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Abstract

A number of recent scientific and engineering problems require signals to be de-
composed into a product of a slowly varying positive envelope and a quickly vary-
ing carrier whose instantaneous frequency also varies slowly over time. Although
signal processing provides algorithms for so-called amplitude- and frequency-
demodulation (AFD), there are well known problems with all of the existing
methods. Motivated by the fact that AFD is ill-posed, we approach the problem
using probabilistic inference. The new approach, called probabilistic amplitude
and frequency demodulation (PAFD), models instantaneous frequency using an
auto-regressive generalization of the von Mises distribution, and the envelopes us-
ing Gaussian auto-regressive dynamics with a positivity constraint. A novel form
of expectation propagation is used for inference. We demonstrate that although
PAFD is computationally demanding, it outperforms previous approaches on syn-
thetic and real signals in clean, noisy and missing data settings.

1 Introduction

Amplitude and frequency demodulation (AFD) is the process by which a signal (yt) is decomposed
into the product of a slowly varying envelope or amplitude component (at) and a quickly varying
sinusoidal carrier (cos(φt)), that isyt = at cos(φt). In its general form this is an ill-posed problem
[1], and so algorithms must impose implicit or explicit assumptions about the form of carrier and
envelope to realise a solution. In this paper we make the standard assumption that the amplitude
variables are slowly varying positive variables, and the derivatives of the carrier phase,ωt = φt −
φt−1 called the instantaneous frequencies (IFs), are also slowly varying variables.

It has been argued that the subbands of speech are well characterised by such a representation [2, 3]
and so AFD has found a range of applications in audio processing including audio coding [4, 2],
speech enhancement [5] and source separation [6], and it is used in hearing devices [5]. AFD has
been used as a scientific tool to investigate the perception of sounds [7]. AFD is also of importance
in neural signal processing applications. Aggregate field measurements such as those collected at the
scalp by electroencephalography (EEG) or within tissue as local field potentials often exhibit tran-
sient sharp spectral lines at characteristic frequencies.Within each such band, both the amplitude of
the oscillation and the precise center frequencies may varywith time; and both of these phenomena
may reveal important elements of the mechanism by which the field oscillation arises.

∗Richard Turner would like to thank the Laboratory for Computational Vision, New York University, New
York, NY 10003-6603, USA, where he carried out this research.
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Despite the fact that AFD has found a wide range of important applications, there are well-known
problems with existing AFD algorithms [8, 1, 9, 10, 5]. Because of these problems, the Hilbert
method, which recovers an amplitude from the magnitude of the analytic signal, is still considered
to be the benchmark despite a number of limitations [11, 12].In this paper, we show examples of de-
modulation of synthetic, audio, and hippocampal theta rhythm signals using various AFD techniques
that highlights some of the anomalies associated with existing methods.

Motivated by the deficiencies in the existing methods this paper develops a probabilistic form of
AFD. This development begins in the next section where we reinterpret two existing probabilistic
algorithms in the context of AFD. The limitations of these methods suggest an improved model
(section 2) which we demonstrate on a range of synthetic and natural signals (sections 4 and 5).

1.1 Simple models for probabilistic amplitude and frequency demodulation

In this paper, we view demodulation as an estimation problemin which a signal is fit with a sinusoid
of time-varying amplitude and phase,

yt = ℜ (at exp (iφt)) + ǫt. (1)
The expression also includes a noise term which will be modeled as a zero-mean Gaussian with
varianceσ2

y, that isp(ǫt) = Norm(ǫt; 0, σ
2
y). We are interested in the situation where the IF of the

sinusoid varies slowly around a mean valueω̄. In this case, the phase can be expressed in terms of
the integrated mean frequency and a small perturbation,φt = ω̄t+ θt.

Clearly, the problem of inferringat and θt from yt is ill-posed, and results will depend on the
specification of prior distributions over the amplitude andphase perturbation variables. Our goal in
this paper is to specify such prior distributions directly,but this will require the development of new
techniques to handle the resulting non-linearities. A simpler alternative is to generate the sinusoidal
signal from a rotating two-dimensional phasor. For example, re-parametrizing the likelihood in
terms of the componentsx1,t = at cos(θt) andx2,t = at sin(θt), yields a linear likelihood function

yt = at (cos(ω̄t) cos(θt)− sin(ω̄t) sin(θt)) + ǫt = cos(ω̄t)x1,t − sin(ω̄t)x2,t + ǫt = w
T
txt + ǫt.

