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Abstract

We consider a class of sparsity-inducing regularizatiomgsbased on submodular func-
tions. While previous work has focused on non-decreasingtions, we explore sym-
metric submodular functions and their Lovasz extensiong show that the Lovasz
extension may be seen as the convex envelope of a functibdepands on level sets
(i.e., the set of indices whose corresponding componenteainderlying predictor are
greater than a given constant): this leads to a class of g@tuectured regularization
terms that impose prior knowledge on the level sets, andmigtan the supports of the
underlying predictors. We provide unified optimization@ithms, such as proximal
operators, and theoretical guarantees (allowed levelesetsecovery conditions). By
selecting specific submodular functions, we give a new mégation to known norms,
such as the total variation; we also define new norms, inquaati ones that are based
on order statistics with application to clustering and ientletection, and on noisy cuts
in graphs with application to change point detection in thespnce of outliers.

1 Introduction

The concept of parsimony is central in many scientific domaln the context of statistics, signal
processing or machine learning, it may take several formgssially, in a variable or feature
selection problem, a sparse solution with many zeros ist#osg that the model is either more
interpretable, cheaper to use, or simply matches avaifaide knowledge (see, e.g., [1, 2, 3] and
references therein). In this paper, we instead considesigpdnducing regularization terms that
will lead to solutions withmany equal valuesA classical example is the total variation in one or
two dimensions, which leads to piecewise constant solstjdn5] and can be applied to various
image labelling problems [6, 5], or change point detectasks [7, 8, 9]. Another example is the
“Oscar” penalty which induces automatic grouping of thedess [10]. In this paper, we follow
the approach of [3], who designed sparsity-inducing noraseld omon-decreasingubmodular
functions, as a convex approximation to imposing a spedifar pn thesupportsof the predictors.
Here, we show that a similar parallel holds for some othessctef submodular functions, namely
non-negative set-functions which are equal to zero for tleahd empty set. Our main instance of
such functions areymmetricsubmodular functions.

We make the following contributions:

— We provide in Section 3 explicit links between priors on lesets and certain submodular
functions: we show that the Lovasz extensions (see, &.3.ahd a short review in Section 2)
associated to these submodular functions are the convelog®s (i.e., tightest convex lower
bounds) of specific functions that depend on all level sete@finderlying vector.

— In Section 4, we reinterpret existing norms such as the vatahtion and design new norms,
based on noisy cuts or order statistics. We propose apiplisato clustering and outlier de-
tection, as well as to change point detection in the presehaetliers.

— We provide unified algorithms in Section 5, such as proxinparators, which are based on a
sequence of submodular function minimizations (SFMs),mdwech SFMs are efficient, or by
adapting the generic slower approach of [3] otherwise.

— We derive unified theoretical guarantees for level set regowm Section 6, showing that even
in the absence of correlation between predictors, levales®tvery is not always guaranteed,
a situation which is to be contrasted with traditional suppacovery situations [1, 3].



Notation. Forw € RP andq € [1, 0], we denote by|w]|, the {,-norm ofw. Given a subsefl

of V. ={1,...,p}, 14 € {0,1}? is the indicator vector of the subsét Moreover, given a vector
w and a matrixQ, wa and@ 44 denote the corresponding subvector and submatrix ahd Q.
Finally, forw € RP andA C V, w(A) = 3, . 4 wr = w' 14 (this defines a modular set-function).
In this paper, for a certain vectar € R?, we calllevel setdhe sets of indices which are larger (or
smaller) or equal to a certain constantwhich we denotdw > a} (or {w < «}), while we call
constant setthe sets of indices which are equal to a constanthich we denotdw = «}.

2 Review of Submodular Analysis

In this section, we review relevant results from submodaelysis. For more details, see, e.g., [12],
and, for a review with proofs derived from classical convealgsis, see, e.g., [11].

