model complexity in general. When the equality

Ep(x)[∇g]>U−1
α ∇g(x; θ∗) = rα(x)

holds, the variances of P̃Eα and P̂Eα are asymptotically the same. However, in general, the use of
P̂Eα would be more recommended.

Eq.(14) shows that the varianceV[P̂Eα] can be upper-bounded by the quantity depending on ‖rα‖∞,
which is monotonically lowered if ‖rα‖∞ is reduced. Since ‖rα‖∞ monotonically decreases as α
increases, our proposed approach of estimating the α-relative PE divergence (with α > 0) would
be more advantageous than the naive approach of estimating the plain PE divergence (which corre-
sponds to α = 0) in terms of the parametric asymptotic variance.

3.2.3 Numerical Illustration

Here, we show some numerical results for illustrating the above theoretical results using the one-
dimensional datasets (b) and (c) in Section 2.4. Let us define the parametric model as

Gk =

{
g(x; θ) =

r(x;θ)
αr(x; θ) + 1− α

∣∣∣∣ r(x; θ) = exp

(
k∑

`=0

θ`x
`

)
, θ ∈ Rk+1

}
. (16)

The dimension of the model Gk is equal to k+1. The α-relative density-ratio rα(x) can be expressed
using the ordinary density-ratio r(x) = p(x)/p′(x) as

rα(x) =
r(x)

αr(x) + 1− α
.

Thus, when k > 1, the above model Gk includes the true relative density-ratio rα(x) of the datasets
(b) and (c). We test RuLSIF with α = 0.2 and 0.8 for the model (16) with degree k = 1, 2, . . . , 8.
The parameter θ is learned so that Eq.(9) is minimized by a quasi-Newton method.

The standard deviations of P̂Eα and P̃Eα for the datasets (b) and (c) are depicted in Figure 3 and
Figure 4, respectively. The graphs show that the degree of models does not significantly affect
the standard deviation of P̂Eα (i.e., no overfitting), as long as the model includes the true relative
density-ratio (i.e., k > 1). On the other hand, bigger models tend to produce larger standard devia-
tions in P̃Eα. Thus, the standard deviation of P̃Eα more strongly depends on the model complexity.

4 Experiments

In this section, we experimentally evaluate the performance of the proposed method in two-sample
homogeneity test, outlier detection, and transfer learning tasks.

4.1 Two-Sample Homogeneity Test

First, we apply the proposed divergence estimator to two-sample homogeneity test.

4.1.1 Divergence-Based Two-Sample Homogeneity Test

Given two sets of samples X = {xi}n
i=1

i.i.d.∼ P and X ′ = {x′j}n′
j=1

i.i.d.∼ P ′, the goal of the two-
sample homogeneity test is to test the null hypothesis that the probability distributions P and P ′ are
the same against its complementary alternative (i.e., the distributions are different).

By using an estimator D̂iv of some divergence between the two distributions P and P ′, homogeneity
of two distributions can be tested based on the permutation test procedure [20] as follows:

• Obtain a divergence estimate D̂iv using the original datasets X and X ′.
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Figure 3: Standard deviations of PE estimators for dataset (b) (i.e., P = N(0, 1) and P ′ =
N(0, 0.6)) as functions of the sample size n = n′.
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Figure 4: Standard deviations of PE estimators for dataset (c) (i.e., P = N(0, 1) and P ′ = N(0, 2))
as functions of the sample size n = n′.
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• Randomly permute the |X ∪ X ′| samples, and assign the first |X | samples to a set X̃ and
the remaining |X ′| samples to another set X̃ ′.

• Obtain a divergence estimate D̃iv using the randomly shuffled datasets X̃ and X̃ ′ (note that,
since X̃ and X̃ ′ can be regarded as being drawn from the same distribution, D̃iv tends to
be close to zero).

• Repeat this random shuffling procedure many times, and construct the empirical distribu-
tion of D̃iv under the null hypothesis that the two distributions are the same.

• Approximate the p-value by evaluating the relative ranking of the original D̂iv in the dis-
tribution of D̃iv.

When an asymmetric divergence such as the KL divergence [7] or the PE divergence [11] is adopted
for two-sample homogeneity test, the test results depend on the choice of directions: a divergence
from P to P ′ or from P ′ to P . [4] proposed to choose the direction that gives a smaller p-value—it
was experimentally shown that, when the uLSIF-based PE divergence estimator is used for the two-
sample homogeneity test (which is called the least-squares two-sample homogeneity test; LSTT),
the heuristic of choosing the direction with a smaller p-value contributes to reducing the type-II
error (the probability of accepting incorrect null-hypotheses, i.e., two distributions are judged to be
the same when they are actually different), while the increase of the type-I error (the probability
of rejecting correct null-hypotheses, i.e., two distributions are judged to be different when they are
actually the same) is kept moderate.

Below, we refer to LSTT with p(x)/p′(x) as the plain LSTT, LSTT with p′(x)/p(x) as the recip-
rocal LSTT, and LSTT with heuristically choosing the one with a smaller p-value as the adaptive
LSTT.

4.1.2 Artificial Datasets

We illustrate how the proposed method behaves in two-sample homogeneity test scenarios using the
artificial datasets (a)–(d) described in Section 2.4. We test the plain LSTT, reciprocal LSTT, and
adaptive LSTT for α = 0, 0.5, and 0.95, with significance level 5%.

The experimental results are shown in Figure 5. For the dataset (a) where P = P ′ (i.e., the null
hypothesis is correct), the plain LSTT and reciprocal LSTT correctly accept the null hypothesis
with probability approximately 95%. This means that the type-I error is properly controlled in
these methods. On the other hand, the adaptive LSTT tends to give slightly lower acceptance rates
than 95% for this toy dataset, but the adaptive LSTT with α = 0.5 still works reasonably well.
This implies that the heuristic of choosing the method with a smaller p-value does not have critical
influence on the type-I error.

In the datasets (b), (c), and (d), P is different from P ′ (i.e., the null hypothesis is not correct), and
thus we want to reduce the acceptance rate of the incorrect null-hypothesis as much as possible. In
the plain setup for the dataset (b) and the reciprocal setup for the dataset (c), the true density-ratio
functions with α = 0 diverge to infinity, and thus larger α makes the density-ratio approximation
more reliable. However, α = 0.95 does not work well because it produces an overly-smoothed
density-ratio function and thus it is hard to be distinguished from the completely constant density-
ratio function (which corresponds to P = P ′). On the other hand, in the reciprocal setup for
the dataset (b) and the plain setup for the dataset (c), small α performs poorly since density-ratio
functions with large α can be more accurately approximated than those with small α (see Figure 1).
In the adaptive setup, large α tends to perform slightly better than small α for the datasets (b) and
(c).

In the dataset (d), the true density-ratio function with α = 0 diverges to infinity for both the plain and
reciprocal setups. In this case, middle α performs the best, which well balances the trade-off between
high distinguishability from the completely constant density-ratio function (which corresponds to
P = P ′) and easy approximability. The same tendency that middle α works well can also be mildly
observed in the adaptive LSTT for the dataset (d).

Overall, if the plain LSTT (or the reciprocal LSTT) is used, small α (or large α) sometimes works
excellently. However, it performs poorly in other cases and thus the performance is unstable de-
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(a) P ′ = N(0, 1): P and P ′ are the same.
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(b) P ′ = N(0, 0.6): P ′ has smaller standard deviation than P .
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(c) P ′ = N(0, 2): P ′ has larger standard deviation than P .
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(d) P ′ = N(0.5, 1): P and P ′ have different means.

