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Abstract

We consider a class of sparsity-inducing regularization terms based on submodular func-
tions. While previous work has focused on non-decreasing functions, we explore sym-
metric submodular functions and their Lovász extensions.We show that the Lovász
extension may be seen as the convex envelope of a function that depends on level sets
(i.e., the set of indices whose corresponding components ofthe underlying predictor are
greater than a given constant): this leads to a class of convex structured regularization
terms that impose prior knowledge on the level sets, and not only on the supports of the
underlying predictors. We provide unified optimization algorithms, such as proximal
operators, and theoretical guarantees (allowed level setsand recovery conditions). By
selecting specific submodular functions, we give a new interpretation to known norms,
such as the total variation; we also define new norms, in particular ones that are based
on order statistics with application to clustering and outlier detection, and on noisy cuts
in graphs with application to change point detection in the presence of outliers.

1 Introduction
The concept of parsimony is central in many scientific domains. In the context of statistics, signal
processing or machine learning, it may take several forms. Classically, in a variable or feature
selection problem, a sparse solution with many zeros is sought so that the model is either more
interpretable, cheaper to use, or simply matches availableprior knowledge (see, e.g., [1, 2, 3] and
references therein). In this paper, we instead consider sparsity-inducing regularization terms that
will lead to solutions withmany equal values. A classical example is the total variation in one or
two dimensions, which leads to piecewise constant solutions [4, 5] and can be applied to various
image labelling problems [6, 5], or change point detection tasks [7, 8, 9]. Another example is the
“Oscar” penalty which induces automatic grouping of the features [10]. In this paper, we follow
the approach of [3], who designed sparsity-inducing norms based onnon-decreasingsubmodular
functions, as a convex approximation to imposing a specific prior on thesupportsof the predictors.
Here, we show that a similar parallel holds for some other class of submodular functions, namely
non-negative set-functions which are equal to zero for the full and empty set. Our main instance of
such functions aresymmetricsubmodular functions.

We make the following contributions:
− We provide in Section 3 explicit links between priors on level sets and certain submodular

functions: we show that the Lovász extensions (see, e.g., [11] and a short review in Section 2)
associated to these submodular functions are the convex envelopes (i.e., tightest convex lower
bounds) of specific functions that depend on all level sets ofthe underlying vector.

− In Section 4, we reinterpret existing norms such as the totalvariation and design new norms,
based on noisy cuts or order statistics. We propose applications to clustering and outlier de-
tection, as well as to change point detection in the presenceof outliers.

− We provide unified algorithms in Section 5, such as proximal operators, which are based on a
sequence of submodular function minimizations (SFMs), when such SFMs are efficient, or by
adapting the generic slower approach of [3] otherwise.

− We derive unified theoretical guarantees for level set recovery in Section 6, showing that even
in the absence of correlation between predictors, level setrecovery is not always guaranteed,
a situation which is to be contrasted with traditional support recovery situations [1, 3].
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Notation. Forw ∈ R
p andq ∈ [1,∞], we denote by‖w‖q theℓq-norm ofw. Given a subsetA

of V = {1, . . . , p}, 1A ∈ {0, 1}p is the indicator vector of the subsetA. Moreover, given a vector
w and a matrixQ, wA andQAA denote the corresponding subvector and submatrix ofw andQ.
Finally, forw ∈ R

p andA ⊂ V , w(A) =
∑

k∈A wk = w⊤1A (this defines a modular set-function).
In this paper, for a certain vectorw ∈ R

p, we call level setsthe sets of indices which are larger (or
smaller) or equal to a certain constantα, which we denote{w > α} (or {w 6 α}), while we call
constant setsthe sets of indices which are equal to a constantα, which we denote{w = α}.

2 Review of Submodular Analysis

In this section, we review relevant results from submodularanalysis. For more details, see, e.g., [12],
and, for a review with proofs derived from classical convex analysis, see, e.g., [11].

Definition. Throughout this paper, we consider asubmodularfunctionF defined on the power set
2V of V = {1, . . . , p}, i.e., such that∀A,B ⊂ V, F (A)+F (B) > F (A∪B)+F (A∩B). Unless
otherwise stated, we consider functions which are non-negative (i.e., such thatF (A) > 0 for all A ⊂
V ), and that satisfyF (∅) = F (V ) = 0. Usual examples are symmetric submodular functions, i.e.,
such that∀A ⊂ V, F (V \A) = F (A), which are known to always have non-negative values. We give
several examples in Section 4; for illustrating the concepts introduced in this section and Section 3,
we will consider the cut in an undirected chain graph, i.e.,F (A) =

∑p−1
j=1 |(1A)j − (1A)j+1|.