Definition. Throughout this paper, we consides@bmodulafunction F' defined on the power set
2V ofV={1,...,p}, i.e,suchthatA, B Cc V, F(A)+ F(B) > F(AUB)+ F(AN B). Unless
otherwise stated, we consider functions which are nonihegae., such that’(A) > 0forall A C

V), and that satisfy¥' (@) = F(V) = 0. Usual examples are symmetric submodular functions, i.e.,
suchthatvA C V, F(V\A) = F(A), which are known to always have non-negative values. We give
several examples in Section 4; for illustrating the consépttoduced in this section and Section 3,

we will consider the cut in an undirected chain graph, F&.A) = Z?;ll [(1a); — (1a)j41]-

Lovasz extension. Given any set-functio¥ such thatF(V) = F(2) = 0, one can define its
Lovasz extensiorf : R? — R, asf(w) = [, F({w > o})da (see, e.g., [11] for this particular
formulation). The Lovasz extension is convex if and onlyFifis submodular. Moreover is
piecewise-linear and for allt C V, f(14) = F(A), that s, it is indeed an extension frod
(which can be identified t§0, 1}? through indicator vectors) tB?. Finally, it is always positively

homogeneous. For the chain graph, we obtain the usual ttation f (w) = Z‘j;} |w; — wjt1].

Base polyhedron. We denote byB(F) = {s € RP, YA C V, s(A) < F(4), s(V) = F(V)}
the base polyhedroifil 2], where we use the notatiofAd) = -, , sx. One important result in
submodular analysis is that i is a submodular function, then we have a representatighasf a
maximum of linear functions [12, 11], i.e., for all € R?, f(w) = max,cp(r) w's. Moreover,
instead of solving a linear program witlf — 1 contraints, a solutios may be obtained by the
following “greedy algorithm”. order the componentswfin decreasing ordew;, > --- > wj,,
and then take forakt € {1,...,p}, s;, = F({j1,...,dx}) — F({J1, -, de—11})-

Tight and inseparable sets. The polyhedrd/ = {w € R?, f(w) < 1} andB(F) are polar to each
other (see, e.g., [13] for definitions and properties of pséds). Therefore, the facial structurelof
may be obtained from the one Bf(F'). Givens € B(F'), asetd C V is saidtightif s(A) = F'(A).
Itis known that the set of tight sets is a distributive ladtice., if A and B are tight, then so ardU B
andA N B [12, 11]. The faces oB(F') are thus intersections of hyperplafe$A) = F(A)} for
A belonging to certain distributive lattices (see Prop. 3seAA is saidseparablef there exists a
non-trivial partition ofA = B U C such thatF'(A) = F(B) + F(C). A setis said inseparable if it
is not separable. For the cut in an undirected graph, inabfmsets are exactly connected sets.

3 Properties of the Lovasz Extension

In this section, we derive properties of the Lovasz extam$or submodular functions, which go
beyond convexity and homogeneity. Throughout this sectimassume that' is a non-negative
submodular set-function that is equal to zerga@ndV. Thisimmediately implies thatis invariant
by addition of any constant vector (that w + aly) = f(w) for all w € R? anda € R), and
that f(1y) = F(V) = 0. Thus, contrary to the non-decreasing case [3], our regelar are not
norms. However, they are norms on the hyperplanél, = 0} as soon as fod # @ andA # V,
F(A) > 0 (which we assume for the rest of this paper).

We now show that the Lovasz extension is the convex envelbpeertain combinatorial function
which does depend on all levets séts > o} of w € RP (see proofin [14]):

Proposition 1 (Convex envelope)The Lowasz extensiolfi(w) is the convex envelope of the function
w — maxaer F({w > a}) onthe sef0, 1]+ R1y = {w € RP, maxgey wr —mingey wi < 1}.
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Figure 1: Top: Polyhedral level set ¢f(projected on the sei ' 11 = 0), for 2 different submodular
symmetric functions of three variables, with differentdparable sets leading to different sets of
extreme points; changing valuesBfmay make some of the extreme points disappear. The various
extreme points cut the space into polygons where the omglefinthe component is fixed. Left:
F(A) = 1j4eq1,2}, leading tof (w) = maxy wy, — ming wy, (all possible extreme points); note
that the polygon need not be symmetric in general. Right:dimensional total variation on three
nodes, i.e.F'(A) = |lica — laca| + |laca — 13¢c 4], leading tof (w) = |wy — wa| 4 |we — ws], for
which the extreme points corresponding to the separablglsg} and its complement disappear.