Figure 5: Illustrative examples of two-sample homogeneity test based on relative divergence esti-
mation. From left to right: true densities (P = N(0, 1)), the acceptance rate of the null hypothesis
under the significance level 5% by plain LSTT, reciprocal LSTT, and adaptive LSTT.
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pending on the true distributions. The plain LSTT (or the reciprocal LSTT) with middle α tends
to perform reasonably well for all datasets. On the other hand, the adaptive LSTT was shown to
nicely overcome the above instability problem when α is small or large. However, when α is set to
be a middle value, the plain LSTT and the reciprocal LSTT both give similar results and thus the
adaptive LSTT provides only a small amount of improvement.

Our empirical finding is that, if we have prior knowledge that one distribution has a wider support
than the other distribution, assigning the distribution with a wider support to P ′ and setting α to be a
large value seem to work well. If there is no knowledge on the true distributions or two distributions
have less overlapped supports, using middle α in the adaptive setup seems to be a reasonable choice.

We will systematically investigate this issue using more complex datasets below.

4.1.3 Benchmark Datasets

Here, we apply the proposed two-sample homogeneity test to the binary classification datasets taken
from the IDA repository [21].

We test the adaptive LSTT with the RuLSIF-based PE divergence estimator for α = 0, 0.5, and
0.95; we also test the maximum mean discrepancy [MMD; 22], which is a kernel-based two-sample
homogeneity test method. The performance of MMD depends on the choice of the Gaussian kernel
width. Here, we adopt a version proposed by [23], which automatically optimizes the Gaussian ker-
nel width. The p-values of MMD are computed in the same way as LSTT based on the permutation
test procedure.

First, we investigate the rate of accepting the null hypothesis when the null hypothesis is correct
(i.e., the two distributions are the same). We split all the positive training samples into two sets
and perform two-sample homogeneity test for the two sets of samples. The experimental results
are summarized in Table 1, showing that the adaptive LSTT with α = 0.5 compares favorably with
those with α = 0 and 1 and MMD in terms of the type-I error.

Next, we consider the situation where the null hypothesis is not correct (i.e., the two distributions
are different). The numerator samples are generated in the same way as above, but a half of de-
nominator samples are replaced with negative training samples. Thus, while the numerator sample
set contains only positive training samples, the denominator sample set includes both positive and
negative training samples. The experimental results are summarized in Table 2, showing that the
adaptive LSTT with α = 0.5 again compares favorably with those with α = 0 and 1. Furthermore,
LSTT with α = 0.5 tends to outperform MMD in terms of the type-II error.

Overall, LSTT with α = 0.5 is shown to be a useful method for two-sample homogeneity test.

4.2 Inlier-Based Outlier Detection

Next, we apply the proposed method to outlier detection.

4.2.1 Density-Ratio Approach to Inlier-Based Outlier Detection

Let us consider an outlier detection problem of finding irregular samples in a dataset (called an
“evaluation dataset”) based on another dataset (called a “model dataset”) that only contains regular
samples. Defining the density ratio over the two sets of samples, we can see that the density-ratio
values for regular samples are close to one, while those for outliers tend to be significantly deviated
from one. Thus, density-ratio values could be used as an index of the degree of outlyingness [1, 2].

Since the evaluation dataset usually has a wider support than the model dataset, we regard the eval-
uation dataset as samples corresponding to the denominator density p′(x), and the model dataset as
samples corresponding to the numerator density p(x). Then, outliers tend to have smaller density-
ratio values (i.e., close to zero). As such, density-ratio approximators can be used for outlier detec-
tion.

When evaluating the performance of outlier detection methods, it is important to take into account
both the detection rate (i.e., the amount of true outliers an outlier detection algorithm can find) and
the detection accuracy (i.e., the amount of true inliers an outlier detection algorithm misjudges as
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Table 1: Experimental results of two-sample homogeneity test for the IDA datasets. The mean (and
standard deviation in the bracket) rate of accepting the null hypothesis (i.e., P = P ′) under the
significance level 5% is reported. The two sets of samples are both taken from the positive training
set (i.e., the null hypothesis is correct). Methods having the mean acceptance rate 0.95 according to
the one-sample t-test at the significance level 5% are specified by bold face.

Datasets d n = n′ MMD LSTT LSTT LSTT
(α = 0.0) (α = 0.5) (α = 0.95)

banana 2 100 0.96(0.20) 0.93(0.26) 0.92(0.27) 0.92(0.27)
thyroid 5 19 0.96(0.20) 0.95(0.22) 0.95(0.22) 0.88(0.33)
titanic 5 21 0.94(0.24) 0.86(0.35) 0.92(0.27) 0.89(0.31)
diabetes 8 85 0.96(0.20) 0.87(0.34) 0.91(0.29) 0.82(0.39)
breast-cancer 9 29 0.98(0.14) 0.91(0.29) 0.94(0.24) 0.92(0.27)
flare-solar 9 100 0.93(0.26) 0.91(0.29) 0.95(0.22) 0.93(0.26)
heart 13 38 1.00(0.00) 0.85(0.36) 0.91(0.29) 0.93(0.26)
german 20 100 0.99(0.10) 0.91(0.29) 0.92(0.27) 0.89(0.31)
ringnorm 20 100 0.97(0.17) 0.93(0.26) 0.91(0.29) 0.85(0.36)
waveform 21 66 0.98(0.14) 0.92(0.27) 0.93(0.26) 0.88(0.33)

Table 2: Experimental results of two-sample homogeneity test for the IDA datasets. The mean (and
standard deviation in the bracket) rate of accepting the null hypothesis (i.e., P = P ′) under the
significance level 5% is reported. The set of samples corresponding to the numerator of the density
ratio is taken from the positive training set and the set of samples corresponding to the denominator
of the density ratio is taken from the positive training set and the negative training set (i.e., the null
hypothesis is not correct). The best method having the lowest mean acceptance rate and comparable
methods according to the two-sample t-test at the significance level 5% are specified by bold face.

Datasets d n = n′ MMD LSTT LSTT LSTT
(α = 0.0) (α = 0.5) (α = 0.95)

banana 2 100 0.52(0.50) 0.10(0.30) 0.02(0.14) 0.17(0.38)
thyroid 5 19 0.52(0.50) 0.81(0.39) 0.65(0.48) 0.80(0.40)
titanic 5 21 0.87(0.34) 0.86(0.35) 0.87(0.34) 0.88(0.33)
diabetes 8 85 0.31(0.46) 0.42(0.50) 0.47(0.50) 0.57(0.50)
breast-cancer 9 29 0.87(0.34) 0.75(0.44) 0.80(0.40) 0.79(0.41)
flare-solar 9 100 0.51(0.50) 0.81(0.39) 0.55(0.50) 0.66(0.48)
heart 13 38 0.53(0.50) 0.28(0.45) 0.40(0.49) 0.62(0.49)
german 20 100 0.56(0.50) 0.55(0.50) 0.44(0.50) 0.68(0.47)
ringnorm 20 100 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.02(0.14)
waveform 21 66 0.00(0.00) 0.00(0.00) 0.02(0.14) 0.00(0.00)
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Table 3: Mean AUC score (and the standard deviation in the bracket) over 1000 trials for the artificial
outlier-detection dataset. The best method in terms of the mean AUC score and comparable methods
according to the two-sample t-test at the significance level 5% are specified by bold face.

Input
dimensionality d

RuLSIF
(α = 0)

RuLSIF
(α = 0.5)

RuLSIF
(α = 0.95)

1 .933(.089) .926(.100) .896 (.124)
5 .882(.099) .891(.091) .894 (.086)
10 .842(.107) .850(.103) .859 (.092)

outliers). Since there is a trade-off between the detection rate and the detection accuracy, we adopt
the area under the ROC curve (AUC) as our error metric [24].

4.2.2 Artificial Datasets

First, we illustrate how the proposed method behaves in outlier detection scenarios using artificial
datasets.