Lovász extension. Given any set-functionF such thatF (V ) = F (∅) = 0, one can define its
Lovász extensionf : Rp → R, asf(w) =

∫

R
F ({w > α})dα (see, e.g., [11] for this particular

formulation). The Lovász extension is convex if and only ifF is submodular. Moreover,f is
piecewise-linear and for allA ⊂ V , f(1A) = F (A), that is, it is indeed an extension from2V

(which can be identified to{0, 1}p through indicator vectors) toRp. Finally, it is always positively
homogeneous. For the chain graph, we obtain the usual total variationf(w) =

∑p−1
j=1 |wj − wj+1|.

Base polyhedron. We denote byB(F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A), s(V ) = F (V )}

the base polyhedron[12], where we use the notations(A) =
∑

k∈A sk. One important result in
submodular analysis is that ifF is a submodular function, then we have a representation off as a
maximum of linear functions [12, 11], i.e., for allw ∈ R

p, f(w) = maxs∈B(F ) w⊤s. Moreover,
instead of solving a linear program with2p − 1 contraints, a solutions may be obtained by the
following “greedy algorithm”: order the components ofw in decreasing orderwj1 > · · · > wjp ,
and then take for allk ∈ {1, . . . , p}, sjk = F ({j1, . . . , jk})− F ({j1, . . . , jk−1}).
Tight and inseparable sets. The polyhedraU = {w ∈ R

p, f(w) 6 1} andB(F ) are polar to each
other (see, e.g., [13] for definitions and properties of polar sets). Therefore, the facial structure ofU
may be obtained from the one ofB(F ). Givens ∈ B(F ), a setA ⊂ V is saidtight if s(A) = F (A).
It is known that the set of tight sets is a distributive lattice, i.e., ifA andB are tight, then so areA∪B
andA ∩ B [12, 11]. The faces ofB(F ) are thus intersections of hyperplanes{s(A) = F (A)} for
A belonging to certain distributive lattices (see Prop. 3). AsetA is saidseparableif there exists a
non-trivial partition ofA = B ∪ C such thatF (A) = F (B) + F (C). A set is said inseparable if it
is not separable. For the cut in an undirected graph, inseparable sets are exactly connected sets.

3 Properties of the Lov́asz Extension

In this section, we derive properties of the Lovász extension for submodular functions, which go
beyond convexity and homogeneity. Throughout this section, we assume thatF is a non-negative
submodular set-function that is equal to zero at∅ andV . This immediately implies thatf is invariant
by addition of any constant vector (that is,f(w + α1V ) = f(w) for all w ∈ R

p andα ∈ R), and
thatf(1V ) = F (V ) = 0. Thus, contrary to the non-decreasing case [3], our regularizers are not
norms. However, they are norms on the hyperplane{w⊤1V = 0} as soon as forA 6= ∅ andA 6= V ,
F (A) > 0 (which we assume for the rest of this paper).

We now show that the Lovász extension is the convex envelopeof a certain combinatorial function
which does depend on all levets sets{w > α} of w ∈ R

p (see proof in [14]):

Proposition 1 (Convex envelope)The Lov́asz extensionf(w) is the convex envelope of the function
w 7→ maxα∈R F ({w > α}) on the set[0, 1]p+R1V = {w ∈ R

p, maxk∈V wk−mink∈V wk 6 1}.
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Figure 1: Top: Polyhedral level set off (projected on the setw⊤1V = 0), for 2 different submodular
symmetric functions of three variables, with different inseparable sets leading to different sets of
extreme points; changing values ofF may make some of the extreme points disappear. The various
extreme points cut the space into polygons where the ordering of the component is fixed. Left:
F (A) = 1|A|∈{1,2}, leading tof(w) = maxk wk − mink wk (all possible extreme points); note
that the polygon need not be symmetric in general. Right: one-dimensional total variation on three
nodes, i.e.,F (A) = |11∈A− 12∈A|+ |12∈A− 13∈A|, leading tof(w) = |w1 −w2|+ |w2−w3|, for
which the extreme points corresponding to the separable set{1, 3} and its complement disappear.

