
Active dendrites:
adaptation to spike-based communication

– supplementary information –

Balázs B Ujfalussy1,2

ubi@rmki.kfki.hu
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A Appendix

In the first three sections of this appendix (Sec. A.1-A.3) we will compute differential equations for
the time evolution of the posterior mean and variance of u after observing the presence or absence
of spiking. We begin with the effect of the hidden OU-dynamics of the system and then we combine
it with the observation of a particular spike pattern (either no spike, or a single spike from one
of the cells). We assume (or, more precisely, pretend) that after each time step the posterior is
multivariate Gaussian (hence we are performing assumed density filtering), so we only track the
first two moments of the posterior. Note that, unlike in previous approaches we attempted, we are
not computing the whole posterior in the limit, and then compute the mean and variance of this
approximate posterior; rather, we compute the exact posterior and only take the limit for computing
its mean and variance.

In section A.4 we describe our model extended correlated up and down states.

In the last section (Sec. A.5) we describe the dendritic estimator used in Sec. 3.3 of the main text.

A.1 Dynamics

We describe the distribution of the membrane potentials at time t (which is in fact the posterior
computed from all previous observations) by a multivariate normal distribution:

P(ut|s0:t) = N (ut|µt,⌃t) (13)

Equation 7 describes the changes of the membrane potentials in a time bin and defines the condi-
tional probability

P(ut+�t|ut) = N (ut+�t|↵ut + c,Q�t) (14)
Combining the prior (Eq. 13) with the OU-dynamics of the membrane potential (Eq. 14) leads to the
distribution of the membrane potential at the next time step

P(ut+�t|s0:t) = N (ut+�t|
µ̃

tz }| {
↵µt + c,

⌃̃
tz }| {

Q�t+ ↵

2⌃t). (15)

Note, that P(ut+�t|s0:t) does not incorporate the observation of st+�t, and in the next section we
will use it as a prior to combine it with the likelihood of generating the particular spiking pattern
observed in time bin t+ �t.

A.2 Observation

Our goal is to compute the posterior mean and variance of u after observing the presence or absence
of spiking. As the probability of observing more than one spikes within a time window of �t ap-
proaches zero with �t

2 as �t ! 0, we do not elaborate on those cases. So in total, we have four
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quantities to compute:

µ0(�t)
4
=

Z
uP(u|s = 0) du (16)

⌃0(�t)
4
=

Z
uuT

,P(u|s = 0) du� µ2
0 (17)

µi(�t)
4
=

Z
uP

�
u|s = ei

�
du (18)

⌃i(�t)
4
=

Z
uuT

P

�
u|s = ei

�
du� µ2

i (19)

where ei is a vector with elements e

i
j = �(i, j). Ultimately, we are going to derive differential

equations for these quantities by taking the �t ! 0 limit and dividing by �t. Derivatives denoted by
0 are always taken with respect to �t. We only need to compute terms in these quantities up to first
order in �t because the other terms will eventually vanish. In fact, for the case of µi and ⌃i, we
only need to compute terms up to zeroth order in �t since the number of time bins with spikes does
not scale with �t while the number of bins without spikes scales as 1/�t.

A.2.1 No spike (s = 0)

We will denote the likelihood in this case as

f0(u, �t)
4
= P(s = 0|u) =

Y

i

e

��t g e�u

i (20)

Its derivative with respect to �t will also be needed later, which can be expressed as:

f

0
0(u, �t) =

X

i

�g e

�u
i

Y

j

e

��t g e�u

j (21)

In particular, we note that at �t = 0 these yield the following values:

f0(u, 0) = 1 (22)

f

0
0(u, 0) =

X

i

�g e

�u
i (23)

Computing the posterior mean, µ0 By its definition, Eq. 16, and in the �t ! 0 limit

µ0(�t) =

m0(�t)z }| {Z
uP(u) f0(u, �t) du
Z

P(u) f0(u, �t) du
| {z }

a0(�t)

' µ0(0) + �tµ0
0(0) (24)

We will need derivatives of the numerator, m0(�t), and denominator, a0(�t), of the above expres-
sion:

m0
0(�t) =

Z
uP(u) f 0

0(u, �t) du (25)

a

0
0(�t) =

Z
P(u) f 0

0(u, �t) du (26)
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and in particular the values the numerator and denonimator and their derivatives take at �t = 0:1

m0(0) =

Z
uP(u) f0(u, 0) du =

˜µt (27)

a0(0) =

Z
P(u) f0(u, 0) du = 1 (28)

m0
0(0) =

Z
uP(u) f 0

0(u, 0) du = �
X

i

Z
uP(u) g e�ui

du = ��̄

˜µt � �

˜⌃t�

(29)

a

0
0(0) =

Z
P(u) f 0

0(u, 0) du = �
X

i

Z
P(u) g e�ui

du = ��̄ (30)

where � is a vector whose elements �i = g e

�µ
i

+
�

2⌃
ii

2 are the firing rate of the neurons2, and
�̄ =

P
i �i is the population firing rate.