Let

P = N(0, Id),

P ′ = 0.95N(0, Id) + 0.05N(3d−1/21d, Id),

where d is the dimensionality of x and 1d is the d-dimensional vector with all one. Note that this
setup is the same as the dataset (e) described in Section 2.4 when d = 1. Here, the samples drawn
from N(0, Id) are regarded as inliers, while the samples drawn from N(d−1/21d, Id) are regarded
as outliers. We use n = n′ = 100 samples.

Table 3 describes the AUC values for input dimensionality d = 1, 5, and 10 for RuLSIF with α = 0,
0.5, and 0.95. This shows that, as the input dimensionality d increases, the AUC values overall get
smaller. Thus, outlier detection becomes more challenging in high-dimensional cases.

The result also shows that RuLSIF with small α tends to work well when the input dimensionality is
low, and RuLSIF with large α works better as the input dimensionality increases. This tendency can
be interpreted as follows: If α is small, the density-ratio function tends to have sharp ‘hollow’ for
outlier points (see the leftmost graph in Figure 2(e)). Thus, as long as the true density-ratio function
can be accurately estimated, small α would be preferable in outlier detection. When the data dimen-
sionality is low, density-ratio approximation is rather easy and thus small α tends to perform well.
However, as the data dimensionality increases, density-ratio approximation gets harder, and thus
large α which produces a smoother density-ratio function is more favorable since such a smoother
function can be more easily approximated than a ‘bumpy’ one produced by small α.

4.2.3 Real-World Datasets

Next, we evaluate the proposed outlier detection method using various real-world datasets:

IDA repository: The IDA repository [21] contains various binary classification tasks. Each dataset
consists of positive/negative and training/test samples. We use positive training samples as
inliers in the “model” set. In the “evaluation” set, we use at most 100 positive test samples
as inliers and the first 5% of negative test samples as outliers. Thus, the positive samples
are treated as inliers and the negative samples are treated as outliers.

Speech dataset: An in-house speech dataset, which contains short utterance samples recorded from
2 male subjects speaking in French with sampling rate 44.1kHz. From each utterance
sample, we extracted a 50-dimensional line spectral frequencies vector [25]. We randomly
take 200 samples from one class and assign them to the model dataset. Then we randomly
take 200 samples from the same class and 10 samples from the other class.

20 Newsgroup dataset: The 20-Newsgroups dataset1 contains 20000 newsgroup documents, which
contains the following 4 top-level categories: ‘comp’, ‘rec’, ‘sci’, and ‘talk’. Each docu-

1http://people.csail.mit.edu/jrennie/20Newsgroups/
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ment is expressed by a 100-dimensional bag-of-words vector of term-frequencies. We ran-
domly take 200 samples from the ‘comp’ class and assign them to the model dataset. Then
we randomly take 200 samples from the same class and 10 samples from one of the other
classes for the evaluation dataset.

The USPS hand-written digit dataset: The USPS hand-written digit dataset2 contains 9298 digit
images. Each image consists of 256 (= 16 × 16) pixels and each pixel takes an integer
value between 0 and 255 as the intensity level. We regard samples in one class as inliers
and samples in other classes as outliers. We randomly take 200 samples from the inlier
class and assign them to the model dataset. Then we randomly take 200 samples from the
same inlier class and 10 samples from one of the other classes for the evaluation dataset.

We compare the AUC scores of RuLSIF with α = 0, 0.5, and 0.95, and one-class support vector
machine (OSVM) with the Gaussian kernel [26]. We used the LIBSVM implementation of OSVM
[27]. The Gaussian width is set to the median distance between samples, which has been shown to
be a useful heuristic [26]. Since there is no systematic method to determine the tuning parameter ν
in OSVM, we report the results for ν = 0.05 and 0.1.

The mean and standard deviation of the AUC scores over 100 runs with random sample choice are
summarized in Table 4, showing that RuLSIF overall compares favorably with OSVM. Among the
RuLSIF methods, small α tends to perform well for low-dimensional datasets, and large α tends
to work well for high-dimensional datasets. This tendency well agrees with that for the artificial
datasets (see Section 4.2.2).

4.3 Transfer Learning

Finally, we apply the proposed method to outlier detection.

4.3.1 Transductive Transfer Learning by Importance Sampling

Let us consider a problem of semi-supervised learning [28] from labeled training samples
{(xtr

j , ytr
j )}ntr

j=1 and unlabeled test samples {xte
i }nte

i=1. The goal is to predict a test output value
yte for a test input point xte. Here, we consider the setup where the labeled training samples
{(xtr

j , ytr
j )}ntr

j=1 are drawn i.i.d. from p(y|x)ptr(x), while the unlabeled test samples {xte
i }nte

i=1

are drawn i.i.d. from pte(x), which is generally different from ptr(x); the (unknown) test sam-
ple (xte, yte) follows p(y|x)pte(x). This setup means that the conditional probability p(y|x) is
common to training and test samples, but the marginal densities ptr(x) and pte(x) are generally
different for training and test input points. Such a problem is called transductive transfer learning
[29], domain adaptation [30], or covariate shift [5, 31].

Let loss(y, ŷ) be a point-wise loss function that measures a discrepancy between y and ŷ (at input
x). Then the generalization error which we would like to ultimately minimize is defined as

Ep(y|x)pte(x) [loss(y, f(x))] ,

where f(x) is a function model. Since the generalization error is inaccessible because the true
probability p(y|x)pte(x) is unknown, empirical-error minimization is often used in practice [8]:

min
f∈F


 1

ntr

ntr∑

j=1

loss(ytr
j , f(xtr

j ))


 .

However, under the covariate shift setup, plain empirical-error minimization is not consistent (i.e.,
it does not converge to the optimal function) if the model F is misspecified [i.e., the true function
is not included in the model; see 5]. Instead, the following importance-weighted empirical-error
minimization is consistent under covariate shift:

min
f∈F


 1

ntr

ntr∑

j=1

r(xtr
j )loss(ytr

j , f(xtr
j ))


 ,

2http://www.gaussianprocess.org/gpml/data/
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Table 4: Experimental results of outlier detection for various for real-world datasets. Mean AUC
score (and standard deviation in the bracket) over 100 trials is reported. The best method having
the highest mean AUC score and comparable methods according to the two-sample t-test at the
significance level 5% are specified by bold face. The datasets are sorted in the ascending order of
the input dimensionality d.

Datasets d
OSVM

(ν = 0.05)
OSVM

(ν = 0.1)
RuLSIF
(α = 0)

RuLSIF
(α = 0.5)

RuLSIF
(α = 0.95)

IDA:banana 2 .668 (.105) .676(.120) .597(.097) .619(.101) .623 (.115)
IDA:thyroid 5 .760 (.148) .782(.165) .804(.148) .796(.178) .722 (.153)
IDA:titanic 5 .757 (.205) .752(.191) .750(.182) .701(.184) .712 (.185)
IDA:diabetes 8 .636 (.099) .610(.090) .594(.105) .575(.105) .663 (.112)
IDA:b-cancer 9 .741 (.160) .691(.147) .707(.148) .737(.159) .733 (.160)
IDA:f-solar 9 .594 (.087) .590(.083) .626(.102) .612(.100) .584 (.114)
IDA:heart 13 .714 (.140) .694(.148) .748(.149) .769(.134) .726 (.127)
IDA:german 20 .612 (.069) .604(.084) .605(.092) .597(.101) .605 (.095)
IDA:ringnorm 20 .991 (.012) .993(.007) .944(.091) .971(.062) .992 (.010)
IDA:waveform 21 .812 (.107) .843(.123) .879(.122) .875(.117) .885 (.102)
Speech 50 .788 (.068) .830(.060) .804(.101) .821(.076) .836 (.083)
20News (‘rec’) 100 .598 (.063) .593(.061) .628(.105) .614(.093) .767 (.100)
20News (‘sci’) 100 .592 (.069) .589(.071) .620(.094) .609(.087) .704 (.093)
20News (‘talk’) 100 .661 (.084) .658(.084) .672(.117) .670(.102) .823 (.078)
USPS (1 vs. 2) 256 .889 (.052) .926(.037) .848(.081) .878(.088) .898 (.051)
USPS (2 vs. 3) 256 .823 (.053) .835(.050) .803(.093) .818(.085) .879 (.074)
USPS (3 vs. 4) 256 .901 (.044) .939(.031) .950(.056) .961(.041) .984 (.016)
USPS (4 vs. 5) 256 .871 (.041) .890(.036) .857(.099) .874(.082) .941 (.031)
USPS (5 vs. 6) 256 .825 (.058) .859(.052) .863(.078) .867(.068) .901 (.049)
USPS (6 vs. 7) 256 .910 (.034) .950(.025) .972(.038) .984(.018) .994 (.010)
USPS (7 vs. 8) 256 .938 (.030) .967(.021) .941(.053) .951(.039) .980 (.015)
USPS (8 vs. 9) 256 .721 (.072) .728(.073) .721(.084) .728(.083) .761 (.096)
USPS (9 vs. 0) 256 .920 (.037) .966(.023) .982(.048) .989(.022) .994 (.011)
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where r(x) is called the importance [32] in the context of covariate shift adaptation:

