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A Outline of the proof of Theorem 1

Before we go into the rigorous proof of Theorem 1, we describe a brief (but mathematically in-
correct) outline of the proof. For S|mpI|C|ty, we assume that the |nf|n|ty normg ahd f* are

bounded from above by a constantf|oc, [|/*[lc < C. Write Af = f — f*. Let P, and
P be operators that give the empirical mean and the population means of a function respectively:

Pof =L3" | f(zi,y:) andPf = E[f(X,Y)]. Then by the definition of , we have

Po(Y = 2+ 2SS < Pa(y = 192+ 2|73 (s-1)
On the other hand, we have the following equation:
P(Y = [+ P(f = ) = P(Y = ). (S-2)

Summing up Eq. (S-1) and Eg. (S-2), we obtain
P(f* = P24 MPIAE < (P = PY{Or = 792 = (v = D2} 215118
< (Po=P {(=2e =+ HU = HEAISIE (S9)
Note thaf —2e— f*+ f| < 2(L+C). Therefore, using the contraction inequality for the Rademacher
complexity [2, Theorem 4.12] and Talagrand’s concentration inequality (Proposition 6), we have the
following upper bound of the first term in the RHS of the above inequality (S-3):
(Pa =P {(=2c= 1+ i = D)}

smB—sm)
MNAfmllz i 1A fmll32, y IIAfmIILQTH IIAfmIIHJ+ "

<Oy | Y

log
Z ||Afm|\L2<n>

m=1 \/ﬁ n1+5m m=1
M —Sm
r
S@p< > :”f (1Al Loy + smrml A fmll24,.) (S-4)

m=1

M 7,_ Sml<j;5 )

m

+ Z - 1 (HAfrn”Lz + SrnTIrL||Af7n||Hm)

m=1 n1+5m

Z log |Ame2(H> (- Eq. (-11), Eq. (S-13)
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Mlosd) (Z |Afm||%2<n>> } (s5)

m=1

where we used Cauchy- Schwarz inequality and the duality oftherm in the last line. Utilizing
the relationd_ ' [|A 12, p) < 72 IAFI3, (s EQ- (S-5) implies

(Pa = PY{(=2c= £+ NI = D}

M log(M
<Oy (041||Af||L2(n) + BillAflly + a2l|Afl Lyary + B2l A Sy + n()”Af”Lz(H)>

M log(M
-0, (a1||Af||L2(n> + a2 AS + azll Az + a2 22 A T + \/Oj()nAfLZm))
M log(M) (b&) N (ﬁz)
n @2 a2

Here substitute the relatiof /2 < (| fly + [I£*4)> < 2(| /I3 + [ /7]|2) into Eq. (S-6),

2 2 “
combine Eq. (S-3) and Eq. (S-6), move the te%ﬁskf“%z(n) and [(gg) + (%) } I£]I7, to the
right hand side, then we obtain the assertion.

<0, (04% + o3+ HAf||L2(H ||Af||zp (S-6)

B Relation between Entropy Number and Spectral Condition

Associated with the-covering number, thé-th entropy numbee; (H,, — Lo(II)) is defined as
the infimum over ale > 0 for which N (e, By, , L»(I)) < 2i~1. If the spectral assumption (A3)
holds, the relation (2) implies that tli¢h entropy number is bounded as

ei(Hpm — Lo(Il)) < Ci~ 2+, (S-7)

whereC is a constant. To bound empirical process a bound of the entropy number with respect to
the empirical distribution is needed. The following proposition gives an upper bound of that (see
Corollary 7.31 of [5], for example).

Proposition 4. If there exists constant$ < s < 1 andC > 1 such thate;(H,, — Lo(II)) <
Ci~=:, then there exists a constant > 0 only depending on such that

1

Ep, ~tin[ei(Hm — La(Dn))] < ¢sC(min(i,n))? i+,
in particular Ep i [e;(Hm — La(Dy))] < ¢sCi~ 2.

C Basic Propositions

The following two propositions are keys to prove Theorem 1. {8 , be i.i.d. Rademacher
random variables, i.es; € {+1} andP(o; = 1) = P(o; = —1) =

Proposition 5. [5, Theorem 7.16]Let B, ., C H., be a set such thaB, ., = {fm € Hm |

[ fmllLaam < 0l fmlla, < allfmlls < b}. Assume that there exist constafts: s < 1 and
0<¢cs such tha

EDn [ei(H"” — L2(Dn))} S Esiizils.