Equipped with these quantities, we first compute the zeroth-order term of Eq. 24:

µ0(0) =
m0(0)

a0(0)
=

˜µt (31)

and then the coefficient in the first-order term of Eq. 24:

µ0
0(0) =

m0
0(0) a0(0)�m0(0) a

0
0(0)

[a0(0)]
2 (32)

= ��̄

˜µt � �

˜⌃t� + �̄

˜µt (33)
= ��

˜⌃t� (34)

Substituting Eqs. 31 and 34 into Eq. 24 we obtain:
µ0 ' ˜µt � �t�

˜⌃t� (35)

Computing the posterior covariance, ⌃0 The logic is essentially the same as the one we fol-
lowed to compute µ0 in the previous section.

By its definition, Eq. 17, and in the �t ! 0 limit

⌃0(�t) + µ0(�t)µ0(�t)
T
=

c0(�t)z }| {Z
uuT

P(u) f0(u, �t) du
Z

P(u) f0(u, �t) du
| {z }

a0(�t)

' ⌃0(0) + �t⌃0
0
(0) (36)

The denominator (and thus its derivative) is the same as in the previous section, and the derivative
of the numerator is:

c00(�t) =

Z
uuT

P(u) f 0
0(u, �t) du (37)

and in particular the values of the numerator and its derivative at �t = 0 are:

c0(0) =

Z
uuT

P(u) f0(u, 0) du =

˜⌃t + ˜µt ˜µ
T
t (38)

c00(0) =

Z
uuT

P(u) f 0
0(u, 0) du = �

X

i

Z
uuT

P(u) g e�ui

du

= ��̄(

˜⌃t + ˜µt ˜µ
T
t )� 2�

˜µt�
T
˜⌃t � �

2
˜⌃t� ˜⌃t (39)

1For the last two equations we used the following simple identity:

g e�ui N (u;µ,⌃) = g e�µi

+
�

2⌃
ii

2 N
⇣
u;µ+ �⌃ei,⌃

⌘

.
2More precisely, this is the firing rate if we use Bernoulli approximation for the Poisson spiking, which is

valid only if �t is sufficiently small.
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where � is a diagonal matrix with elements �i = g e

�µ
i

+
�

2⌃
ii

2 , i.e., the firing rate of the neurons.

Equipped with these quantities, we first compute the zeroth-order term of Eq. 36:

⌃0(0) =
c0(0)

a0(0)
=

˜⌃t + ˜µ2
t (40)

and then the coefficient in the first-order term of Eq. 36:

⌃0
0
(0) =

c00(0) a0(0)� c0(0) a
0
0(0)

[a0(0)]
2 (41)

= ��̄(

˜⌃t + ˜µt ˜µ
T
t )� 2�

˜µt�
T
˜⌃t � �

2
˜⌃t� ˜⌃t + �̄

h
˜⌃t + ˜µt ˜µ

T
t

i

(42)
= �2�

˜µt�
T
˜⌃t � �

2
˜⌃t� ˜⌃t (43)

Substituting Eqs. 40 and 43 into Eq. 36 we obtain:
⌃0 + µ0µ

T
0 ' ˜⌃t + ˜µt ˜µ

T
t � 2�t�

˜µt�
T
˜⌃t � �t�

2
˜⌃t� ˜⌃t (44)

and by substituting Eq. 35 into this, and again ignoring terms that are higher than first order in �t,
we can express ⌃0 as:

⌃0 ' ˜⌃t + ˜µt ˜µ
T
t � 2�t�

˜µt�
T
˜⌃t � �t�

2
˜⌃t� ˜⌃t +

�
h
˜µt � �t�

˜⌃t�
i h

˜µt � �t�

˜⌃t�
iT

(45)

' ˜⌃t � �t�

2
˜⌃t� ˜⌃t � �t

2
�

2
˜⌃t��

T
˜⌃
T
t (46)

Thus:
⌃0 ' ˜⌃t � �t�

2
˜⌃t� ˜⌃t (47)

A.2.2 Spike (s = ei)

We consider the case when one of the cells emitted one or more spikes in a time bin, si = 1, while
sj 6=i = 0. The logic here is the same as that followed in the “no spike” case, except that we only
keep terms that are constant with respect to �t (see argument above).