Note the difference with the result of [3]: we consider here adifferent set on which we compute the
convex envelope ([0, 1]p + R1V instead of[−1, 1]p), and not a function of the support ofw, but of
all its level sets.1 Moreover, the Lovász extension is a convex relaxation of a function oflevel sets
(of the form{w > α}) and not ofconstant sets(of the form{w = α}). It would have been perhaps
more intuitive to consider for example

∫

R
F ({w = α})dα, since it does not depend on the ordering

of the values thatw may take; however, to the best of our knowledge, the latter function does not
lead to a convex function amenable to polynomial-time algorithms. This definition through level
sets will generate some potentially undesired behavior (such as the well-known staircase effect for
the one-dimensional total variation), as we show in Section6.

The next proposition describes the set of extreme points of the “unit ball” U = {w, f(w) 6 1},
giving a first illustration of sparsity-inducing effects (see example in Figure 1, in particular for the
one-dimensional total variation).

Proposition 2 (Extreme points) The extreme points of the setU ∩{w⊤1V = 0} are the projections
of the vectors1A/F (A) on the plane{w⊤1V = 0}, forA such thatA is inseparable forF andV \A
is inseparable forB 7→ F (A ∪B)− F (A).

Partially ordered sets and distributive lattices. A subsetD of 2V is a (distributive) lattice if it
is invariant by intersection and union. We assume in this paper that all lattices contain the empty
set∅ and the full setV , and we endow the lattice with the inclusion order. Such lattices may be
represented as apartially ordered set (poset)Π(D) = {A1, . . . , Am} (with order relationship<),
where the setsAj , j = 1, . . . ,m, form apartition of V (we always assume a topological ordering
of the sets, i.e.,Ai < Aj ⇒ i > j). As illustrated in Figure 2, we go fromD to Π(D), by
considering all maximal chains inD and the differences between consecutive sets. We go from
Π(D) to D, by constructing allidealsof Π(D), i.e., setsJ such that if an element ofΠ(D) is lower
than an element ofJ , then it has to be inJ (see [12] for more details, and an example in Figure 2).
Distributive lattices and posets are thus in one-to-one correspondence. Throughout this section, we
go back and forth between these two representations. The distributive latticeD will correspond to
all authorized level sets{w > α} for w in a single face ofU , while the elements of the posetΠ(D)
are the constant sets (over whichw is constant), with the order between the subsets givingpartial
constraints between the values of the corresponding constants.

Faces ofU . The faces ofU are characterized by latticesD, with their corresponding posetsΠ(D) =
{A1, . . . , Am}. We denote byU◦

D (and byUD its closure) the set ofw ∈ R
p such that (a)f(w) 6 1,

(b) w is piecewise constant with respect toΠ(D), with valuevi on Ai, and (c) for all pairs(i, j),

1Note that the support{w = 0} is a constant set which is the intersection of two level sets.
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Figure 2: Left: distributive lattice with 7 elements in2{1,2,3,4,5,6}, represented with the Hasse dia-
gram corresponding to the inclusion order (for a partial order, a Hasse diagram connectsA to B if
A is smaller thanB and there is noC such thatA is smaller thanC andC is smaller thanB). Right:
corresponding poset, with 4 elements that form a partition of {1, 2, 3, 4, 5, 6}, represented with the
Hasse diagram corresponding to the order< (a node points to its immediate smaller node according
to <). Note that this corresponds to an “allowed” lattice (see Prop. 3) for the one-dimensional total
variation.

Ai < Aj ⇒ vi > vj . For certain latticesD, these will be exactly the relative interiors of all faces
of U (see proof in [14]):

Proposition 3 (Faces ofU) The (non-empty) relative interiors of all faces ofU are exactly of the
formU◦

D, whereD is a lattice such that:

(i) the restriction ofF toD is modular, i.e., for allA,B ∈ D,F (A)+F (B) = F (A∪B)+F (A∩B),

(ii) for all j ∈ {1, . . . ,m}, the setAj is inseparable for the functionCj 7→ F (Bj−1 ∪ Cj) −
F (Bj−1), whereBj−1 is the union of all ancestors ofAj in Π(D),

(iii) among all lattices corresponding to the sameunorderedpartition, D is a maximal element of
the set of lattices satisfying (i) and (ii).