Then there exists a constafif depending only such that

1 — ol=%(ésa)® 25 1-s 1
E| sup |=) oifm(z)|| <C. < V (€sa) THs b1Fs n_1+> . (S-8)
AR e
Proposition 6. (Talagrand’s Concentration Inequality [6, 1]) LetG be a function class oA’ that
is separable with respect tso-norm, and{z;}?_; be i.i.d. random variables with values .
Furthermore, letB > 0 andU > 0 be B := sup g E[(g — E[g])?] andU := sup,cg |9/l then
there exists a universal constakitsuch that, forZ := sup ¢ |+ 37", g(z;) — E[g]|, we have

Bt
P(ZZK E[Z] + —+@ ) <et.
n n
D Proof of Theorem 1
Letr,, >0 (m = 1,..., M) be arbitrary positive reals. Giver,,, }M_, , we determind/S). (f,,,)
as follows:
_smB—sm) ( )
—5m sm log(M
U(m) m =3 'm V fm 1 m miml|l/m m .
n,sm(f ) \/ﬁ - (”f ”Lz +8 T ||f ”'H )+ n Hf ||L2(H)
. (m) . | fom 1 coy L o 157
It is easy to seeU,s, (fm) is an upper bound of the quanﬂty% Vv
(1—sm)? sm (3—5m)
ol o™ IImeH,,f*‘“‘"" :
2 (this corresponds to the RHS of Eq. (S-8)) because
n1+b'nL
||fm||},2(sﬁ3 Sm :7'7111_87" ||meL2(H) e I fmllSr (S-9)
Vn vn T'm M Hm
(Young) pl—sm
S (s e ) (610)
r_Sm
< :;ﬁ (”meLz(H) +Smrm||f’77l|‘7‘[m,)? (S'll)

where we used Young's inequality ~* b~ < (1 — s,,,)a + s,,b in the second line, and similarly
we obtain

m)? sm(3—sm)

smB=sm)

HfmIILl“’" Hfmnﬂ“sm po 5 (3 — s
<m (||fm||L2<n>+’”()rmnfmnym)
nTFem nTTsm 1+
_ sm@B—sm)
/,1 STYI,
<3 (I fmlan + smrmll fmlre,) (5-12)
n Sm

where we used% < 3s,, in the last inequality.
Now we define

¢ = max (KL {2(7* +1+ Cl} K {201(7* +C1+ C%D ,

whereC* is a constant defined later in Lemma 1%, is the one introduced in Assumption &, is

the universal constant appeared in Talagrand’s concentration inequality (Proposition/6jsahe

one introduced in Assumption 1 to bound the magnitude of noise. Remind the definitjot):of
1(t) = nn(t) = max(1, Vt,t/v/n).

We define eventg&’ (t) and&:(t') as

&i(t) = {

n

% Z Ezfm(lz)

i=1

< QU™ (fr)n(t), Vi € Hin (m=1,..., M)} ., (S-13)
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2
(z v (s ) (e,

Vo € Hon (m=1,...,M)}. (S-14)

e :{“‘Zmlme HZmlme 2(11)

Using Lemmas 12 and 13 that will be shown in Appendix E, we see that the efigntand&, (')
occur with probability no less thah— exp(—t) and1 — exp(—t') respectively as in the following
Lemma.

Lemma 7. Under the Basic Assumption (Assumption 1), the Spectral Assumption (Assumption 2)
and the Embedded Assumption (Assumption 4), the probabiliti&g©Qfand &, are bounded as

P(&(1) > 1 - exp(—t), P(&(t') > 1 — exp(~t')

Proof. Lemma 13 immediately give®(&;(t)) > 1 — exp(—t) by noticing¢ in the statement of
Lemma 13 satisfie < ¢. Moreover, since’ in the statement of Lemma 12 satisfigs< ¢, we
haveP(&(t')) > 1 — exp(—t') by Lemma 12. O

Remind the definition (4) ofi;, as, 81, F:

1
M 7n_23'm 2
a1 = 3 E n , Qg = 3
n

)

(sm/rin_snL ) M
\/ﬁ m=1

m=1 h*
1
M —2mGom)\ 3 (—sm)? M
Tm +sm SmTm +sm
51 =3 E 2 ) 62 =3 1 ) (8'15)
m=1 nltsm nltsm

m=1 p*

for given reals{r,,, }22_,. The following theorem immediately gives Theorem 1.
Theorem 8. Suppose Assumptions 1-4 are satlsﬁed {egt}M_ | be arbitrary positive reals that

m=1
can depend on, and assume(" > (%) + (@) . Then for alln andt’ that satisfy% <1

ay B
and 2" max{a?, 47, 280011y < L and for allt > 1, we have

— 12
24m(t)?¢> M log(M )1 s
1 = £ < 2 (a4 g7 ABAD) L g0,

with probability 1 — exp(—t) — exp(—t').