Here the phasor components, which have been collected into avectorxT
t = [x1,t, x2,t], are multiplied

by time-varying weights,wT
t = [cos(ω̄t),− sin(ω̄t)]. To complete the model, prior distributions can

be now be specified overxt. One choice that results in a particularly simple inferencealgorithm is
a Gaussian one-step auto-regressive (AR(1)) prior,

p(xk,t|xk,t−1) = Norm(xk,t;λxk,t−1, σ
2
x). (2)

When the dynamical parameter tends to unity (λ → 1) and the dynamical noise variance to zero
(σ2

x → 0), the dynamics become very slow, and this slowness is inherited by the phase perturbations
and amplitudes. This model is an instance of the Bayesian Spectrum Estimation (BSE) model [13]
(whenλ = 1), but re-interpreted in terms of amplitude- and frequency-modulated sinusoids, rather
than fixed frequency basis functions. As the model is a linearGaussian state space model, exact
inference proceeds via the Kalman smoothing algorithm.

Before discussing the properties of BSE in the context of fitting amplitude- and frequency-modulated
sinusoids, we derive an equivalent model by returning to thelikelihood function (eq. 1). Now the
full complex representation of the sinusoid is retained. Asbefore, the real part corresponds to the
observed data, but the imaginary part is now treated explicitly as missing data,

yt = ℜ (x1,t cos(ω̄t)− x2,t sin(ω̄t) + ix1,t sin(ω̄t) + ix2,t cos(ω̄t)) + ǫt. (3)
The new form of the likelihood function can be expressed in vector form,yt = [1, 0]zt + ǫt, using a
new set of variables,zt, which are rotated versions of the original variables,zt = R(ω̄t)xt where

R(θ) =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

. (4)

An auto-regressive expression for the new variables,zt, can now be found using the fact that rotation
matrices commute,R(θ1 + θ2) = R(θ1)R(θ2) = R(θ2)R(θ1), together with expression for the
dynamics of the original variables,xt (eq. 2),

zt = λR(ω̄)R(ω̄(t− 1))xt−1 +R(ω̄t)ǫt = λR(ω̄)zt−1 + ǫ
′

t (5)

where the noise is a zero mean Gaussian with covariance〈ǫ′tǫ
′T
t 〉 = R(ω̄t)〈ǫtǫ

T
t〉R

T(ω̄t) = σ2
xI.

This equivalent formulation of the BSE model is called the Probabilistic Phase Vocoder (PPV) [14].
Again exact inference is possible using the Kalman smoothing algorithm.
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1.2 Problems with simple models for probabilistic amplitude and frequency demodulation

BSE-PPV is used to demodulate synthetic and natural signalsin Figs. 1, 2 and 7. The decomposition
is compared to the Hilbert method. These examples immediately reveal several problems with BSE-
PPV. Perhaps most unsatisfactory is the fact that the IF estimates are often ill behaved, to the extent
that they go negative, especially in regions where the amplitude of the signal is low. It is easy to
understand why this occurs by considering the prior distribution over amplitude and phase implied
by our choice of prior distribution overxt (or equivalently overzt),

p(at, φt|at−1, φt−1) =
at

2πσ2
x

exp

[

−
1

2σ2
x

(

a2t + λ2a2t−1

)

+
λ

σ2
x

atat−1 cos(φt − φt−1 − ω̄)

]

. (6)

Phase and amplitude are dependent in the implied distribution, which is conditionally a uniform
distribution over phase when the amplitude is zero and a strongly peaked von Mises distribution
[15] when the amplitude is large. Consequently, the model favors more highly variable IFs at low
amplitudes. In some applications this may be desirable, butfor signals like sounds it presents a
problem. First it may assign substantial probability to unphysical negative IFs. Second, the same
noiseless signal at different intensities will yield different estimated IF content. Third, the complex
coupling makes it difficult to select domain-appropriate time-scale parameters. Consideration of
IF reveals yet another problem. When the phase-perturbations vary slowly (λ → 1), there is no
correlation between successive IFs (〈ωtωt−1〉 − 〈ωt〉〈ωt−1〉 → 0). One of the main goals of the
model was to capture correlated IFs through time, and the solution is to move to priors with higher
order temporal dependencies.