r(x) :=
pte(x)
ptr(x)

.

However, since importance-weighted learning is not statistically efficient (i.e., it tends to have larger
variance), slightly flattening the importance weights is practically useful for stabilizing the estimator.
[5] proposed to use the exponentially-flattened importance weights as

min
f∈F


 1

ntr

ntr∑

j=1

r(xtr
j )τ loss(ytr

j , f(xtr
j ))


 ,

where 0 ≤ τ ≤ 1 is called the exponential flattening parameter. τ = 0 corresponds to plain
empirical-error minimization, while τ = 1 corresponds to importance-weighted empirical-error
minimization; 0 < τ < 1 will give an intermediate estimator that balances the trade-off between
statistical efficiency and consistency. The exponential flattening parameter τ can be optimized by
model selection criteria such as the importance-weighted Akaike information criterion for regular
models [5], the importance-weighted subspace information criterion for linear models [33], and
importance-weighted cross-validation for arbitrary models [6].

One of the potential drawbacks of the above exponential flattering approach is that estimation of
r(x) (i.e., τ = 1) is rather hard, as shown in this paper. Thus, when r(x) is estimated poorly, all
flattened weights r(x)τ are also unreliable and then covariate shift adaptation does not work well in
practice. To cope with this problem, we propose to use relative importance weights alternatively:

min
f∈F


 1

ntr

ntr∑

j=1

rα(xtr
j )loss(ytr

j , f(xtr
j ))


 ,

where rα(x) (0 ≤ α ≤ 1) is the α-relative importance weight defined by

rα(x) :=
pte(x)

(1− α)pte(x) + αptr(x)
.

Note that, compared with the definition of the α-relative density-ratio (1), α and (1−α) are swapped
in order to be consistent with exponential flattening. Indeed, the relative importance weights play a
similar role to exponentially-flattened importance weights; α = 0 corresponds to plain empirical-
error minimization, while α = 1 corresponds to importance-weighted empirical-error minimization;
0 < α < 1 will give an intermediate estimator that balances the trade-off between efficiency and
consistency. We note that the relative importance weights and exponentially flattened importance
weights agree only when α = τ = 0 and α = τ = 1; for 0 < α = τ < 1, they are generally
different.

A possible advantage of the above relative importance weights is that its estimation for 0 < α < 1
does not depend on that for α = 1, unlike exponentially-flattened importance weights. Since α-
relative importance weights for 0 < α < 1 can be reliably estimated by RuLSIF proposed in
this paper, the performance of covariate shift adaptation is expected to be improved. Below, we
experimentally investigate this effect.

4.3.2 Artificial Datasets

First, we illustrate how the proposed method behaves in covariate shift adaptation using one-
dimensional artificial datasets.

In this experiment, we employ the following kernel regression model:

f(x;β) =
nte∑

i=1

βi exp
(
− (x− xte

i )2

2ρ2

)
,

where β = (β1, . . . , βnte)
> is the parameter to be learned and ρ is the Gaussian width. The param-

eter β is learned by relative importance-weighted least-squares (RIW-LS):

β̂RIW−LS = argmin
β


 1

ntr

ntr∑

j=1

r̂α(xtr
j )

(
f(xtr

j ; β)− ytr
j

)2


 ,
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Figure 6: Illustrative example of transfer learning under no distribution change.
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Figure 7: Illustrative example of transfer learning under covariate shift.

or exponentially-flattened importance-weighted least-squares (EIW-LS):

β̂EIW−LS = argmin
β


 1

ntr

ntr∑

j=1

r̂(xtr
j )τ

(
f(xtr

j ;β)− ytr
j

)2


 .

The relative importance weight r̂α(xtr
j ) is estimated by RuLSIF, and the exponentially-flattened

importance weight r̂(xtr
j )τ is estimated by uLSIF (i.e., RuLSIF with α = 1). The Gaussian width ρ

is chosen by 5-fold importance-weighted cross-validation [6].

First, we consider the case where input distributions do not change:

Ptr = Pte = N(1, 0.25).

The densities and their ratios are plotted in Figure 6(a). The training output samples {ytr
j }ntr

j=1 are
generated as

ytr
j = sinc(xtr

j ) + εtrj ,

where {εtrj }ntr
j=1 is additive noise following N(0, 0.01). We set ntr = 100 and nte = 200. Fig-

ure 6(b) shows a realization of training and test samples as well as learned functions obtained by
RIW-LS with α = 0.5 and EIW-LS with τ = 0.5. This shows that RIW-LS with α = 0.5 and EIW-
LS with τ = 0.5 give almost the same functions, and both functions fit the true function well in the
test region. Figure 6(c) shows the mean and standard deviation of the test error under the squared
loss over 200 runs, as functions of the relative flattening parameter α in RIW-LS and the exponential
flattening parameter τ in EIW-LS. The method having a lower mean test error and another method
that is comparable according to the two-sample t-test at the significance level 5% are specified by
‘◦’. As can be observed, the proposed RIW-LS compares favorably with EIW-LS.

Next, we consider the situation where input distribution changes (Figure 7(a)):

Ptr = N(1, 0.25),
Pte = N(2, 0.1).

The output values are created in the same way as the previous case. Figure 7(b) shows a realization
of training and test samples as well as learned functions obtained by RIW-LS with α = 0.5 and
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Figure 8: An example of three-axis accelerometer data for “walking” collected by iPod touch.

EIW-LS with τ = 0.5. This shows that RIW-LS with α = 0.5 fits the true function slightly better
than EIW-LS with τ = 0.5 in the test region. Figure 7(c) shows that the proposed RIW-LS tends
to outperform EIW-LS, and the standard deviation of the test error for RIW-LS is much smaller
than EIW-LS. This is because EIW-LS with 0 < τ < 1 is based on an importance estimate with
τ = 1, which tends to have high fluctuation. Overall, the stabilization effect of relative importance
estimation was shown to improve the test accuracy.

4.3.3 Real-World Datasets

Finally, we evaluate the proposed transfer learning method on a real-world transfer learning task.

We consider the problem of human activity recognition from accelerometer data collected by iPod
touch3. In the data collection procedure, subjects were asked to perform a specific action such as
walking, running, and bicycle riding. The duration of each task was arbitrary and the sampling
rate was 20Hz with small variations. An example of three-axis accelerometer data for “walking” is
plotted in Figure 8.

To extract features from the accelerometer data, each data stream was segmented in a sliding window
manner with window width 5 seconds and sliding step 1 second. Depending on subjects, the position
and orientation of iPod touch was arbitrary—held by hand or kept in a pocket or a bag. For this
reason, we decided to take the `2-norm of the 3-dimensional acceleration vector at each time step,
and computed the following 5 orientation-invariant features from each window: mean, standard
deviation, fluctuation of amplitude, average energy, and frequency-domain entropy [34, 35].