Proof of Theorem 8By the assumption of the theorem, we can assume Lemma 7 holds, that is, the
eventé; (t) N &, (t') occurs with probability —exp(—t) —exp(—t’). Below we discuss on the event
& () N & ().

Sincey; = f*(z;) + €;, we have
1 = £ W + A A
2 n M
¢ * r * n * n * 12
<(IF = £ Wy = I = F7I2) + 2 32 D7 ealfmlen) = frwa)) + A7 15715 -
=1 m=1

Here on the evenf;(t'), the above inequality gives

1F = £, m + AVIAI2

2
<pvn (Z U (fn — £, ) %Z Z Fr(@) + A2 (S-16)



Before we prove the statements, we show an upper bou@%le U,(],Z.L (fm) required in the
proof. By definition, we have

U (fm)
__Sm (j*‘sm) 1 (M
T ™ Tm " og
2V | (Ul + smrmll finlae, ) + =2 = o
7Sm,(3—5'm)
r=Sm Tim T+sm
<3 (| foul o) + St frnll30) + 37— (ol oy + Sl frnll30,,) (S-17)
Vn nitsm
log
+ ( )HfmIILQ (S-18)
Now the sum of the first term is bounded as
M Tt_s'm
Z 3”# (I fmll Loy + smTmll fnlle,0)
—32 w” ||fm|\L2<n>+3ZW ol
n Vn
M2, 3 /M 3 o plosm\ M
(3 m Il ) +3] (22) | el
(=) (3 vk vy

where we used Cauchy-Schwarz inequality and the duality of the norm in the last inequality. The
sum of the second term of the RHS of Eq. (S-18) is bounded as

M _sm@B—sm)
o T
> 3 (Ifmll Loy + SmTmll finll22,.)
m=1 nliltsm
7?771,1(;: sm) (1 9m)z
T SmT
—32 - [ fmll n>+3z i [ fm 3¢,
1+5‘m,
1 M
M T_%;:m) 2 M B . T(ll—:;:;)z
<3 (Z ||fm|%2(n>> +3|| | T 1£ s
m—1 nlitsm m—1 niltsm _
m= 'l/)*

where we used Cauchy-Schwarz inequality and the duality of the norm in the last inequality. Finally
we have the following bound of the third term of the RHS of Eq. (S-18):

1 Mlog(M) [ & :
Z Mt < °§”(Z|fm||%2<n>).

m=1

Combine these inequalities and the relat@jf:1 ||fm||2L2(H)

||fHL2(H) (Assumption 3) to
obtain

- KM

Z s, (f

Y _ 5 _ M
(Z ) Wi g | (oot 171l
Km \/ﬁ m=1
m=1 ==
M 72%?51 sm) % ||f|| (11_4:7”)2 M
m SmT sm
2 CEILU | i — £l
n1+<m VEM nIFsm .
m= ‘11*



M log(M) || fIl L)

. (S-19)
n KM
Then by the definition (4) ofiy, as, 81, 52, we have
Z U (fm)
||f||L2(H /122y Mlog(M) |1,
<qp ——2-= + + b . S-20
T +az flly + B ——F— NGT Ball flle + . NG (S-20)
Step 1.
By Eqg. (S-20), the first term on the RHS of Eq. (S-16) can be upper bounded as
M 2
ovin (Z UL, (fn = f:;)) n(t')
m=1
=113 : If = 7112,
<dovin(of 0 4 ad|[f - fIf + g
KM
. Mlog(M) Ilf = 117 )
2 _ X2 2 /
BIF - 1113+ == ()

%“7 <>QM—fﬁdm+(§)f—rm)