In the next section we will propose a new model for PAFD which addresses these problems, retaining
the same likelihood function, but modifying the prior to include independent distributions over the
phase and amplitude variables.
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Figure 1: Comparison of AFD methods on a sinusoidally amplitude- and frequency-modulated sinu-
soid in broad-band noise. Estimated values are shown in red.The gray areas show the region where
the true amplitude falls below the noise floor (a < σy) and the estimates become less accurate. See
section 4 for details.

2 PAFD using Auto-regressive and generalized von Mises distributions

We have argued that the amplitude and phase variables in a model for PAFD should be indepen-
dently parametrized, but that this introduces difficultiesas the likelihood is highly non-linear in
these variables. This section and the next develop the toolsnecessary to handle this non-linearity.
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Figure 2: AFD of a starling song. Top: The original waveform with estimated envelopes, shifted
apart vertically to aid visualization. The light gray bar indicates the problematic low amplitude
region. Bottom panels: IF estimates superposed onto the spectrum of the signal. PAFD tracks the
FM/AM well, but the other methods have artifacts.

An important initial consideration is whether to use a representation for phase which is wrapped,θ ∈
(−π, π], or unwrapped,θ ∈ R. Although the latter has the advantage of implying simpler dynamics,
it leads to a potential infinity of local modes at multiples of2π making inference extremely difficult.
It is therefore necessary to work with wrapped phases and a sensible starting point for a prior is thus
the von Mises distribution,

p(θ|k, µ) =
1

2πI0(k)
exp(k cos(θ − µ)) = vonMises(θ; k, µ). (7)

The two parameters, the concentration (k) and the mean (µ), determine the circular variance and
mean of the distribution respectively. The normalizing constant is given by a modified Bessel func-
tion of the second kind,I0(k). Crucially for our purposes, the von Mises distribution canbe obtained
by taking a bivariate isotropic Gaussian with an arbitrary mean, and conditioning onto the unit-circle
(this connects with BSE-PPV, see eq. 6). The Generalized vonMises distribution is formed in an
identical way when the bivariate Gaussian is anisotropic [16]. These constructions suggest a simple
extension to time-series data by conditioning a temporal bivariate Gaussian time-series onto the unit
circle at all sample times. For example, when two independent Gaussian AR(2) distributions are
used to construct the prior we have,

p(x1:2,1:T ) ∝
T
∏

t=1

1(x21,t + x22,t = 1)
2
∏

m=1

Norm(xm,t;λ1xm,t−1 + λ2xm,t−2, σ
2
x). (8)

where1(x21,t + x22,t = 1) is an indicator function representing the unit circle constraint. Upon a
change of variablesx1,t = cos(θt), x2,t = sin(θt) this yields,

p(θ1:T |k1, k2) ∝
T
∏

t=1

exp (k1 cos(θt − θt−1) + k2 cos(θt − θt−2)) , (9)
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wherek1 = λ1(1−λ2)/σ
2
x andk2 = λ2/σ

2
x. One of the attractive features of this prior is that when

it is combined with the likelihood (eq. 1) the resulting posterior distribution over phase variables
is a temporal version of the Generalized von Mises distribution. That is, it can be expressed as a
bivariate anisotropic Gaussian, which is constrained to the unit circle. It is this representation which
will prove essential for inference.

Having established a candidate prior over phases, we turn tothe amplitude variables. With one eye
upon the fact that the prior over phases can be interpreted asproduct of a Gaussian and a constraint,
we employ a prior of a similar form for the amplitude variables; a truncated Gaussian AR(τ ) process,

p(a1:T |λ1:τ , σ
2) ∝

T
∏

t=1

1(at ≥ 0) Norm

(

at;

τ
∑

t′=1

λt′at−t′ , σ
2

)

. (10)

The model formed from equations 1, 9 and 10 will be termed Probabilistic Amplitude and Frequency
Demodulation. PAFD is closely related to the BSE-PPV model [13, 14]. Moreover, when the
phase variables are drawn from a uniform distribution (k1 = k2 = 0) it reduces to the convex
amplitude demodulation model [17], which itself is a form ofprobabilistic amplitude demodulation
[18, 19, 20]. The AR prior over phases has also been used in a regression setting [21].