Among the three conditions, the second one is the easiest to interpret, as it reduces to having constant
sets which are inseparable for certain submodular functions, and for cuts in an undirected graph,
these will exactly be connected sets. Note also that extremepoints from Prop. 2 are recovered with
D = {∅, A, V }.

Since we are able to characterizeall faces ofU (of all dimensions) with non-empty relative interior,
we have a partition of the space and anyw ∈ R

p which is not proportional to1V , will be, up to
the strictly positive constantf(w), in exactly one of these relative interiors of faces; we refer to this
lattice as thelattice associated tow. Note that from the facew belongs to, we have strong constraints
on the constant sets, but we may not be able to determine all level sets ofw, because only partial
constraints are given by the order onΠ(D). For example, in Figure 2 for the one-dimensional total
variation,w2 may be larger or smaller thanw5 = w6 (and even potentially equal, but with zero
probability, see Section 6).

4 Examples of Submodular Functions

In this section, we provide examples of submodular functions and of their Lovász extensions. Some
are well-known (such as cut functions and total variations), some are new in the context of supervised
learning (regular functions), while some have interestingeffects in terms of clustering or outlier
detection (cardinality-based functions).

Symmetrization. From any submodular functionG, one may defineF (A) = G(A) +G(V \A)−
G(∅)−G(V ), which is symmetric. Potentially interesting examples which are beyond the scope of
this paper are mutual information, or functions of eigenvalues of submatrices [3].

Cut functions. Given a set ofnonnegativeweightsd : V × V → R+, define the cutF (A) =
∑

k∈A,j∈V \A d(k, j). The Lovász extension is equal tof(w) =
∑

k,j∈V d(k, j)(wk −wj)+ (which
shows submodularity becausef is convex), and is often referred to as the total variation. If the
weight functiond is symmetric, then the submodular function is also symmetric. In this case, it can
be shown that inseparable sets for functionsA 7→ F (A ∪ B) − F (B) are exactlyconnectedsets.
Hence, by Props. 3 and 6, constant sets are connected sets, which is the usual justification behind
the total variation. Note however that some configurations of connected sets are not allowed due
to the other conditions in Prop. 3 (see examples in Section 6). In Figure 5 (right plot), we give an
example of the usual chain graph, leading to the one-dimensional total variation [4, 5]. Note that
these functions can be extended to cuts in hypergraphs, which may have interesting applications in
computer vision [6]. Moreover, directed cuts may be interesting to favor increasing or decreasing
jumps along the edges of the graph.
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Figure 3:Three left plots: Estimation of noisy piecewise constant 1D signal with outliers (indices
5 and 15 in the chain of 20 nodes). Left: original signal. Middle: best estimation with total variation
(level sets are not correctly estimated). Right: best estimation with therobusttotal variation based on
noisy cut functions (level sets are correctly estimated, with less bias and with detection of outliers).
Right plot : clustering estimation error vs. noise level, in a sequenceof 100 variables, with a single
jump, where noise of variance one is added, with5% of outliers (averaged over 20 replications).

Regular functions and robust total variation. By partial minimization, we obtain so-called
regular functions[6, 5]. One application is “noisy cut functions”: for a givenweight function
d : W × W → R+, where each node inW is uniquely associated in a node inV , we consider
the submodular function obtained as the minimum cut adaptedto A in the augmented graph (see
an example in the right plot of Figure 5):F (A) = minB⊂W

∑

k∈B, j∈W\B d(k, j) + λ|A∆B|.
This allows for robust versions of cuts, where some gaps may be tolerated; indeed, compared to
having directly a small cut forA, B needs to have a small cut and be close toA, thus allowing
some elements to be removed or added toA in order to lower the cut. See examples in Figure 3,
illustrating the behavior of the type of graph displayed in the bottom-right plot of Figure 5, where
the performance of the robust total variation is significantly more stable in presence of outliers.