+wﬁMm<>
n

K

<1, m@ffmm+()w MQ

(N = £,

By assumption, we havé®™ max{a?, 57, 2180} (1') < L. Hence the RHS of the above

inequality is bounded by
2
i (30 G- ) o0

<i)+@ﬂMUfm} (.21

<7 {Hf = 17, +

Step 2.0n the even#; (t), we have

n M

M
2SS i) — F) <2 32 06U, (o~ £
i=1 m=1 m=1
<2mw¢['”j”'“”+aﬂf f|w+ﬁ|w_jgfﬂn+ﬁﬂf—f*w
MbgM)ff”@mﬂ (- Eq(s-19)
n o,
<2100 () ﬂbm+f.ﬂ> WO (17 = £ aacn + 5207 = 171




12n(t)*¢*a} 1 . as v\
<= o (I = Pl + 1=
1

2
@f £ lac + 21 - f)

KMz 24

6n(t)?¢° M log(M)
KM n
129(t)*¢%af | 1

%3

n 121(t)* ¢251

RMm

+

1= Pl
= f|hmyF( )nf fn4

ﬂ r *
i - Fm (;)|v—fnﬂ
6n(t)?¢* M log(M)

1 P * (12
oy Jrﬁ”f*f 2,

, A
129(t)%¢? (a%ﬁfg‘“f(m) +i{||f—f*lli<n)+

IN

\ /\

Km

Qh) (?)]nf wa}

(S-22)

Step 3.
Substituting the inequalities (S-21) and (S-22) to Eq. (S-16), we obtain

1F = £413,qn + A 1A
12 2 M log(M 1 A

L20(t)" Q@+ﬁ+f())+2{W—fwzmu—(a) +<?>]Hf fm}
AP (S-23)

Rnm
Now the term| f — f*||2, can be bounded as

£ * 12 r * 2 2112 * (|12
1F =105 < (Il + 177 0)” < 2 (LAIZ + 1512
where we used the triangular inequality for the mixed-norm with respegtriorm || - ||,,. Thus,
2 2
whenA(™) > (g%) + (%f) ,Eq. (S-23) yields

e

1,2 * n *
SIF = 112 < of + 57 + + 224173

Therefore by multiplying 2 to both sides, we have
24n(t)2$? M log(M _—
IF = £ < 22 MDY | )3,

This gives the assertion. O

Mlog(M)
n
af + 87 +

E Bounding the Probabilities of & (¢) and &(t)

Here we derive bounds of the probabilities of the evefitg) and & (t') (see Eg. (S-13) and
Eq. (S-14) for their definitions). The goal of this section is to derive Lemmas 12 and 13.

Using Propositions 6 and 5, we obtain the following ratio type uniform bound.

Lemma 9. Under the Spectral Assumption (Assumption 2) and the Embedded Assumption (Assump-
tion 4), there exists a consta@t, , depending only os,,,, c andC; such that

1
N F o/ Y |

> G,
FnHoil fllrom =1 US (fn)




Proof of Lemma 9Let H,,(6) := {fm € Hum | I fmllr, = L. | fmllz,an) < 6} andz = 21/sm >
1. Definer := s,,,7,. Then by combining Propositions 4 and 5 with Assumption 4, we have

sp |2 2oy i fm(2i)
Frn€Hom il fon [l =1 Uﬁ”ém(fm)

E

1 1
|7 2icy Oifm (i) | 2oicy Oifm (i)
<E sup [0 g E sup 1)
Fm€Hm(T) Un,sm (fm) k=1 | SmE€MHm(TzF)\Hm (r2F71) Un,sm (fm)
l1-—sm (1 )2 25m
Fl=sm 552 Cl+5m7. 1+S”7iz “1;;5'm
<C/ vn v l+sm
- Smgr;LSm 7%
SmT Sm
Vi S 3l T SmTm
nl+tsm
l1—sm (1 32 (1 )2 2sm
Sh(— am) 1— sm gsm Cll+37n kﬁTﬁ"gﬁlsm
Sm
vn n1+sm
Z 37«7” sm k—1 v _ Sml(ifsnz)
TZ Sm
vn 3m k-l
nltsm
' — s 0 (3—sm)
< Z8mo [ g=SmEsm o/ g 35m01+3m El+s7n 14+ Zlfksm vV Zl—kis’"l“;’"
=3 m Sm
k=1

sm(3—sm)

Cl 5735771 l—sm  2sm Zl_sm 217 T+sm
s m ~ S~
I GRS B v .