3 Inference via expectation propagation

The PAFD model introduced in the last section contains threeseparate types of non-linearity: the
multiplicative interaction in the likelihood, the unit circle constraint, and the positivity constraint. Of
these, it is the circular constraint which is most challenging as the development of general purpose
machine learning methods for handling hard, non-convex constraints is an open research problem.
Following [22], we propose a novel method which uses expectation propagation (EP) [23] to replace
the hard constraints with soft, local, Gaussian approximations which are iteratively refined.

In order to apply EP, the model is first rewritten into a simpler form. Making use of the
fact that an AR(τ ) process can be rewritten as an equivalent multi-dimensional AR(1) model
with τ states, we concatenate the latent variables into an augmented state vector,sT

t =
[at, at−1, . . . , at−τ+1, x1,t, x2,t, x1,t−1, x2,t−1], and express the model as a product of clique po-
tentials in terms of this variable,

p(y1:T , s1:T ) ∝

T
∏

t=1

πt(st, st−1)ψt(s1,t, s1+τ,t, s2+τ,t), whereπt(st, st−1) = Norm(st; Λsst−1,Σs),

ψt(at, x1,t, x2,t) = Norm
(

yt; at(cos(ω̄t)x1,t − sin(ω̄t)x2,t), σ
2
y

)

1(at ≥ 0)1(x21,t + x22,t = 1).

(See the supplementary material for details of the dynamical matricesΛs andΣs). In this new form
the constraints have been incorporated with the non-linearlikelihood into the potentialψt, leav-
ing a standard Gaussian dynamical potentialπt(st, st−1). Using EP we approximate the posterior
distribution using a product of forward, backward and constrained-likelihood messages [24],

q(s1:T ) =

T
∏

t=1

αt(st)βt(st)ψ̃t(a1,t, x1,t, x2,t) =

T
∏

t=1

qt(st). (11)

The messages should be interpreted as follows:αt(st) is the effect ofπt(st−1, st) and q(st−1)
on the beliefq(st), whilst βt(st) is the effect ofπt+1(st, st+1) and q(st+1) on the beliefq(st).
Finally, ψ̃t(a1,t, x1,t, x2,t) is the effect of the likelihood and the constraints on the belief q(st). All
of these messages will be un-normalized Gaussians. The updates for the messages can be found by
removing the messages fromq(s1:T ) that correspond to the effect of a particular potential. These
messages are replaced by the corresponding potential. The deleted messages are then updated by
moment matching the two distributions. The updates for the forward and backward messages are
a straightforward application of EP and result in updates that are nearly identical to those used for
Kalman smoothing. The updates for the constrained likelihood potential are more complicated:

updateψ̃t such thatq(xt)
MOM
= p̂ψ(st) = αt(st)βt(st)ψt(at, x1,t, x2,t). (12)

The difficulty is the moment computation which we evaluate intwo stages. First, we integrate
over the amplitude variable, which involves computing the moments of a truncated Gaussian and
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is therefore computationally efficient. Second, we numerically integrate over the one dimensional
phase variable. For the details we again refer the reader to the supplementary material.

A standard forward-backward message update schedule was used. Adaptive damping improved
the numerical stability of the algorithm substantially. The computational complexity of PAFD is
O
(

T (N + τ3)
)

whereN are the number of points used to compute the integral over thephase
variable. For the experiments we used a second order processover the amplitude variables (τ = 2)
andN = 1000 integration points. In this case, the 16-32 forward-backward passes required for
convergence took one minute on a modern laptop computer for signals of lengthT = 1000.