Cardinality-based functions. ForF (A) = h(|A|) whereh is such thath(0) = h(p) = 0 andh
concave, we obtain a submodular function, and a Lovász extension that depends on the order statis-
tics ofw, i.e., ifwj1 > · · · > wjp , thenf(w) =

∑p−1
k=1 h(k)(wjk −wjk+1

). While these examples do
not provide significantly different behaviors for the non-decreasing submodular functions explored
by [3] (i.e., in terms ofsupport), they lead to interesting behaviors here in terms oflevel sets, i.e.,
they will make the componentsw cluster together in specific ways. Indeed, as shown in Section 6,
allowed constant setsA are such thatA is inseparable for the functionC 7→ h(|B ∪ C|) − h(|B|)
(whereB ⊂ V is the set of components with higher values than the ones inA), which imposes that
the concave functionh is not linear on[|B|, |B|+|A|]. We consider the following examples:

1. F (A) = |A| · |V \A|, leading tof(w) =
∑p

i,j=1 |wi − wj |. This function can thus be also
seen as the cut in the fully connected graph. All patterns of level sets are allowed as the
functionh is strongly concave (see left plot of Figure 4). This function has been extended
in [15] by considering situations where eachwj is a vector, instead of a scalar, and replacing
the absolute value|wi − wj | by any norm‖wi − wj‖, leading to convex formulations for
clustering.

2. F (A) = 1 if A 6= ∅ andA 6= V , and0 otherwise, leading tof(w) = maxi,j |wi − wj |. Two
large level sets at the top and bottom, all the rest of the variables are in-between and separated
(Figure 4, second plot from the left).

3. F (A) = max{|A|, |V \A|}. This function is piecewise affine, with only one kink, thus only
one level set of cardinalty greater than one (in the middle) is possible, which is observed in
Figure 4 (third plot from the left). This may have applications to multivariate outlier detection
by considering extensions similar to [15].

5 Optimization Algorithms

In this section, we present optimization methods for minimizing convex objective functions regular-
ized by the Lovász extension of a submodular function. These lead to convex optimization problems,
which we tackle using proximal methods (see, e.g., [16, 17] and references therein). We first start
by mentioning that subgradients may easily be derived (but subgradient descent is here rather inef-
ficient as shown in Figure 5). Moreover, note that with the square loss, the regularization paths are
piecewise affine, as a direct consequence of regularizing bya polyhedral function.
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Figure 4: Left: Piecewise linear regularization paths of proximal problems (Eq. (1)) for different
functions of cardinality. From left to right: quadratic function (all level sets allowed), second ex-
ample in Section 4 (two large level sets at the top and bottom), piecewise linear with two pieces (a
single large level set in the middle).Right: Same plot for the one-dimensional total variation. Note
that in all these particular cases the regularization pathsfor orthogonal designs areagglomerative
(see Section 5), while for general designs, they would stillbe piecewise affine but not agglomerative.

Subgradient. Fromf(w) = maxs∈B(F ) s
⊤w and the greedy algorithm2 presented in Section 2,

one can easily get inpolynomial timeone subgradient as one of the maximizerss. This allows to
use subgradient descent, with slow convergence compared toproximal methods (see Figure 5).

Proximal problems through sequences of submodular function minimizations (SFMs). Given
regularized problems of the formminw∈Rp L(w)+λf(w), whereL is differentiable with Lipschitz-
continuous gradient,proximal methodshave been shown to be particularly efficient first-order
methods (see, e.g., [16]). In this paper, we use the method “ISTA” and its accelerated variant
“FISTA” [16]. To apply these methods, it suffices to be able tosolve efficiently:

min
w∈Rp

1
2‖w − z‖22 + λf(w), (1)

which we refer to as theproximal problem. It is known that solving the proximal problem is related
to submodular function minimization (SFM). More precisely, the minimum ofA 7→ λF (A)− z(A)
may be obtained by selecting negative components of the solution of a single proximal problem [12,
11]. Alternatively, the solution of the proximal problem may be obtained by a sequence of at mostp
submodular function minimizations of the formA 7→ λF (A)−z(A), by a decomposition algorithm
adapted from [18], and described in [11].

Thus, computing the proximal operator has polynomial complexity since SFM has polynomial com-
plexity. However, it may be too slow for practical purposes,as the bestgenericalgorithm has
complexityO(p6) [19]3. Nevertheless, this strategy is efficient for families of submodular functions
for which dedicated fast algorithms exist:

– Cuts: Minimizing the cut or the partially minimized cut, plus a modular function, may be
done with a min-cut/max-flow algorithm [see, e.g., 6, 5]. Forproximal methods, we need in
fact to solve an instance of aparametric max-flowproblem, which may be done using other
efficient dedicated algorithms [21, 5] than the decomposition algorithm derived from [18].