1 — z=5m 1 . Z_ b7r3(j;7i"rrL)

sm(3=sm)

1—s 2s 1-s 1—=mo—-m/
m m z m z T+sm
/ ~Sm 1+s ~1+s
S gcsm <Csm’ \/ Cl m C nl> <1 + 1 —sm \/ _Sm(S*Sm) > 5

-z 1—2 TTom

where we useds *m < 3 for 0 < s, in the last line. Thus by settingC,,, =

m

1—sm 5 25y T—sm 175M(3S Sm) . ]
9C;,, (CS”” v et Ci:f”) (1 Ay 2 , we obtain the assertion. O

1—z—35m _Sm,(3 sm)
1—z T+sm

This lemma immediately gives the following corollary.

Corollary 10. Under the Spectral Assumption (Assumption 2) and the Embedded Assumption (As-
sumption 4), there exists a constant  depending only oR,,,, c andC; such that

El |2 S0 oif(@a)]

<C

> U

sup
fm€Hm 7?22,; (fm)

Proof. By dividing the denominator and the numerator by the RKHS nibfm|| %, , we have

LS oifm xm]

(
_f’”eHm nsm( m)
_EB| sup lmiimiOifm(i >|/||fm||Hm1
[t U (fm)/ | il

(m)
L5 Gifmla ->/||fm||ﬂm|]

E

=E | sup
€W U (/| fin 20,

. wp B 0ifn( »]

€l =t USe) (fin)
<Cs, . (. Lemma9




Lemma 11. If % < 1, then under the Spectral Assumption (Assumption 2) and the Embedded
Assumption (Assumption 4) there exists a constardepending only Ofism }M_,, ¢, Cy such that

E[ L5 ofm(a)]

<C,.

max sup )
m f7nEH7n Un,sm (fm)

Proof of Lemma 11First notice that the.,(II)-norm and thexo-norm of%((?) can be evalu-
ated by "

U(i?)n(xz) _ H{:T;ng(H) < Hfm||L2(H) < 1 nM7 (8-24)
Unsm (F) | pyry Unvsm (fim) M”fm”LQ(H) og(M)

‘ ‘ C f 1—sm Sm
Ufﬁ(xl) = Un{T‘lm < 1 mHL“"‘H) e - G <o, (S-25)
Un,sm(fm> %) Un sSm (fm) ” 5771 (fm) 3

where the second line is shown by using the relation (S-11) (l.et= max,, Cs,, whereC;_ is
the constant appeared in Lemma 9. Thus Talagrand’s inequality and Corollary 10 imply

1 xn r
P | max sup [ iz i (@) > K |C, + _t + Cit
M feHm US (fm) I log(M)  /n
M 1 -
| E 10'1fm(xz)| t Cit
< P{ sup ’ >K|C,+ 4/ —— + ——=
m=1 (fmGHm rL 5771( m) L log(M) \/ﬁ
M 1 _
| Z 1 szm(mz | 4 Clt
<) P sup " >K|C, + -=
mZ=1 (fme%m Uy sm (fm) L log(M) ~ v/n
<Me™?

By settingt < t + log(M ), we obtain

1
P max sup |2 2 1)szm(wz)l o w|o oy [tEloa(D) | CatlosM) |
™ fnetn U, (fm) log(M) vn
for all t > 0. Consequently the expectation of thex-sup term can be bounded as
L ,
E |max sup | Zz( 1)szm( ;)|
m fm€Hm U”T,;m(fm)
4 1og(M)} /OO t+1+1log(M) Ci(t+1+1og(M))| _,
<K | Cot+14+ ————| + K |C,+ + e~ tdt
[ NG 0 log(M) NG
s C1(2 +log(M)) ~
<2K |C, 2 < C,
< [C +V2+ Tos0D) 7 <C
wher~e we used/t + 1 + log(M) < vt + /1 +1log(M) and [;° vie tdt = /T, % <1,
andC, = 2K[C. + V2 + /T +3C1]. O

Lemma 12. Suppose the Basic Assumption (Assumption 1), the Spectral Assumption (Assumption 2)
and the Embedded Assumption (Assumption 4) hold. Defiag{ L {2(7* +1+ Cl} f log%) <
1, then the following holds

1
P <max sup [w Lizs ifm (1) > gbn(t)) <e ™t

m fnLEHM szzn (fm)




Proof of Lemma 12By the contraction inequality [2, Theorem 4.12] and Lemma 11, we have

El 5 2 @] _op lmx qp 15 2im i€ifn (@)

max sup < 2LC.,
m fmeHm U’T(Ltzzn (.fm)