Let us consider a situation where a new user wants to use the activity recognition system. However,
since the new user is not willing to label his/her accelerometer data due to troublesomeness, no
labeled sample is available for the new user. On the other hand, unlabeled samples for the new user
and labeled data obtained from existing users are available. Let labeled training data {(xtr

j , ytr
j )}ntr

j=1
be the set of labeled accelerometer data for 20 existing users. Each user has at most 100 labeled
samples for each action. Let unlabeled test data {xte

i }nte
i=1 be unlabeled accelerometer data obtained

from the new user.

We use kernel logistic regression (KLR) for activity recognition. We compare the following four
methods:

• Plain KLR without importance weights (i.e., α = 0 or τ = 0).

• KLR with relative importance weights for α = 0.5.

• KLR with exponentially-flattened importance weights for τ = 0.5.

3http://alkan.mns.kyutech.ac.jp/web/data.html
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Table 5: Experimental results of transfer learning in real-world human activity recognition. Mean
classification accuracy (and the standard deviation in the bracket) over 100 runs for activity recog-
nition of a new user is reported. The method having the lowest mean classification accuracy and
comparable methods according to the two-sample t-test at the significance level 5% are specified by
bold face.

Task KLR RIW-KLR EIW-KLR IW-KLR
(α = 0, τ = 0) (α = 0.5) (τ = 0.5) (α = 1, τ = 1)

Walks vs. run 0.803 (0.082) 0.889(0.035) 0.882(0.039) 0.882 (0.035)
Walks vs. bicycle 0.880 (0.025) 0.892(0.035) 0.867(0.054) 0.854 (0.070)
Walks vs. train 0.985 (0.017) 0.992(0.008) 0.989(0.011) 0.983 (0.021)

• KLR with plain importance weights (i.e., α = 1 or τ = 1).

The experiments are repeated 100 times with different sample choice for ntr = 500 and nte = 200.
Table 5 depicts the classification accuracy for three binary-classification tasks: walk vs. run, walk
vs. riding a bicycle, and walk vs. taking a train. The classification accuracy is evaluated for 800
samples from the new user that are not used for classifier training (i.e., the 800 test samples are
different from 200 unlabeled samples). The table shows that KLR with relative importance weights
for α = 0.5 compares favorably with other methods in terms of the classification accuracy. KLR
with plain importance weights and KLR with exponentially-flattened importance weights for τ =
0.5 are outperformed by KLR without importance weights in the walk vs. riding a bicycle task due
to the instability of importance weight estimation for α = 1 or τ = 1.

Overall, the proposed relative density-ratio estimation method was shown to be useful also in transfer
learning under covariate shift.

5 Conclusion

In this paper, we proposed to use a relative divergence for robust distribution comparison. We gave
a computationally efficient method for estimating the relative Pearson divergence based on direct
relative density-ratio approximation. We theoretically elucidated the convergence rate of the pro-
posed divergence estimator under non-parametric setup, which showed that the proposed approach
of estimating the relative Pearson divergence is more preferable than the existing approach of esti-
mating the plain Pearson divergence. Furthermore, we proved that the asymptotic variance of the
proposed divergence estimator is independent of the model complexity under a correctly-specified
parametric setup. Thus, the proposed divergence estimator hardly overfits even with complex mod-
els. Experimentally, we demonstrated the practical usefulness of the proposed divergence estimator
in two-sample homogeneity test, inlier-based outlier detection, and transductive transfer learning
under covariate shift.

In addition to two-sample homogeneity test, outlier detection, and transfer learning, density ra-
tios were shown to be useful for tackling various machine learning problems, including multi-task
learning [36, 37], independence test [38], feature selection [39], causal inference [40], independent
component analysis [41], dimensionality reduction [15], unpaired data matching [42], clustering
[43], conditional density estimation [44], and probabilistic classification [45]. Thus, it would be
promising to explore more applications of the proposed relative density-ratio approximator beyond
two-sample homogeneity test, outlier detection, and transfer learning tasks.
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A Technical Details of Non-Parametric Convergence Analysis

Here, we give the technical details of the non-parametric convergence analysis described in Sec-
tion 3.1.

A.1 Results

For notational simplicity, we define linear operators P, Pn, P ′, P ′n′ as

Pf := Epf, Pnf :=

∑n
j=1 f(xj)

n
,

P ′f := Eqf, P ′n′f :=
∑n′

i=1 f(x′i)
n′

.

For α ∈ [0, 1], we define Sn,n′ and S as

Sn,n′ = αPn + (1− α)P ′n′ , S = αP + (1− α)P ′.

We estimate the Pearson divergence between p and αp + (1 − α)q through estimating the density
ratio

g∗ :=
p

αp + (1− α)p′
.

Let us consider the following density ratio estimator:

ĝ := argmin
g∈G

[
1
2

(αPn + (1− α)P ′n′) g2 − Png +
λn̄

2
R(g)2

]

= argmin
g∈G

(
1
2
Sn,n′g

2 − Png +
λn̄

2
R(g)2

)
.

where n̄ = min(n, n′) and R(g) is a non-negative regularization functional such that

sup
x

[|g(x)|] ≤ R(g). (17)

A possible estimator of the Pearson (PE) divergence P̂Eα is

P̂Eα := Pnĝ − 1
2
Sn,n′ ĝ

2 − 1
2
.

Another possibility is

P̃Eα :=
1
2
Pnĝ − 1

2
.

A useful example is to use a reproducing kernel Hilbert space [RKHS; 18] as G and the RKHS norm
as R(g). Suppose G is an RKHS associated with bounded kernel k(·, ·):

sup
x

[k(x,x)] ≤ C.

Let ‖ · ‖G denote the norm in the RKHS G. Then R(g) =
√

C‖g‖G satisfies Eq.(17):

g(x) = 〈k(x, ·), g(·)〉 ≤
√

k(x, x)‖g‖G ≤
√

C‖g‖G ,

where we used the reproducing property of the kernel and Schwartz’s inequality. Note that the
Gaussian kernel satisfies this with C = 1. It is known that the Gaussian kernel RKHS spans a
dense subset in the set of continuous functions. Another example of RKHSs is Sobolev space.
The canonical norm for this space is the integral of the squared derivatives of functions. Thus the
regularization term R(g) = ‖g‖G imposes the solution to be smooth. The RKHS technique in
Sobolev space has been well exploited in the context of spline models [46]. We intend that the
regularization term R(g) is a generalization of the RKHS norm. Roughly speaking, R(g) is like a
“norm” of the function space G.
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We assume that the true density-ratio function g∗(x) is contained in the model G and is bounded
from above:

g∗(x) ≤ M0 for all x ∈ DX.

Let GM be a ball of G with radius M > 0:

GM := {g ∈ G | R(g) ≤ M}.
To derive the convergence rate of our estimator, we utilize the bracketing entropy that is a complexity
measure of a function class [see p. 83 of 47].
Definition 1. Given two functions l and u, the bracket [l, u] is the set of all functions f with l(x) ≤
f(x) ≤ u(x) for all x. An ε-bracket with respect to L2(p̃) is a bracket [l, u] with ‖l − u‖L2(p̃) < ε.
The bracketing entropy H[](F , ε, L2(p̃)) is the logarithm of the minimum number of ε-brackets with
respect to L2(p̃) needed to cover a function set F .

We assume that there exists γ (0 < γ < 2) such that, for all M > 0,

H[](GM , ε, L2(p)) = O

((
M

ε

)γ)
, H[](GM , ε, L2(p′)) = O

((
M

ε

)γ)
. (18)

This quantity represents a complexity of function class G—the larger γ is, the more complex the
function class G is because, for larger γ, more brackets are needed to cover the function class. The
Gaussian RKHS satisfies this condition for arbitrarily small γ [48]. Note that when R(g) is the
RKHS norm, the condition (18) holds for all M > 0 if that holds for M = 1.