Note the difference with the result of [3]: we consider hediferent set on which we compute the
convex envelopel, 1]? + R1y instead of—1, 1]?), and not a function of the support ef, but of

all its level sets. Moreover, the Lovasz extension is a convex relaxation afretion oflevel sets
(of the form{w > a}) and not ofconstant setéof the form{w = «}). It would have been perhaps
more intuitive to consider for example F ({w = a})da, since it does not depend on the ordering
of the values thaty may take; however, to the best of our knowledge, the lattectian does not
lead to a convex function amenable to polynomial-time athors. This definition through level
sets will generate some potentially undesired behaviah(sis the well-known staircase effect for
the one-dimensional total variation), as we show in Sediion

The next proposition describes the set of extreme pointhefunit ball”’ &/ = {w, f(w) < 1},
giving a first illustration of sparsity-inducing effecteésexample in Figure 1, in particular for the
one-dimensional total variation).

Proposition 2 (Extreme points) The extreme points of the $¢0 {w " 1, = 0} are the projections
of the vectord 4/ F(A) onthe plangw " 1y, = 0}, for A such thatA is inseparable fof” andV'\ A
is inseparable folB — F(AU B) — F(A).

Partially ordered sets and distributive lattices. A subsetD of 2" is a (distributive) lattice if it

is invariant by intersection and union. We assume in thiep#mat all lattices contain the empty
set@ and the full set’, and we endow the lattice with the inclusion order. Suchckest may be
represented asartially ordered set (posel)(D) = {A4;,..., A} (with order relationship=),
where the setsl;, j = 1,...,m, form apartition of V' (we always assume a topological ordering
of the sets, i.e.A; = A; = i > j). Asillustrated in Figure 2, we go fro® to II(D), by
considering all maximal chains i and the differences between consecutive sets. We go from
II(D) to D, by constructing alidealsof II(D), i.e., sets/ such that if an element a1(D) is lower
than an element of, then it has to be ity (see [12] for more details, and an example in Figure 2).
Distributive lattices and posets are thus in one-to-oneespondence. Throughout this section, we
go back and forth between these two representations. Ttrébdis/e latticeD will correspond to

all authorized level setsw > o} for w in a single face of/, while the elements of the posdtD)

are the constant sets (over whighis constant), with the order between the subsets gipangal
constraints between the values of the corresponding aussta

Faces of/. The faces of{ are characterized by lattic@ with their corresponding posdi§ D) =
{41,...,An}. We denote by/3, (and byldp its closure) the set ab € R” such that (a) (w) < 1,
(b) w is piecewise constant with respectligD), with valuewv; on A;, and (c) for all pairi, j),

"Note that the suppoftw = 0} is a constant set which is the intersection of two level sets.
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Figure 2: Left: distributive lattice with 7 elementsh'2:3:456} represented with the Hasse dia-
gram corresponding to the inclusion order (for a partiakord Hasse diagram connectgo B if
Ais smaller tharB and there is n@”’ such thatA is smaller tharC andC' is smaller tharB). Right:
corresponding poset, with 4 elements that form a partitiofilo2, 3,4, 5, 6}, represented with the
Hasse diagram corresponding to the orgda node points to its immediate smaller node according

to >=). Note that this corresponds to an “allowed” lattice (segpPB8) for the one-dimensional total
variation.

A; = A; = v; > v;. For certain lattice®, these will be exactly the relative interiors of all faces
of U (see proofin [14]):

Proposition 3 (Faces ot{) The (non-empty) relative interiors of all facesigfare exactly of the
formi, whereD is a lattice such that:

(i) the restriction ofF' to D is modular, i.e., foralld, B € D, F(A)+F(B) = F(AUB)+F(ANB),
(i) for all j € {1,...,m}, the setd; is inseparable for the functiof; — F(B;j_1 U C;) —
F(Bj_1), whereB;_; is the union of all ancestors of; in II(D),

(iii) among all lattices corresponding to the samporderedartition, D is a maximal element of
the set of lattices satisfying (i) and (ii).