M fetm US™ (fn)

where we used; < L (Basic Assumption). Using this and Eq. (S-24) and Eq. (S-25), Talgrand’s
inequality gives

1
P | max sup In iz €ifm ()] >KL [2@* +Vt+ Clt} <et
" gt UR (fm) v

Thus we have

P ( [ Xils ifm(@i)]

max sup
M frm€Hm r%?n(fm)

> KL [20* F14 Cl} max <1, N %)) <ot

Therefore by the definition af andy(¢), we obtain the assertion.
O

Lemma 13. Suppose the Basic Assumption (Assumption 1), the Spectral Assumption (Assumption
2) and the Embedded Assumption (Assumption 4) hold¢'Let K[2C,C, + C; + C%]. Then, if
% < 1, we have for alk > 0

- w(z U,sfzmm)) o),

=1

[V RV

Lo (TT)

forall f,, € H,, (m =1,..., M) with probability 1 — exp(—t).
Proof of Lemma 13.

[P e b

E| sup Lo (IT)
fmEHm (Z% 1 n 5771 (fm))
M
LY 0t @)’
<2E sup ’ 5
fm€Hm (ZZ\J_ U’IS,TVSL) (f’rn))
n M

< Hzm X - LS (N () ©26)
< sup pon X sup , pooy , -

Fmetn M US (f) Fn€Hom MU (f)

where we used the contraction inequality in the last line [2, Theorem 4.12]. Thus using Eq. (S-25),
the RHS of the inequality (S-26) can be bounded as

1 n M
LY o (Ey Smn(a))|
e Lf?ftm S USE ) ]

1
SQCl\/ﬁE sup max ‘ z( 1)0'zfm(l'z)| ;
anEHmL m U’I’L’rzm (fm)

where we used the relation

%ﬂ Zm < max <‘Z:> (S-27)
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for all a,, > 0 andb,, > 0 with a conventior% = 0. By Lemma 11, the right hand side is upper
bounded byC; /nC,. Here we again apply Talagrand’s concentration inequality, then we have

sup ‘Hzi\"/[_l me Hzm 1fm‘
e (SN0, ()’

where we substituted the following upper boundBoindU .
r 2
M 2
B S sup E (ZmZI f'm) 5
f‘m EHWL (Z’ﬁ{:l U”(l?;zn (fm))

P L (1)

> K [2010*\/ﬁ+ VinCy + Oft} <et

M 2 M 9
< swp E LZm—(gw 2 <||Mzm_1( j;noa 2
Fn€Hom (Zm:1 Un,sm(fm)) (Zm:1 me(fm))

M 2
c25) (S Mfllam) (5 om0, ()

sup 2
€ (S0 U fm)) (S USL (F))
(S-24) 1
< O g <
where in the second inequality we used the relation
M M M M
BN £) 1 =EL Y. ffud < 2 Manllzalfow s = (O | fnllzacm)?
m=1 m,m’/=1 m,m’=1 m=1

and in the third and forth inequality we used Eq. (S-25) and Eq. (S-24) with Eq.(S-27) respectively.
Here we again use Eq. (S-24) with Eq.(S-27) to obtain

M 2
U = sup (Zm:l fm) S C'fn

2
Fm€Hm (Z%Zl Uv(:.,rstn (fm)>

Therefore the above inequality implies the following inequality

[t o], = [0 5]

2

su Wl < g [201(33 YO 012] Vamax(1, v, t/v/n),
meHm (Zm ) Ur(l”;) (fm))
with probability 1 — exp(—t). Remind¢’ = K [2016’* +Cy + 012} , then we obtain the assertion.
O

F Proof of Theorem 3 (minimax learning rate)

Let the §-packing numbet) (4, H, Lo (IT)) of a function clas${ be the largest number of functions
{fi,--. fo} € Hsuchthat|f; — fjllz,am) > o foralli # j.