4 Application to synthetic signals

One of the main challenges posed by the evaluation of AFD algorithms is that the ground truth
for real-world signals is unknown. This means that a quantitative comparison of different schemes
must take an indirect approach. The first set of evaluations presented here uses synthetic signals, for
which the ground truth is known. In particular, we consider amplitude- and frequency-modulated
sinusoids,yt = at cos(θt) whereat = 1+ sin(2πfat) and 1

2π
dθ
dt = f̄ +∆f sin(2πff t), which have

been corrupted by Gaussian noise. Fig. 1 compares AFD of one such signal (̄f = 50Hz, fa = 8Hz,
ff = 5Hz and∆f = 25Hz) by the Hilbert, BSE-PPV and PAFD methods. Fig. 3 summarizes the
results at different noise levels in terms of the signal to noise ratio (SNR) of the estimated variables
and the reconstructed signal, i.e. SNR(a) = 10 log10

∑T

t=1 a
2
t − 10 log10

∑T

t=1 (at − ât)
2. PAFD

consistently outperforms the other methods by this measure. Furthermore, Fig. 4 demonstrates that
PAFD can be used to accurately reconstruct missing sectionsof this signal, outperforming BSE-PPV.
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Figure 3: Noisy synthetic data. SNR of estimated variables as a function of the SNR of the signal.
Envelopes (left), IFs (center) and denoised signal (right). Solid markers denote examples in Fig. 1.

5 Application to real world signals

Having validated PAFD on simple synthetic examples, we now consider real-world signals. Bird-
song is used as a prototypical signal as it has strong frequency-modulation content. We isolate a
300ms component of a starling song using a bandpass filter andapply AFD. Fig. 2 shows that PAFD
can track the underlying frequency modulation even though there is noise in the signal which causes
the other methods to fail. This example forms the basis of twoimportant robustness and consistency
tests. In the first, spectrally matched noise is added to the signal and the IFs and amplitudes are re-
estimated and compared to those derived from the clean signal. Fig. 5 shows that the PAFD method
is considerably more robust to this manipulation than both the Hilbert and BSE-PPV methods. In the
second test, regions of the signal are removed and the model’s predictions for the missing regions
are compared to the estimates derived from the clean signal (see fig. 6). Once again PAFD is more
accurate. As a final test of PAFD we consider the important neuroscientific task of estimating the
phase, equivalently the IF, of theta oscillations in an EEG signal. The EEG signal typically contains
broadband noise and so a conventional analysis applies a band-pass filter before using the Hilbert
method to estimate the IF. Although this improves the estimates markedly, the noise component
cannot be completely eradicated which leads to artifacts inthe IF estimates (see Fig. 7). In contrast
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Figure 4: Missing synthetic data experiments. TOP: SNR of estimated variables as a function of gap
duration in the input signal. Envelopes (left), IFs (center) and denoised signal (right). Solid markers
indicate the examples shown in the bottom rows of the figure. BOTTOM: Two examples of PAFD
reconstruction. Light gray regions indicate missing sections of the signal.
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PAFD returns sensible estimates from both the filtered and original signal. Critically, both estimates
are similar to one another suggesting the new estimation scheme is reliable.

6 Conclusion

Amplitude and frequency demodulation is a difficult, ill-posed estimation problem. We have devel-
oped a new inferential solution called probabilistic amplitude and frequency demodulation which
employs a von Mises time-series prior over phase, constructed by conditioning a bivariate Gaussian
auto-regressive distribution onto the unit circle. The construction naturally leads to an expectation
propagation inference scheme which approximates the hard constraints using soft local Gaussians.
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Figure 7: Comparison of AFD methods on EEG data. The left handside shows estimates derived
from the raw EEG signal, whilst the right shows estimates derived from a band-pass filtered version.
The gray areas show the region where the true amplitude fallsbelow the noise floor (a < σy), where
conventional methods fail.

We have demonstrated the utility of the new method on synthetic and natural signals, where it outper-
formed conventional approaches. Future research will consider extensions of the model to multiple
sinusoids, and learning the model parameters so that the algorithm can adapt to novel signals.

Acknowledgments

Richard Turner was funded by the EPRC, and Maneesh Sahani by the Gatsby Charitable Foundation.