Among the three conditions, the second one is the easiggtipret, as it reduces to having constant
sets which are inseparable for certain submodular funstiand for cuts in an undirected graph,
these will exactly be connected sets. Note also that extpaims from Prop. 2 are recovered with
D={o,AV}

Since we are able to characteraéfaces of/ (of all dimensions) with non-empty relative interior,
we have a partition of the space and any= R?P which is not proportional td -, will be, up to
the strictly positive constant(w), in exactly one of these relative interiors of faces; weraiehis
lattice as thdattice associated ta. Note that from the face belongs to, we have strong constraints
on the constant sets, but we may not be able to determinevalldets ofw, because only partial
constraints are given by the order BitD). For example, in Figure 2 for the one-dimensional total
variation,w, may be larger or smaller than; = wg (and even potentially equal, but with zero
probability, see Section 6).

4 Examples of Submodular Functions

In this section, we provide examples of submodular funstiesmd of their Lovasz extensions. Some
are well-known (such as cut functions and total variatios@ne are new in the context of supervised
learning (regular functions), while some have interesgffgcts in terms of clustering or outlier
detection (cardinality-based functions).

Symmetrization. From any submodular functiofi, one may defind’(4) = G(A) + G(V\A) —
G(2)— G(V), which is symmetric. Potentially interesting examplesahtare beyond the scope of
this paper are mutual information, or functions of eigenealof submatrices [3].

Cut functions. Given a set ohonnegativaveightsd : V x V' — R, define the cuf’(A) =

> ke jevia Ak, j). The Lovasz extensionis equalfow) = >°, .y d(k, j)(wi, —w;)+ (which
shows submodularity becaugeis convex), and is often referred to as the total variatidnthé
weight functiond is symmetric, then the submodular function is also symmetni this case, it can
be shown that inseparable sets for functienss F(A U B) — F(B) are exactlyconnectedsets.
Hence, by Props. 3 and 6, constant sets are connected séth,isvthe usual justification behind
the total variation. Note however that some configuratidnsomnected sets are not allowed due
to the other conditions in Prop. 3 (see examples in SectiofnBlrigure 5 (right plot), we give an
example of the usual chain graph, leading to the one-dirnaaktotal variation [4, 5]. Note that
these functions can be extended to cuts in hypergraphshwanéy have interesting applications in
computer vision [6]. Moreover, directed cuts may be inténgsto favor increasing or decreasing
jumps along the edges of the graph.



weights

I
>

- ——TV
5] 5 g 0.3/ =*—robust TV
50
2 2 =
B 0l /et B 2 02
E E £
7 01
-5 -5 [}
5 10 15 20 5 10 15 20 5 10 15 20 2 ° 2 4 6

log(c?

Figure 3:Three left plots: Estimation of noisy piecewise constant 1D signal With?((mgl (indices

5 and 15 in the chain of 20 nodes). Left: original signal. Mé&ddbest estimation with total variation

(level sets are not correctly estimated). Right: best edton with therobusttotal variation based on

noisy cut functions (level sets are correctly estimatedh Veiss bias and with detection of outliers).
Right plot: clustering estimation error vs. noise level, in a seque&fid®0 variables, with a single

jump, where noise of variance one is added, Withof outliers (averaged over 20 replications).

Regular functions and robust total variation. By partial minimization, we obtain so-called
regular functions[6, 5]. One application is “noisy cut functions”: for a givereight function
d: W x W — R4, where each node i/ is uniquely associated in a node ¥, we consider
the submodular function obtained as the minimum cut adaetetlin the augmented graph (see
an example in the right plot of Figure 5J7(4) = mingcw > icp, jenwp Ak, J) + A[AAB|.
This allows for robust versions of cuts, where some gaps neatolerated; indeed, compared to
having directly a small cut forl, B needs to have a small cut and be closedtahus allowing
some elements to be removed or addeditm order to lower the cut. See examples in Figure 3,
illustrating the behavior of the type of graph displayedha bottom-right plot of Figure 5, where
the performance of the robust total variation is signifiamtore stable in presence of outliers.