Proof of Theorem 3The proof utilizes the techniques developed by [3, 4] that applied the informa-
tion theoretic technique developed by [7] to the MKL settings. To simplify the notation, we write
F = Hy(R), N(e,H) := N(e,H, Lo(II)) and Q(e,H) := Q(e,H, Lo(II)). It can be easily
shown thatQ(2e, F) < N(2¢,F) < Q(e,F). Here due to Theorem 15 of [29], Assumption 5
yields

log N(g,H(1)) ~ e~ 2. (S-28)
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We utilize the following inequality given by Lemma 3 of [3]:

52 log N (&, f)+n52/202+10g2>
min max > 21— : & .
f fre ||f f ||L2 = ( IOgQ(Ksn,F)
First we show the assertion for thé.-norm bal: Hy(R) = He (R) :=

{f M fon | maxy<mens || fnlla, < R}. In this situation, there is a constadt that
depends only such that
log Q(6, F) > CM1og Q(6/V'M, H(R)), logN(e, F) < Mlog N(¢/V'M,H(R)),

(this is shown in Lemma 5 of [4], but we give the proof in Lemma 14 for completeness). Using this
expression, the minimax-learning rate is bounded as

2 17 2 2
min  max EHf - f*HQL am = On 1— MlogN(en/\/M,H(R)) +ni"/20 +log2 .
ForreMo, (Ry) 2 4 CMlog Q(6,/vV M, H(R))

Here we choose,, andé,, to satisfy the following relations:

5e5eh < Mlog N (/ML A(R)) (S-29)
Mlog N (sn/\/M,ﬁ(R)) > log 2, (S-30)
Llog N e/ VM, H(R)) < ClogQ (6,/v/M, H(R)). (5-31)
With ¢,, andé,, that satisfy the above relations (S-29) and (S-31), we have
. o2
Ir;}nf*egr{lZ)%Rp)EHf 7 = 16" (S-32)
By Eq. (S-28), the relation (S-29) can be rewritten as
—2s
no o, En
—et < CM .
gt <0 (5 7)
It is sufficient to impose
2 < Cn~ T MRTH, (S-33)
with a constanC. Since we have assumed that> S (= 7z for ||« ly = || - [lee), the

R21]13,.
conditions (S-30) can be satisfied if the const@nn Eq. (S-33) is taken sufficiently small so that
we have

—2s
log 2 < log N(e,/vV/M,H(R)) ~ (Rf}ﬂ) . (S-34)

The relation (S-31) can be satisfied by taking= ce,, with an appropriately chosen constant
Thus Eq. (S-32) gives

min  max  E||f — f*|2. 4y > Cn~ T+ MR, S-35
i e If = 2, > (S-35)

with a constantC'. This gives the assertion fer= co
Finally we show the assertion for general isotropicorm || - ||,,. To show that, we prove that
He ( -/(€M)) C Hy(R). Thisis true |fRH ”w* 1 € H,(R) because of the second condition

of the definition (11) of isotropic property. By the isotropic property, thaorm of%l is
bounded as

* R||1H " isotropic R
HM“H =—ar s < M =R
Thus we have——~ R”}h”f* 1 € Hy(R) and thusH,_ ( -/(eM)) C Hy(R). Therefore we have
min maX E >m1n max
i mox BIS - S zmin s B £

12



>C <M
n"T ( cM

) . (. Eq.(S-35).

Note that due to the conditian > W’ Eq. (S-35) is still valid under the condition thﬁ[l”—w*

is substituted intd? in Eq. (S-35) (more precisely, Eq. (S-34) is valid). Resettihg- Cc™ T, we
obtain the assertion. O

Lemma 14. There is a constant’ such that
log Q(8, He. (R)) > CM log Q(6/V'M, H(R)),

for sufficiently smalb.

Proof. The proof is analogous to that of Lemma 5 in [4]. We describe the outline of the proof. Let

N = Q(v26/vVM,H(R)) and{fL,..., fN} be av25/v/M-packing ofH,,(R). Then we can

construct a function clas¥ as

M

T= {f” = fir1i=noim) € {1,..-,N}M}-
m=1

We denote byN] := {1,..., N}. For two functionsf?, 3" € T, we have by the construction

2 M

M
17 = N = D I = 2, > 20 o O Wim # ]
m=1

m=1

Thus, it suffices to construct a sufficiently large subdett [N]™ such that all different pairs
4,3 € Ahave at leasd!/2 of Hamming distancés; (5, 5') == S0, 1[jm # j5)-

Now we definely (A, j) := minjca du(3', j). If |A satisfies
{5 e anas < 3} < - v, (5-36)

then there exists a membgre [N]M such thay’ is more than% away fromA with respect taly,
i.e.dy(A,5") > 4. Thatis, we can adg to A as long as Eqg. (S-36) holds. Now since