– Functions of cardinality: minimizing functions of the formA 7→ λF (A)−z(A) can be done
in closed form by sorting the elements ofz.

Proximal problems through minimum-norm-point algorithm. In thegenericcase (i.e., beyond
cuts and cardinality-based functions), we can follow [12, 3]: sincef(w) is expressed as a mini-
mum of linear functions, the problem reduces to the projection on the polytopeB(F ), for which we
happen to be able to easily maximize linear functions (usingthe greedy algorithm described in Sec-
tion 2). This can be tackled efficiently by the minimum-norm-point algorithm [12], which iterates
between orthogonal projections on affine subspaces and the greedy algorithm for the submodular
function4. We compare all optimization methods on synthetic examplesin Figure 5.

2The greedy algorithm to find extreme points of the base polyhedron should not be confused with the greedy
algorithm (e.g., forward selection) that is common in supervised learning/statistics.

3Note that even in the case of symmetric submodular functions, where more efficient algorithms inO(p3)
for submodular function minimization (SFM) exist [20], theminimization of functions of the formλF (A) −
z(A) is provably as hard as general SFM [20].

4Interestingly, when used for submodular function minimization (SFM), the minimum-norm-point algo-
rithm has no complexity bound but is empirically faster thanalgorithms with such bounds [12].
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Proximal path as agglomerative clustering. Whenλ varies from zero to+∞, then the unique
optimal solution of Eq. (1) goes fromz to a constant. We now provide conditions under which
the regularization path of the proximal problem may be obtained by agglomerative clustering (see
examples in Figure 4):

Proposition 4 (Agglomerative clustering) Assume that for all setsA,B such thatB ∩A = ∅ and
A is inseparable forD 7→ F (B ∪D)− F (B), we have:

∀C ⊂ A, |C|
|A| [F (B ∪A)− F (B)] 6 F (B ∪C) − F (B). (2)

Then the regularization path for Eq. (1) isagglomerative, that is, if two variables are in the same
constant for a certainµ ∈ R+, so are they for all largerλ > µ.

As shown in [14], the assumptions required for by Prop. 4 are satisfied by (a) all submodular set-
functions that only depend on the cardinality, and (b) by theone-dimensional total variation—we
thus recover and extend known results from [7, 22, 15].

Adding an ℓ1-norm. Following [4], we may add theℓ1-norm‖w‖1 for additional sparsity ofw (on
top of shaping its level sets). The following proposition extends the result for the one-dimensional
total variation [4, 23] to all submodular functions and their Lovász extensions:

Proposition 5 (Proximal problem for ℓ1-penalized problems) The unique minimizer of12‖w −
z‖22 + f(w) + λ‖w‖1 may be obtained by soft-thresholding the minimizers of1

2‖w − z‖22 + f(w).
That is, the proximal operator forf + λ‖ · ‖1 is equal to the composition of the proximal operator
for f and the one forλ‖ · ‖1.

6 Sparsity-inducing Properties

Going from the penalization of supports to the penalizationof level sets introduces some complexity
and for simplicity in this section, we only consider the analysis in the context of orthogonal design
matrices, which is often referred to as the denoising problem, and in the context of level set esti-
mation already leads to interesting results. That is, we study the unique global minimum̂w of the
proximal problem in Eq. (1) and make some assumption regardingz (typically z = w∗+ noise), and
provide guarantees related to the recovery of the level setsof w∗. We first start by characterizing the
allowed level sets, showing that the partial constraints defined in Section 3 on faces of{f(w) 6 1}
do not create by chance further groupings of variables (see proof in [14]).

Proposition 6 (Stable constant sets)Assumez ∈ R
p has an absolutely continuous density with

respect to the Lebesgue measure. Then, with probability one, the unique minimizer̂w of Eq. (1) has
constant sets that define a partition corresponding to a latticeD defined in Prop. 3.