Cardinality-based functions. For F'(A) = h(|A|) whereh is such that.(0) = h(p) = 0 andh
concave, we obtain a submodular function, and a Lovasnsiae that depends on the order statis-
tics ofw, i.e., ifw;, > --- > w;, , thenf(w) = Zﬁ;} h(k)(w;, —wj,. ). While these examples do
not provide significantly different behaviors for the noeedeasing submodular functions explored
by [3] (i.e., in terms ofsuppon), they lead to interesting behaviors here in termfewél setsi.e.,
they will make the components cluster together in specific ways. Indeed, as shown in Seétio
allowed constant setd are such that! is inseparable for the functiofl — h(|B U C|) — h(|B|)
(whereB C V is the set of components with higher values than the one,iwhich imposes that
the concave function is not linear or| B|, | B|+ | A|]. We consider the following examples:

1. F(A) = |A| - [V\A], leading tof (w) = Y% ._, |w; — w;|. This function can thus be also

7,7=1
seen as the cut in the fully connected gré{ph. All patterneeéllsets are allowed as the
function i is strongly concave (see left plot of Figure 4). This funetltas been extended
in [15] by considering situations where eaeh is a vector, instead of a scalar, and replacing
the absolute valuéw; — w;| by any norm||w; — wj||, leading to convex formulations for
clustering.

. F(A)=1if A+# @andA # V, and0 otherwise, leading t¢(w) = max; ; |w; — w;|. Two

large level sets at the top and bottom, all the rest of theléas are in-between and separated
(Figure 4, second plot from the left).

. F(A) = max{|A4|,|[V\A|}. This function is piecewise affine, with only one kink, thusgyo

one level set of cardinalty greater than one (in the middigddssible, which is observed in
Figure 4 (third plot from the left). This may have applicatiao multivariate outlier detection
by considering extensions similar to [15].

5 Optimization Algorithms

In this section, we present optimization methods for mizing convex objective functions regular-

ized by the Lovasz extension of a submodular function. €heesd to convex optimization problems,

which we tackle using proximal methods (see, e.g., [16, hd]r@ferences therein). We first start
by mentioning that subgradients may easily be derived (bogsadient descent is here rather inef-
ficient as shown in Figure 5). Moreover, note that with theagquoss, the regularization paths are
piecewise affine, as a direct consequence of regularizireggmtyhedral function.
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Figure 4: Left: Piecewise linear regularization paths of proximal protddigqg. (1)) for different
functions of cardinality. From left to right: quadratic fction (all level sets allowed), second ex-
ample in Section 4 (two large level sets at the top and bottpregewise linear with two pieces (a
single large level set in the middIeRRight: Same plot for the one-dimensional total variation. Note
that in all these particular cases the regularization pfatherthogonal designs argglomerative
(see Section 5), while for general designs, they wouldtstibbiecewise affine but not agglomerative.

Subgradient. From f(w) = max,ep(r) sTw and the greedy algorithfrpresented in Section 2,
one can easily get ipolynomial timeone subgradient as one of the maximizersThis allows to
use subgradient descent, with slow convergence compapdxonal methods (see Figure 5).

Proximal problems through sequences of submodular functin minimizations (SFMs). Given
regularized problems of the formin,crr L(w)+ A f(w), whereL is differentiable with Lipschitz-
continuous gradientproximal methodshave been shown to be particularly efficient first-order
methods (see, e.g., [16]). In this paper, we use the meth®dA’l and its accelerated variant
“FISTA’ [16]. To apply these methods, it suffices to be abladbtve efficiently:

min gl|w = 2[|3 + Af (w), €)

which we refer to as thproximal problem It is known that solving the proximal problem is related
to submodular function minimization (SFM). More preciséhe minimum ofd — AF(A) — z(A)
may be obtained by selecting negative components of thé@olof a single proximal problem [12,
11]. Alternatively, the solution of the proximal problem yrfae obtained by a sequence of at most
submodular function minimizations of the form— AF'(A) — z(A), by a decomposition algorithm
adapted from [18], and described in [11].