. . M
{a e aneady < 5} <1a( ), ) v, (s-37)
Eq. (S-36) holds as long a& satisfies

NIM
PV S——, U
2 (M/Q)NM/2

The logarithm ofQ* can be evaluated as follows

. 1 NM M M
log Q 10g< (>NM/2>—M10gN—10g2—log<M/2>—210gN

M/2

M N
> 7logN—log2 log 2M > —logﬁ

There exists a constant such thatN = Q(v/26/vM,H(R)) > CQ(5/v/M,H(R)) because

log Q(6, H(R)) ~ (%)_23. Thus we obtain the assertion for sufficiently latge O
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G Proof of Technical Lemmas

G.1 Proof of Lemma 2

Remind that Eq. (6) gives
I1F = 17,0

M log(M
:O’D({rfﬁfl {a?+5f+ <a1> + (?) 1 107 + 705( )}> (S-38)
T >0

We derive an upper bound of the right hand side by adding a constrgint r (¥m). Since
$m = s (Vm), under the constraim = r (Vm) we have

ar 35 11,

o ﬁ = = [t
(1—s)2
1+s
Bo 3”7||1||w* 1
[ ST {[1] -
B1 ~20(8-s) \/M
M
nlts

Thus22 = % and Eq. (S-38) becomes

R . . 1 2
If = F I, = Op( min {0@ + 37 + 257 |1

= 2. f*||$,)+]m°§(]‘4)}>. (5-39)

By the definition, we see that the first two terms are monotonically decreasing function with respect
to r and the third term is monotonically increasing function. The minimum of the right hand side

is attained by balancing? + 7 and24;s%r? H1||w* I£*11,. Sinceai + 7 < 2max (af, 57),
Eq. (S-39) indicates that

P . 1 2 . M log(M)
1 = 1y < O i {2 o ) 4200000 . 1 4 20 ).

Tm =T

n
Tm =T
(S-40)
To balance the first term and the second term, we need to consider two situations:=
A2 LU 17113 or 87 = Fzs?r? L. (L7713

First we balance the terms and 2 s%r2 |12

P b

- |[F*[I7, under the restriction that,, = r (Ym):
1
2 2 2
ay = M ’r 1] h*
—2s

£

<:>9M

== I3

s rl= <s/3>1is M7= 02 (|1l |5 fl) ™
For thisr, we obtain
—2s
a? =9oM?”

$%r2 ||1\

"[)*

n

1 25 g 25 _ 1
—=0T+s gT+s M THs 1+s(

N 2 _2s 1 N 2s
Ll L ll) T < OMPT T T ([l [L£* 1) T

where we used+= <1 and9 T < 9in the last inequality.

,Ll)*

Next we balance the ternt& and +; s*r

1

62 = s L IR

||, under the restriction that,, = r (Vm):

14



2s5(3—s)
ro 1Es 1 2
A gMan = MSQTZ - 1417
1ts _ 14s 1 14s
o 7,.—1 _ (8/3) THds—s2 | f 1+4s—s2 g THds —o2 (”1‘ . f*Hw) THds—s2

For thisr, we obtain

_2s(8—5s)
r 1+s
2 _
By =9IM 5
n 1+s
1+s 2s(3—s) 1-2s45s2

—Q1+4s—s2 gltds—s2 T i44s—s2, 1 43752 * 12551112)2
=9ttt m R gt B N et g e ([ |y [ f7 ) T

w*
1-2s4s2 5 2s(3—s)

S9N11+45732 n_1+45732(||1|¢* f*HIZJ)m’

2s(3—s) 14s

where we used++—+* < 1 and9'++—+* < 9in the last inequality.
Therefore the right hand side of Eq. (S-40) is further bounded as

If - I,

2s

Frllp) =,

1]

Ph*

1-2s4s2 5 25(3—s) M1 M
OM i T (|1 e f*llw)1*4552}+°§( )

<0, <4max {9M1_12fsn—1is(

2s

Frllp) ™+

—o, [ M-t
=0y en” T (]| 1|

(1—s)2

M1+4S"92 nf 1+4.§752 (”1‘

. 25(373)2
frllp) e +

M log(M)
'l/)* 7/,7/ .

4

F*|l/M) 7=, the first term of the right hand side of this bound is not less

Finally, if 7o > (|| 1|y
than the second term:

2
25 1—s

( _ 2
[ [[f*llg) 775 = Mrae==Fn vt (|1

2s 1 M
M Pl

,d)*
Thus we obtain the assertion.
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