We will denote the likelihood in this case as

fi(u, �t)
4
= P

�
s = ei|u� = �t g e

�u
i

e

��t g e�u

i

Y

j 6=i

e

��t g e�u

j (48)

= �t g e

�u
i

Y

j

e

��t g e�u

j (49)

Its derivative will also be needed later, which can be expressed as:

f

0
i(u, �t) = g e

�u
i

Y

j

e

��t g e�u

j � �t g e

�u
i

X

j

g e

�u
j

Y

k

e

��t g e�u

k

(50)
In particular, we note that at �t = 0 these yield the following values:

fi(u, 0) = 0 (51)
f

0
i(u, 0) = g e

�u
i (52)

Computing the posterior mean, µi By its definition, Eq. 18, and in the �t ! 0 limit (only
retaining the zeroth-order term)

µi(�t) =

m
i

(�t)
z }| {Z

uP(u) fi(u, �t) du
Z

P(u) fi(u, �t) du
| {z }

a
i

(�t)

' µi(0) (53)
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Since both mi(�t) ! 0 and ai(�t) ! 0 as �t ! 0, we need to use l’Hôpital’s rule to compute
µi(0):

lim

�t!0
µi(�t) =

m0
i(0)

a

0
i(0)

(54)

and for this we will need the following two derivatives:

m0
i(�t) =

Z
uP(u) f 0

i(u, �t) du (55)

a

0
i(�t) =

Z
P(u) f 0

i(u, �t) du (56)

and in particular the values that these derivatives take at �t = 0:

m0
i(0) =

Z
uP(u) f 0

i(u, 0) du =

Z
uP(u) g e�ui

du = g e

�µ
i

+
�

2⌃
ii

2
(

˜µt + �

˜⌃te
i
)

(57)

a

0
i(0) =

Z
P(u) f 0

i(u, 0) du =

Z
P(u) g e�ui

du = g e

�µ
i

+
�

2⌃
ii

2 (58)

Substituting Eqs. 57-58 into Eq. 54 and in turn into Eq. 53, we obtain:

µi ' ˜µt + �

˜⌃te
i (59)

Computing the posterior covariance, ⌃i By its definition, Eq. 19, and in the �t ! 0 limit (once
again only retaining the zeroth-order term)

⌃i(�t) + µi(�t)µi(�t)
T
=

c
i

(�t)
z }| {Z

uuT
P(u) fi(u, �t) du

Z
P(u) fi(u, �t) du

| {z }
a
i

(�t)

' ⌃i(0) (60)

Once again, since both ci(�t) ! 0 and ai(�t) ! 0 as �t ! 0, we need to use l’Hôpital’s rule to
compute ⌃i(0):

lim

�t!0
⌃i(�t) =

c0i(0)

a

0
i(0)

� µi(0)µi(0)
T (61)

and for this we will need the derivative:

c0i(�t) =

Z
uuT

P(u) f 0
i(u, �t) du (62)

and in particular the value that this derivative takes at �t = 0:

c0i(0) =

Z
uuT

P(u) f 0
i(u, 0) du =

Z
uuT

P(u) g e�ui

du (63)

= g e

�µ
i

+
�

2⌃
ii

2

✓h
˜µt + �

˜⌃te
i
i h

˜µt + �

˜⌃te
i
iT

+

˜⌃t

◆
(64)

(ai(�t) and hence a

0
i(�t) are the same as in the previous section.)

Substituting Eqs. 58, 59, and 64 into Eq. 61, we obtain:

⌃i '
g e

�µ
i

+
�

2⌃
ii

2

✓h
˜µt + �

˜⌃te
i
i h

˜µt + �

˜⌃te
i
iT

+

˜⌃t

◆

g e

�µ
i

+
�

2⌃
ii

2

�
h
˜µt + �

˜⌃te
i
i h

˜µt + �

˜⌃te
i
iT

(65)
Thus:

⌃i ' ˜⌃t (66)
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In summary, we can write that:

µ0,t+1 =

˜µt � �t�

˜⌃t� (67)

µi,t+1 =

˜µt + �

˜⌃tst+�t (68)

⌃0,t+1 =

˜⌃t � �t�

2
˜⌃t� ˜⌃t (69)

⌃i,t+1 =

˜⌃t (70)

where

˜µt = ↵µt + c (71)
˜⌃t = Q�t+ ↵

2⌃t (72)

as defined in Eq. 15, and ↵ = 1� �t
⌧ and c =

�t
⌧ u0.