Then we have the following theorem.

Theorem 1. Let n̄ = min(n, n′), M0 = ‖g∗‖∞, and c = (1 + α)
√

P (g∗ − Pg∗)2 + (1 −
α)

√
P ′(g∗ − P ′g∗)2. Under the above setting, if λn̄ → 0 and λ−1

n̄ = o(n̄2/(2+γ)), then we have

P̂Eα − PEα = Op(λn̄ max(1, R(g∗)2) + n̄−1/2cM0),

and

P̃Eα − PEα =Op(λn̄ max{1,M
1
2 (1− γ

2 )
0 , R(g∗)M

1
2 (1− γ

2 )
0 , R(g∗)}+ λ

1
2
n̄ max{M

1
2
0 ,M

1
2
0 R(g∗)}),

where Op denotes the asymptotic order in probability.

In the proof of Theorem 1, we use the following auxiliary lemma.

Lemma 1. Under the setting of Theorem 1, if λn̄ → 0 and λ−1
n̄ = o(n̄2/(2+γ)), then we have

‖ĝ − g∗‖L2(S) = Op(λ
1/2
n̄ max{1, R(g∗)}), R(ĝ) = Op(max{1, R(g∗)}),

where ‖ · ‖L2(S) denotes the L2(αp + (1− α)q)-norm.

A.2 Proof of Lemma 1

First, we prove Lemma 1.

From the definition, we obtain

1
2
Sn,n′ ĝ

2 − Pnĝ + λn̄R(ĝ)2 ≤ 1
2
Sn,n′g

∗2 − Png∗ + λn̄R(g∗)2

⇒ 1
2
Sn,n′(ĝ − g∗)2 − Sn,n′(g∗(g∗ − ĝ))− Pn(ĝ − g∗) + λn̄(R(ĝ)2 −R(g∗)2) ≤ 0.

On the other hand, S(g∗(g∗ − ĝ)) = P (g∗ − ĝ) indicates

1
2
(S − Sn,n′)(ĝ − g∗)2 − (S − Sn,n′)(g∗(g∗ − ĝ))− (P − Pn)(ĝ − g∗)− λn̄(R(ĝ)2 −R(g∗)2)

≥ 1
2
S(ĝ − g∗)2.

Therefore, to bound ‖ĝ − g∗‖L2(S), it suffices to bound the left-hand side of the above inequality.
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Define FM and F2
M as

FM := {g − g∗ | g ∈ GM} and F2
M := {f2 | f ∈ FM}.

To bound |(S − Sn,n′)(ĝ − g∗)2|, we need to bound the bracketing entropies of F2
M . We show that

H[](F2
M , δ, L2(p)) = O

((
(M + M0)2

δ

)γ)
,

H[](F2
M , δ, L2(q)) = O

((
(M + M0)2

δ

)γ)
.

This can be shown as follows. Let fL and fU be a δ-bracket for GM with respect to L2(p); fL(x) ≤
fU (x) and ‖fL−fU‖L2(p) ≤ δ. Without loss of generality, we can assume that ‖fL‖L∞ , ‖fU‖L∞ ≤
M + M0 . Then f ′U and f ′L defined as

f ′U (x) := max{f2
L(x), f2

U (x)},

f ′L(x) :=
{

min{f2
L(x), f2

U (x)} (sign(fL(x)) = sign(fU (x))),
0 (otherwise)

,

are also a bracket such that f ′L ≤ g2 ≤ f ′U for all g ∈ GM s.t. fL ≤ g ≤ fU and ‖f ′L − f ′U‖L2(p) ≤
2δ(M + M0) because ‖fL − fU‖L2(p) ≤ δ and the following relation is met:

(f ′L(x)− f ′U (x))2 ≤
{

(f2
L(x)− f2

U (x))2 (sign(fL(x)) = sign(fU (x))),
max{f4

L(x), f4
U (x)} (otherwise)

≤
{

(fL(x)− fU (x))2(fL(x) + fU (x))2 (sign(fL(x)) = sign(fU (x))),
max{f4

L(x), f4
U (x)} (otherwise)

≤
{

(fL(x)− fU (x))2(fL(x) + fU (x))2 (sign(fL(x)) = sign(fU (x))),
(fL(x)− fU (x))2(|fL(x)|+ |fU (x)|)2 (otherwise)

≤ 4(fL(x)− fU (x))2(M + M0)2.

Therefore the condition for the bracketing entropies (18) gives H[](F2
M , δ, L2(p)) =

O
((

(M+M0)
2

δ

)γ)
. We can also show that H[](F2

M , δ, L2(q)) = O
((

(M+M0)
2

δ

)γ)
in the same

fashion.

Let f := ĝ − g∗. Then, as in Lemma 5.14 and Theorem 10.6 in [49], we obtain

|(Sn,n′ − S)(f2)| ≤ α|(Pn − P )(f2)|+ (1− α)|(P ′n′ − P ′)(f2)|

=αOp

(
1√
n̄
‖f2‖1−

γ
2

L2(P )(1 + R(ĝ)2 + M2
0 )

γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)2 + M2

0 )
)

+ (1− α)Op

(
1√
n̄
‖f2‖1−

γ
2

L2(P ′)
(1 + R(ĝ)2 + M2

0 )
γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)2 + M2

0 )
)

≤Op

(
1√
n̄
‖f2‖1−

γ
2

L2(S)(1 + R(ĝ)2 + M2
0 )

γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)2 + M2

0 )
)

, (19)

where a ∨ b = max(a, b) and we used

α‖f2‖1−
γ
2

L2(P ) + (1− α)‖f2‖1−
γ
2

L2(P ′)
≤

(∫
f4d(αP + (1− α)P ′)

) 1
2 (1− γ

2 )

= ‖f2‖1−
γ
2

L2(S)

by Jensen’s inequality for a concave function. Since

‖f2‖L2(S) ≤ ‖f‖L2(S)

√
2(1 + R(ĝ)2 + M2

0 ),

the right-hand side of Eq.(19) is further bounded by

|(Sn,n′ − S)(f2)|

=Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)(1 + R(ĝ)2 + M2
0 )

1
2+ γ

4 ∨ n̄−
2

2+γ (1 + R(ĝ)2 + M2
0 )

)
. (20)
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Similarly, we can show that

|(Sn,n′ − S)(g∗(g∗ − ĝ))|

=Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)(1 + R(ĝ)M0 + M2
0 )

γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)M0 + M2

0 )
)

, (21)

and

|(Pn − P )(g∗ − ĝ)| = Op

(
1√
n̄
‖f‖1−

γ
2

L2(P )(1 + R(ĝ) + M0)
γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ) + M0)

)

≤ Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)(1 + R(ĝ) + M0)
γ
2 M

1
2 (1− γ

2 )
0 ∨ n̄−

2
2+γ (1 + R(ĝ) + M0)

)
, (22)

where we used

‖f‖L2(P ) =

√∫
f2dP =

√∫
f2g∗dS ≤ M

1
2
0

√∫
f2dS

in the last inequality. Combining Eqs.(20), (21), and (22), we can bound the L2(S)-norm of f as

1
2
‖f‖2L2(S) + λn̄R(ĝ)2

≤ λn̄R(g∗)2 +Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)(1 + R(ĝ)2 + M2
0 )

1
2+ γ

4 ∨ n̄−
2

2+γ (1 + R(ĝ)2 + M2
0 )

)
. (23)

The following is similar to the argument in Theorem 10.6 in [49], but we give a simpler proof.