We now show that under certain conditions the recovered constant sets are the correct ones:
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Theorem 1 (Level set recovery)Assume thatz = w∗ + σε, whereε ∈ R
p is a standard Gaus-

sian random vector, andw∗ is consistent with the latticeD and its associated posetΠ(D) =
(A1, . . . , Am), with valuesv∗j on Aj , for j ∈ {1, . . . ,m}. DenoteBj = A1 ∪ · · · ∪ Aj for
j ∈ {1, . . . ,m}. Assume that there exists some constantsηj > 0 andν > 0 such that:

∀Cj⊂Aj , F (Bj−1∪Cj)−F (Bj−1)− |Cj|
|Aj|

[F (Bj−1∪Aj)−F (Bj−1)] > ηj min
{ |Cj |
|Aj |

, 1− |Cj|
|Aj|

}

, (3)

∀i, j ∈ {1, . . . ,m}, Ai < Aj ⇒ v∗i − v∗j > ν, (4)

∀j ∈ {1, . . . ,m}, λ
∣

∣

F (Bj)−F (Bj−1)
|Aj |

∣

∣ 6 ν/4. (5)

Then the unique minimizer̂w of Eq. (1) is associated to the same latticeD thanw∗, with probability

greater than1−∑m
j=1 exp

(

− ν2|Aj|
32σ2

)

− 2
∑m

j=1 |Aj | exp
(

− λ2η2
j

2σ2|Aj|2

)

.

We now discuss the three main assumptions of Theorem 1 as wellas the probability estimate:
– Eq. (3) is the equivalent of the support recovery conditionfor the Lasso [1] or its exten-

sions [3]. The main difference is that for support recovery,this assumption is always met
for orthogonal designs, while here it is not always met. Interestingly, the validity of level set
recovery implies the agglomerativity of proximal paths (Eq. (2) in Prop. 4).
Note that if Eq. (3) is satisfied only withηj > 0 (it is then exactly Eq. (2) in Prop. 4), then,
even with infinitesimal noise, one can show that in some cases, the wrong level sets may be
obtained with non vanishing probability, while ifηj is strictly negative, one can show that
in some cases, weneverget the correct level sets. Eq. (3) is thus essentially sufficient and
necessary.

– Eq. (4) corresponds to having distinct values ofw∗ far enough from each other.
– Eq. (5) is a constraint onλ which controls the bias of the estimator: if it is too large, then there

may be a merging of two clusters.
– In the probability estimate, the second term is small if allσ2|Aj |−1 are small enough (i.e.,

given the noise, there is enough data to correctly estimate the values of the constant sets) and
the third term is small ifλ is large enough, to avoid that clusters split.

One-dimensional total variation. In this situation, we always getηj = 0, but in some cases, it
cannot be improved (i.e., the best possibleηj is equal to zero), and as shown in [14], this occurs
as soon as there is a “staircase”, i.e., a piecewise constantvector, with a sequence of at least two
consecutive increases, or two consecutive decreases, showing that in the presence of such staircases,
one cannot have consistent support recovery, which is a well-known issue in signal processing (typ-
ically, more steps are created). If there is no staircase effect, we haveηj = 1 and Eq. (5) becomes
λ 6 ν

8 minj |Aj |. If we takeλ equal to the limiting value in Eq. (5), then we obtain a probability

less than1− 4p exp(− ν2 minj |Aj|
2

128σ2 maxj |Aj |2
). Note that we could also derive general results when an ad-

ditionalℓ1-penalty is used, thus extending results from [24]. Finally, similar (more) negative results
may be obtained for the two-dimensional total variation [25, 14].

Clustering with F (A) = |A| · |V \A|. In this case, we haveηj = |Aj |/2, and Eq. (5) becomes

λ 6 ν
4p , leading to the probability of correct support estimation greater than1− 4p exp

(

− ν2

128pσ2

)

.

This indicates that the noise varianceσ2 should be small compared to1/p, which is not satisfactory
and would be corrected with the weighting schemes proposed in [15].

7 Conclusion

We have presented a family of sparsity-inducing norms dedicated to incorporating prior knowledge
or structural constraints on the level sets of linear predictors. We have provided a set of common al-
gorithms and theoretical results, as well as simulations onsynthetic examples illustrating the behav-
ior of these norms. Several avenues are worth investigating: first, we could follow current practice in
sparse methods, e.g., by considering related adapted concave penalties to enhance sparsity-inducing
capabilities, or by extending some of the concepts for normsof matrices, with potential applications
in matrix factorization [26] or multi-task learning [27].
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