8



References

[1] P. J. Loughlin and B. Tacer. On the amplitude- and frequency-modulation decomposition of signals.The
Journal of the Acoustical Society of America, 100(3):1594–1601, 1996.

[2] J. L. Flanagan. Parametric coding of speech spectra.The Journal of the Acoustical Society of America,
68:412–419, 1980.

[3] P. Clark and L.E. Atlas. Time-frequency coherent modulation filtering of nonstationary signals.Signal
Processing, IEEE Transactions on, 57(11):4323 –4332, nov. 2009.

[4] J. L. Flanagan and R. M. Golden. Phase vocoder.Bell System Technical Journal, pages 1493–1509, 1966.

[5] S. M. Schimmel.Theory of Modulation Frequency Analysis and Modulation Filtering, with Applications
to Hearing Devices. PhD thesis, University of Washington, 2007.

[6] L. E. Atlas and C. Janssen. Coherent modulation spectral filtering for single-channel music source sepa-
ration. InProceedings of the IEEE Conference on Acoustics Speech and Signal Processing, 2005.

[7] Z. M. Smith, B. Delgutte, and A. J. Oxenham. Chimaeric sounds reveal dichotomies in auditory percep-
tion. Nature, 416(6876):87–90, 2002.

[8] J. Dugundji. Envelopes and pre-envelopes of real waveforms.IEEE Transactions on Information Theory,
4:53–57, 1958.

[9] O. Ghitza. On the upper cutoff frequency of the auditory critical-band envelope detectors in the context
of speech perception.The Journal of the Acoustical Society of America, 110(3):1628–1640, 2001.

[10] F. G. Zeng, K. Nie, S. Liu, G. Stickney, E. Del Rio, Y. Y. Kong, and H. Chen. On the dichotomy in
auditory perception between temporal envelope and fine structure cues(L). The Journal of the Acoustical
Society of America, 116(3):1351–1354, 2004.

[11] D. Vakman. On the analytic signal, the Teager-Kaiser energy algorithm, and other methods for defining
amplitude and frequency.IEEE Journal of Signal Processing, 44(4):791–797, 1996.

[12] G. Girolami and D. Vakman. Instantaneous frequency estimation and measurement: a quasi-local method.
Measurement Science and Technology, 13(6):909–917, 2002.

[13] Y. Qi, T. P. Minka, and R. W. Picard. Bayesian spectrum estimation of unevenly sampled nonstationary
data. InInternational Conference on Acoustics, Speech, and Signal Processing, 2002.

[14] A. T. Cemgil and S. J. Godsill. Probabilistic Phase Vocoder and its application to Interpolation of Missing
Values in Audio Signals. In13th European Signal Processing Conference, Antalya/Turkey, 2005.

[15] C. Bishop.Pattern Recognition and Machine Learning. Springer, 2006.

[16] R. Gatto and S. R. Jammalamadaka. The generalized von mises distribution. Statistical Methodology,
4:341–353, 2007.

[17] G. Sell and M. Slaney. Solving demodulation as an optimization problem. IEEE Transactions on Audio,
Speech and Language Processing, 18:2051–2066, November 2010.

[18] R. E. Turner and M. Sahani. Probabilistic amplitude demodulation. InIndependent Component Analysis
and Signal Separation, pages 544–551, 2007.

[19] R. E. Turner and M. Sahani. Statistical inference for single- and multi-band probabilistic amplitude
demodulation. InProceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 5466–5469, 2010.

[20] R. E. Turner and M. Sahani. Demodulation as probabilistic inference. IEEE Transactions on Audio,
Speech and Language Processing, 2011.

[21] J. Breckling.The analysis of directional time series: Application to wind speed and direction. Springer-
Verlag, 1989.

[22] J. P. Cunningham.Algorithms for Understanding Motor Cortical Processing and Neural Prosthetic Sys-
tems. PhD thesis, Stanford University, Department of Electrical Engineering, (Stanford, California, USA,
2009.

[23] T. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT Media Lab, 2001.

[24] T. Heskes and O. Zoeter. Expectation propagation for approximate inference in dynamic bayesian net-
works. InA. Darwiche and N. Friedman, pages 216–233. Morgan Kaufmann Publishers, 2002.

9