Thus, computing the proximal operator has polynomial caxipf since SFM has polynomial com-
plexity. However, it may be too slow for practical purposas,the besgenericalgorithm has
complexityO(p®) [19]°. Nevertheless, this strategy is efficient for families dswdular functions
for which dedicated fast algorithms exist:

— Cuts: Minimizing the cut or the partially minimized cut, plus a dhdar function, may be
done with a min-cut/max-flow algorithm [see, e.g., 6, 5]. porximal methods, we need in
fact to solve an instance ofgarametric max-flowproblem, which may be done using other
efficient dedicated algorithms [21, 5] than the decompasisilgorithm derived from [18].

— Functions of cardinality: minimizing functions of the formd — AF(A) — z(A) can be done
in closed form by sorting the elements:of

Proximal problems through minimum-norm-point algorithm. In thegenericcase (i.e., beyond
cuts and cardinality-based functions), we can follow [1R, 8nce f(w) is expressed as a mini-
mum of linear functions, the problem reduces to the prajeatin the polytope (F'), for which we
happen to be able to easily maximize linear functions (ugiegyreedy algorithm described in Sec-
tion 2). This can be tackled efficiently by the minimum-nopwmint algorithm [12], which iterates
between orthogonal projections on affine subspaces andrdleely algorithm for the submodular
functiorf. We compare all optimization methods on synthetic examipl&sgure 5.

2The greedy algorithm to find extreme points of the base palsdreshould not be confused with the greedy
algorithm (e.g., forward selection) that is common in sused learning/statistics.

®Note that even in the case of symmetric submodular functihsre more efficient algorithms i@ (p?)
for submodular function minimization (SFM) exist [20], th@nimization of functions of the form\F'(A) —
z(A) is provably as hard as general SFM [20].

“Interestingly, when used for submodular function minirtima (SFM), the minimum-norm-point algo-
rithm has no complexity bound but is empirically faster tlaégorithms with such bounds [12].
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Proximal path as agglomerative clustering. When\ varies from zero tetoo, then the unique
optimal solution of Eq. (1) goes from to a constant. We now provide conditions under which
the regularization path of the proximal problem may be otadiby agglomerative clustering (see
examples in Figure 4):

Proposition 4 (Agglomerative clustering) Assume that for all setd, B suchthatBNn A = @ and
A is inseparable foD — F(B U D) — F(B), we have:

VO C A, {{[F(BUA) - F(B)] < F(BUC) — F(B). )

Then the regularization path for Eq. (1) &yglomerativethat is, if two variables are in the same
constant for a certain. € R, so are they for all largen > p.

As shown in [14], the assumptions required for by Prop. 4 atisfeed by (a) all submodular set-
functions that only depend on the cardinality, and (b) bydhe-dimensional total variation—we
thus recover and extend known results from [7, 22, 15].

Adding an ¢;-norm. Following [4], we may add thé,-norm||w/||; for additional sparsity ofv (on
top of shaping its level sets). The following propositionesnds the result for the one-dimensional
total variation [4, 23] to all submodular functions and tHedvasz extensions:

Proposition 5 (Proximal problem for ¢;-penalized problems) The unique minimizer o§|\w —
2|3 + f(w) + Aljw||; may be obtained by soft-thresholding the minimizers|af — 2|3 + f(w).
That is, the proximal operator fof + A|| - ||; is equal to the composition of the proximal operator
for f and the one fon\|| - ||;.

6 Sparsity-inducing Properties

Going from the penalization of supports to the penalizatitievel sets introduces some complexity
and for simplicity in this section, we only consider the as#éd in the context of orthogonal design
matrices, which is often referred to as the denoising prabknd in the context of level set esti-
mation already leads to interesting results. That is, wdysthe unique global minimurd of the
proximal problemin Eg. (1) and make some assumption reggeditypically z = w* + noise), and
provide guarantees related to the recovery of the levebdet$. We first start by characterizing the
allowed level sets, showing that the partial constrainfmdd in Section 3 on faces ¢ff (w) < 1}

do not create by chance further groupings of variables (s@af p1 [14]).