By Young’s inequality, we have a
1
2− γ

4 b
1
2+ γ

4 ≤ ( 1
2 − γ

4 )a + ( 1
2 + γ

4 )b ≤ a + b for all a, b > 0.
Applying this relation to Eq.(23), we obtain

1
2
‖f‖2L2(S) + λn̄R(ĝ)2

≤ λn̄R(g∗)2 +Op

(
‖f‖2(

1
2− γ

4 )

L2(S)

{
n̄−

2
2+γ (1 + R(ĝ)2 + M2

0 )
} 1

2+ γ
4 ∨ n̄−

2
2+γ (1 + R(ĝ)2 + M2

0 )
)

Young
≤ λn̄R(g∗)2 +

1
4
‖f‖2L2(S) +Op

(
n̄−

2
2+γ (1 + R(ĝ)2 + M2

0 ) + n̄−
2

2+γ (1 + R(ĝ)2 + M2
0 )

)

= λn̄R(g∗)2 +
1
4
‖f‖2L2(S) +Op

(
n̄−

2
2+γ (1 + R(ĝ)2 + M2

0 )
)

,

which indicates
1
4
‖f‖2L2(S) + λn̄R(ĝ)2 ≤ λn̄R(g∗)2 + op

(
λn̄(1 + R(ĝ)2 + M2

0 )
)
.

Therefore, by moving op(λn̄R(ĝ)2) to the left hind side, we obtain

1
4
‖f‖2L2(S) + λn̄(1− op(1))R(ĝ)2 ≤ Op

(
λn̄(1 + R(g∗)2 + M2

0 )
)

≤ Op

(
λn̄(1 + R(g∗)2)

)
.

This gives

‖f‖L2(S) = Op(λ
1
2
n̄ max{1, R(g∗)}),

R(ĝ) = Op(
√

1 + R(g∗)2) = Op(max{1, R(g∗)}).
Consequently, the proof of Lemma 1 was completed.

A.3 Proof of Theorem 1

Based on Lemma 1, we prove Theorem 1.
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As in the proof of Lemma 1, let f := ĝ − g∗. Since (αP + (1− α)P ′)(fg∗) = S(fg∗) = Pf , we
have

P̂Eα − PEα =
1
2
Sn,n′ ĝ

2 − Pnĝ − (
1
2
Sg∗2 − Pg∗)

=
1
2
Sn,n′(f + g∗)2 − Pn(f + g∗)−

(
1
2
Sg∗2 − Pg∗

)

=
1
2
Sf2 +

1
2
(Sn,n′ − S)f2 + (Sn,n′ − S)(g∗f)− (Pn − P )f

+
1
2
(Sn,n′ − S)g∗2 − (Png∗ − Pg∗). (24)

Below, we show that each term of the right-hand side of the above equation is Op(λn̄). By the
central limit theorem, we have

1
2
(Sn,n′ − S)g∗2 − (Png∗ − Pg∗)

= Op

(
n̄−1/2M0

(
(1 + α)

√
P (g∗ − Pg∗)2 + (1− α)

√
P ′(g∗ − P ′g∗)2

))
.

Since Lemma 1 gives ‖f‖2 = Op(λ
1
2
n̄ max(1, R(g∗))) and R(ĝ) = Op(max(1, R(g∗))), Eqs.(20),

(21), and (22) in the proof of Lemma 1 imply

|(Sn,n′ − S)f2| = Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)(1 + R(g∗))1+
γ
2 ∨ n̄−

2
2+γ R(g∗)2

)

≤ Op(λn̄ max(1, R(g∗)2)),

|(Sn,n′ − S)(g∗f)| = Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)(1 + R(ĝ)M0 + M2
0 )

γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)M0 + M2

0 )
)

≤ Op(λn̄ max(1, R(g∗)M
γ
2
0 ,Mγ

0 R(g∗)1−
γ
2 ,M0R(g∗),M2

0 ))

≤ Op(λn̄ max(1, R(g∗)M
γ
2
0 ,M0R(g∗))),

≤ Op(λn̄ max(1, R(g∗)2)),

|(Pn − P )f | ≤ Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)(1 + R(ĝ) + M0)
γ
2 M

1
2 (1− γ

2 )
0 ∨ n̄−

2
2+γ (1 + R(ĝ) + M0)

)

= Op(λn̄ max(1, M
1
2 (1− γ

2 )
0 , R(g∗)M

1
2 (1− γ

2 )
0 , R(g∗))) (25)

≤ Op(λn̄ max(1, R(g∗)2)),

where we used λ−1
n̄ = o(n̄2/(2+γ)) and M0 ≤ R(g∗). Lemma 1 also implies

Sf2 = ‖f‖22 = Op(λn̄ max(1, R(g∗)2)).

Combining these inequalities with Eq.(24) implies

P̂Eα − PEα = Op(λn̄ max(1, R(g∗)2) + n−1/2cM0),

where we again used M0 ≤ R(g∗).

On the other hand, we have

P̃Eα − PEα =
1
2
Pnĝ − 1

2
Pg∗

=
1
2

[(Pn − P )(ĝ − g∗) + P (ĝ − g∗) + (Pn − P )g∗] . (26)

Eq.(25) gives

(Pn − P )(ĝ − g∗) = Op(λn̄ max(1,M
1
2 (1− γ

2 )
0 , R(g∗)M

1
2 (1− γ

2 )
0 , R(g∗))).

We also have

P (ĝ − g∗) ≤ ‖ĝ − g∗‖L2(P ) ≤ ‖ĝ − g∗‖L2(S)M
1
2
0 = Op(λ

1
2
n̄ max(M

1
2
0 ,M

1
2
0 R(g∗))),
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and

(Pn − P )g∗ = Op(n̄−
1
2
√

P (g∗ − Pg∗)2) ≤ Op(n̄−
1
2 M0) ≤ Op(λ

1
2
n̄ max(M

1
2
0 ,M

1
2
0 R(g∗))),

Therefore by substituting these bounds into the relation (26), one observes that

P̃Eα − PEα

=Op(λ
1
2
n̄ max(M

1
2
0 ,M

1
2
0 R(g∗)) + λn̄ max(1,M

1
2 (1− γ

2 )
0 , R(g∗)M

1
2 (1− γ

2 )
0 , R(g∗))). (27)

This completes the proof.

B Technical Details of Parametric Variance Analysis

Here, we give the technical details of the parametric variance analysis described in Section 3.2.

B.1 Results

For the estimation of the α-relative density-ratio (1), the statistical model

G = {g(x; θ) | θ ∈ Θ ⊂ Rb}
is used where b is a finite number. Let us consider the following estimator of α-relative density-ratio,

ĝ = argmin
g∈G

1
2

{
α

n

n∑

i=1

(g(xi))2 +
1− α

n′

n′∑

j=1

(g(x′j))
2

}
− 1

n

n∑

i=1

g(xi).

Suppose that the model is correctly specified, i.e., there exists θ∗ such that

g(x;θ∗) = rα(x).

Then, under a mild assumption [see Theorem 5.23 of 19], the estimator ĝ is consistent and the
estimated parameter θ̂ satisfies the asymptotic normality in the large sample limit. Then, a possible
estimator of the α-relative Pearson divergence PEα is

P̂Eα =
1
n

n∑

i=1

ĝ(xi)− 1
2

{
α

n

n∑

i=1

(ĝ(xi))2 +
1− α

n′

n′∑

j=1

(ĝ(x′j))
2

}
− 1

2
.

Note that there are other possible estimators for PEα such as

P̃Eα =
1
2n

n∑

i=1

ĝ(xi)− 1
2
.

We study the asymptotic properties of P̂Eα. The expectation under the probability p (p′) is denoted
as Ep(x)[·] (Ep′(x)[·]). Likewise, the variance is denoted as Vp(x)[·] (Vp′(x)[·]). Then, we have the
following theorem.
Theorem 2. Let ‖r‖∞ be the sup-norm of the standard density ratio r(x), and ‖rα‖∞ be the sup-
norm of the α-relative density ratio, i.e.,

‖rα‖∞ =
‖r‖∞

α‖r‖∞ + 1− α
.