A.3 The optimal estimator

First, we write the time evolution of the mean:

µt+1 =

˜µt � �t�

˜⌃t� + �

˜⌃tst+�t (73)

µt+1 � µt ' u0 � µt

⌧

�t� �t�⌃t� + �⌃tst+�t +O(�t

2
) (74)

˙µ =

u0 � µ

⌧

+ �⌃ (s(t)� �) (75)

where we used that lim�t!0
˜⌃t = ⌃t and s(t) is vector composed of the sequences of delta spike

trains such that

sk =

Z (k+1)�t

k�t

s(t)dt (76)

The first term of Eq. 75 indicates that in the absence of observations the mean returns to the resting
potential, u0. The second term introduces a continuous decrease which is proportional to the firing
rate, �, while the observation of a spike leads to an instantaneous step-like increase in the mean.

In a similar way we write the time evolution of the covariance matrix:

⌃t+1 =

˜⌃t � �t�

2
˜⌃t� ˜⌃t (77)

= Q�t+ ↵

2⌃t � �t�

2
˜⌃t� ˜⌃t (78)

⌃t+1 �⌃t ' Q�t� 2�t

⌧

⌃t � �t�

2⌃t�⌃t +O(�t

2
) (79)

˙⌃ = Q� 2

⌧

⌃� �

2⌃�⌃ (80)

=

2

⌧

(⌃OU �⌃)� �

2⌃�⌃ (81)

where ⌃OU =

W⌧
2 is the prior covariance matrix of the presynaptic membrane potential, i.e., in the

absence of any observation. As ⌃ < ⌃OU the first term increases the covariance towards ⌃OU ,
while the second term, which is always negative, introduces a decrease that is proportional to the
estimated firing rate. As the absence of spikes is more informative when the rate is high, the decrease
is steeper in this case. If the two opposite forces are equal ⌃ does not change any more. Note that �
and � are functions of both µ and ⌃!

In summary the time evolution of the mean and the covariance of the presynaptic membrane poten-
tials can be written as

˙µ =

1

⌧

(u0 � µ) + �⌃ (s(t)� �) (82)

˙⌃ =

2

⌧

(⌃OU �⌃)� �

2⌃�⌃ (83)
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A.4 Modelling correlated up and down states

The global, binary states variable x has a first order Markovian dynamics described by the transition
matrix ⇢ with state transition rates ⇢x12 = ⇢

x
21 = ⇢

x (⇢x11 = 1� ⇢

x
21�t).

Similarly, the ‘resting’ potential of each presynaptic neuron, u0, can switch between two different
values, uup and udown. The dynamics of the resting potential is described by the transition prob-
abilities, P(u0,t+�t = uup|u0,t = udown) = ⇢u�t and P(u0,t+�t = udown|u0,t = uup) = ⇢d�t. The
global state variable influences indirectly the state of the individual neurons by modulating their
state transition matrices.

Specifically, when x is in the up state then ⇢u = ⇢1 and ⇢d = ⇢2, while in the global down state
⇢u = ⇢2 and ⇢d = ⇢1 where ⇢1 � ⇢2. In this case it is easy to show that the correlation between
the resting potential of the neurons is (⇢1�⇢2)

2

(⇢1+⇢2)2
, and it can be parametrically changed by varying the

ratio ⇢1/⇢2.

A.5 The dendritic estimator

We model the spatially extended dendritic tree of neurons with a two layer feed-forward network
of simple units (Fig. 3A). Synaptic inputs impinge on units in the first layer, corresponding to den-
dritic branches, and nonlinear integration of inputs arriving to a dendritic branch is modelled by a
sigmoidal input-output function:

v

d
j (t) = h

 
X

i

wjiv
syn
i (t)

!
(84)

where h(x) =

1
1+e�x

is the standard sigmoidal function, and the synaptic potentials are given by
the following differential equation:

dv

syn
i

dt

=

v

syn
i � v0

⌧syn
+ Jsi(t) (85)

where si(t) is the spike train of the i

th presynaptic neuron represented as a sum of Dirac-delta
functions, ⌧syn is the time constant of the synapse, v0 is its resting potential and J is the coupling.
The parameters of the static synapses, v0, ⌧syn, J , are set to minimise (ui � v

syn
i )

2. As each
presynaptic neuron has the same dynamics and spiking process, the same set of parameters are used
for each synapse. Finally the output of the neuron, that is the estimate of the dendritic estimator,
ṽden(t), is the linear sum of the dendritic activations:

ṽden(t) =

5X

j=1

c̃jv
d
j (t) (86)

We trained the model to estimate the sum of the presynaptic membrane potentials,
P

i ui, by chang-
ing its parameters, w and c̃ using error backpropagation and gradient ascent.
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