Proposition 6 (Stable constant setsAssumez € R? has an absolutely continuous density with
respect to the Lebesgue measure. Then, with probabilitytbeeinique minimize#) of Eq. (1) has
constant sets that define a partition corresponding to adatb defined in Prop. 3.

We now show that under certain conditions the recoveredtanhsets are the correct ones:



Theorem 1 (Level set recovery)Assume that = w* + oe, wheree € RP? is a standard Gaus-
sian random vector, ana* is consistent with the lattic® and its associated poséi(D) =
(A1,..., Am), with valuesv; on Ay, for j € {1,...,m}. DenoteB; = A; U---U A; for

j €{1,...,m}. Assume that there exists some constagnts 0 andv > 0 such that:

VCJ‘CAjvF(ijlUCj)—F(ijl)—%[F( j1UA;) = F(B;_1)] > n;min{{54,1- 51}, (3)
Vi,j €{1,...,m}, Ai = Aj = vf —v; > v, 4)
vie{1,...,m}, /\17&) F(Bia)| <u/4 (5)

Then the unique minimizer of Eq. (1) is associated to the same lattidehanw*, with probability
2 . A\Zp2
greater thanl — Y7 | exp (— vy 25" |Ajlexp (- ﬁ)

We now discuss the three main assumptions of Theorem 1 assvitle probability estimate:

— Eq. (3) is the equivalent of the support recovery condifemthe Lasso [1] or its exten-
sions [3]. The main difference is that for support recovéiis assumption is always met
for orthogonal designs, while here it is not always met. regéngly, the validity of level set
recovery implies the agglomerativity of proximal paths (E2) in Prop. 4).

Note that if Eq. (3) is satisfied only with; > 0 (it is then exactly Eq. (2) in Prop. 4), then,
even with infinitesimal noise, one can show that in some ¢akesvrong level sets may be
obtained with non vanishing probability, while sf; is stnctly negative, one can show that
in some cases, weeverget the correct level sets. Eg. (3) is thus essentially sefficand
necessary.

— Eq. (4) corresponds to having distinct valueswdffar enough from each other.

— Eq. (5) is a constraint ok which controls the bias of the estimator: if it is too lardesrn there
may be a merging of two clusters.

— In the probability estimate, the second term is small ifodll4,|~! are small enough (i.e.,
given the noise, there is enough data to correctly estinhatedlues of the constant sets) and
the third term is small if\ is large enough, to avoid that clusters split.

One-dimensional total variation. In this situation, we always get; = 0, but in some cases, it
cannot be |mproved (i.e., the best possrb}es equal to zero), and as shown in [14], this occurs
as soon as there is a “staircase”, i.e., a piecewise congtatdr, with a sequence of at least two
consecutive increases, or two consecutive decreasesimghihat in the presence of such staircases,
one cannot have consistent support recovery, which is akmellvn issue in signal processing (typ-
ically, more steps are created). If there is no staircasegfive have); = 1 and Eq. (5) becomes

A < §miny [A;|. If we take\ equal to the limiting value in Eq. (5), then we obtain a pradligb

v miny |A,|?

less thanl — 4p exp(—m). Note that we could also derive general results when an ad-
J J

ditional ¢, -penalty is used, thus extending results from [24]. Finailyilar (more) negative results
may be obtained for the two-dimensional total variation, [P4].

Clustering with F'(A) = |A| - [V\A]. In this case, we have; = |4;|/2, and Eq. (5) becomes
A< ﬁ, leading to the probability of correct support estimatioeajer tharl — 4p exp ( — ﬁ)

This indicates that the noise variangeshould be small compared tgp, which is not satisfactory
and would be corrected with the weighting schemes propasfd.

7 Conclusion

We have presented a family of sparsity-inducing norms aeeétto incorporating prior knowledge
or structural constraints on the level sets of linear pitedsc We have provided a set of common al-
gorithms and theoretical results, as well as simulationsymthetic examples illustrating the behav-
ior of these norms. Several avenues are worth investigdiisty we could follow current practice in
sparse methods, e.g., by considering related adaptedwmpenalties to enhance sparsity-inducing
capabilities, or by extending some of the concepts for narinsatrices, with potential applications
in matrix factorization [26] or multi-task learning [27].
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