The variance of P̂Eα is denoted as V[P̂Eα]. Then, under the regularity condition for the asymptotic
normality, we have the following upper bound of V[P̂Eα]:

V[P̂Eα] =
1
n
Vp(x)

[
rα − αr2

α

2

]
+

1
n′
Vp′(x)

[
(1− α)r2

α

2

]
+ o

(
1
n

,
1
n′

)

≤ ‖rα‖2∞
n

+
α2‖rα‖4∞

4n
+

(1− α)2‖rα‖4∞
4n′

+ o

(
1
n

,
1
n′

)
.

28



Theorem 3. The variance of P̃Eα is denoted as V[P̃Eα]. Let ∇g be the gradient vector of g with

respect to θ at θ = θ∗, i.e., (∇g(x; θ∗))j = ∂g(x;θ∗)
∂θj

. The matrix Uα is defined by

Uα = αEp(x)[∇g∇g>] + (1− α)Ep′(x)[∇g∇g>].

Then, under the regularity condition, the variance of P̃Eα is asymptotically given as

V[P̃Eα] =
1
n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]>U−1

α ∇g

2

]

+
1
n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]>U−1

α ∇g

2

]
+ o

(
1
n

,
1
n′

)
.

B.2 Proof of Theorem 2

Let θ̂ be the estimated parameter, i.e., ĝ(x) = g(x; θ̂). Suppose that rα(x) = g(x; θ∗) ∈ G holds.
Let δθ = θ̂ − θ∗, then the asymptotic expansion of P̂Eα is given as

P̂Eα =
1
n

n∑

i=1

g(xi; θ̂)− 1
2

{
α

n

n∑

i=1

g(xi; θ̂)2 +
1− α

n′

n′∑

j=1

g(x′j ; θ̂)2
}
− 1

2

= PEα +
1
n

n∑

i=1

(rα(xi)− Ep(x)[rα]) +
1
n

n∑

i=1

∇g(xi; θ∗)>δθ

− 1
2

{
α

n

n∑

i=1

(rα(xi)2 − Ep(x)[r2
α]) +

1− α

n′

n′∑

j=1

(rα(x′j)
2 − Ep′(x)[r2

α])
}

−
{

α

n

n∑

i=1

rα(xi)∇g(xi; θ∗) +
1− α

n′

n′∑

j=1

rα(x′j)∇g(x′j ; θ
∗)

}>
δθ + op

(
1√
n

,
1√
n′

)
.

Let us define the linear operator G as

Gf =
1√
n

n∑

i=1

(f(xi)− Ep(x)[f ]).

Likewise, the operator G′ is defined for the samples from p′. Then, we have

P̂Eα − PEα

=
1√
n

G
(
rα − α

2
r2
α

)− 1√
n′

G′
(1− α

2
r2
α

)

+
{
Ep(x)[∇g]− αEp(x)[rα∇g]− (1− α)Ep′(x)[rα∇g]

}>
δθ + op

(
1√
n

,
1√
n′

)

=
1√
n

G
(
rα − α

2
r2
α

)− 1√
n′

G′
(1− α

2
r2
α

)
+ op

(
1√
n

,
1√
n′

)
.

The second equality follows from

Ep(x)[∇g]− αEp(x)[rα∇g]− (1− α)Ep′(x)[rα∇g] = 0.

Then, the asymptotic variance is given as

V[P̂Eα] =
1
n
Vp(x)

[
rα − α

2
r2
α

]
+

1
n′
Vp′(x)

[
1− α

2
r2
α

]
+ o

(
1
n

,
1
n′

)
. (28)

We confirm that both rα − α
2 r2

α and 1−α
2 r2

α are non-negative and increasing functions with respect
to r for any α ∈ [0, 1]. Since the result is trivial for α = 1, we suppose 0 ≤ α < 1. The function
rα − α

2 r2
α is represented as

rα − α

2
r2
α =

r(αr + 2− 2α)
2(αr + 1− α)2

,
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and thus, we have rα − α
2 r2

α = 0 for r = 0. In addition, the derivative is equal to

∂

∂r

r(αr + 2− 2α)
2(αr + 1− α)2

=
(1− α)2

(αr + 1− α)3
,

which is positive for r ≥ 0 and α ∈ [0, 1). Hence, the function rα − α
2 r2

α is non-negative and
increasing with respect to r. Following the same line, we see that 1−α

2 r2
α is non-negative and

increasing with respect to r. Thus, we have the following inequalities,

0 ≤ rα(x)− α

2
rα(x)2 ≤ ‖rα‖∞ − α

2
‖rα‖2∞,

0 ≤ 1− α

2
rα(x)2 ≤ 1− α

2
‖rα‖2∞.

As a result, upper bounds of the variances in Eq.(28) are given as

Vp(x)

[
rα − α

2
r2
α

]
≤

(
‖rα‖∞ − α

2
‖rα‖2∞

)2

,

Vp′(x)

[
1− α

2
r2
α

]
≤ (1− α)2

4
‖rα‖4∞.

Therefore, the following inequality holds,

V[P̂Eα] ≤ 1
n

(
‖rα‖∞ − α‖rα‖2∞

2

)2

+
1
n′
· (1− α)2‖rα‖4∞

4
+ o

(
1
n

,
1
n′

)

≤ ‖rα‖2∞
n

+
α2‖rα‖4∞

4n
+

(1− α)2‖rα‖4∞
4n′

+ o

(
1
n

,
1
n′

)
,

which completes the proof.

B.3 Proof of Theorem 3

The estimator θ̂ is the optimal solution of the following problem:

min
θ∈Θ


 1

2n

n∑

i=1

αg(xi; θ)2 +
1

2n′

n′∑

j=1

(1− α)g(x′j ; θ)2 − 1
n

n∑

i=1

g(xi; θ)


 .

Then, the extremal condition yields the equation,

α

n

n∑

i=1

g(xi; θ̂)∇g(xi; θ̂) +
1− α

n′

n′∑

j=1

g(x′j ; θ̂)∇g(x′j ; θ̂)− 1
n

n∑

i=1

∇g(xi; θ̂) = 0.

Let δθ = θ̂ − θ∗. The asymptotic expansion of the above equation around θ = θ∗ leads to

1
n

n∑

i=1

(αrα(xi)− 1)∇g(xi; θ∗) +
1− α

n′

n′∑

j=1

rα(x′j)∇g(x′j ; θ
∗) + Uαδθ + op

(
1√
n

,
1√
n′

)
= 0.

Therefore, we obtain

δθ =
1√
n

G((1− αrα)U−1
α ∇g)− 1√

n′
G′((1− α)rαU−1

α ∇g) + op

(
1√
n

,
1√
n′

)
.

Next, we compute the asymptotic expansion of P̃Eα:

P̃Eα =
1
2
Ep(x)[rα] +

1
2n

n∑

i=1

(rα(xi)− Ep(x)[rα])

+
1
2n

n∑

i=1

∇g(xi; θ∗)>δθ − 1
2

+ op

(
1√
n

,
1√
n′

)

= PEα +
1

2
√

n
G(rα) +

1
2
Ep(x)[∇g]>δθ + op

(
1√
n

,
1√
n′

)
.
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Substituting δθ into the above expansion, we have

P̃Eα − PEα =
1

2
√

n
G(rα + (1− αrα)Ep(x)[∇g]>U−1

α ∇g)

− 1
2
√

n′
G′((1− α)rαEp(x)[∇g]>U−1

α ∇g) + op

(
1√
n

,
1√
n′

)
.

As a result, we have

V[P̃Eα] =
1
n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]>U−1

α ∇g

2

]

+
1
n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]>U−1

α ∇g

2

]
+ o

(
1
n

,
1
n′

)
,

which completes the proof.
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