
On Tracking The Partition Function:
Supplemental Material

Guillaume Desjardins, Aaron Courville, Yoshua Bengio
{desjagui,courvila,bengioy}@iro.umontreal.ca

Département d’informatique et de recherche opérationnelle
Université de Montréal

The supplementary material provides a more comprehensive view of our log partition function track-
ing algorithm. The notation is mostly identical to that of the paper and is summarized below for
convenience. One minor difference however, is that we make widespread use of the notations A:,l

and Am,: to indicate the vectors formed by the l-th column and m-th row of matrix A (respectively).

qi,t RBM at inverse temp. βi at time-step t. qi,t(x) = q̃i,t(x)/Zi,t, with i ∈ [1,M ].
θ set of model parameters.
Fi,t(x) free-energy assigned by qi,t to input configuration x.
ζi,t log partition function of model qi,t.
Xi,t mini-batch of samples {x(n)

i,t ∼ qi,t(x);n ∈ [1, N ]}.
Yt additional mini-batch of samples {x(n)

1,t ∼ q1,t(x);n ∈ [1, NY ]}, NY ≥ N .
D set of training examples.
µt,t, Pt,t estimated mean and covariance of posterior distribution p(ζt | O(∆t)

t:0 , O
(∆β)
t:0 ) .

Σζ fixed covariance matrix of p(ζt|ζt−1).
εinit, εt initial learning rate and rate at time t.
si,t coarse estimate of Zi+1,t/Zi,t used to generate bridging distribution q∗.
q∗i,t bridging distribution with q∗i,t(x) = q̃i,t(x)q̃i+1,t(x)

si,tq̃i,t(x)+q̃i+1,t(x) .

r(q1, q2, x1, x2) swap probability used by PT, with ri,t = min
(

1, q̃1(x2)q̃2(x1)
q̃1(x1)q̃2(x2)

)
.

1 Parallel Tempering Algorithm

We divide our algorithm into three parts. Algorithm 1 presents the pseudo-code for the Parallel
Tempering sampling algorithm. For details, we refer the reader to [1].

Algorithm 1 sample PT (q:,t,X:,t−1, k)

Initialize Xi,t as empty sets, ∀i ∈ [1,M ].

for n ∈ [1, N ] do

for i ∈ [1,M ] do
Initialize Markov chain associated with model qi,t with state x(n)

i,t−1.

Perform k steps of Gibbs sampling, yielding x(n)
i,t .

end for

Swap x(n)
i,t ↔ x

(n)
i+1,t with prob. r(qi,t, qi+1,t, x

(n)
i,t , x

(n)
i+1,t) , ∀ even i.

Swap x(n)
i,t ↔ x

(n)
i+1,t with prob. r(qi,t, qi+1,t, x

(n)
i,t , x

(n)
i+1,t) , ∀ odd i.

Xi,t ← Xi,t ∪ {x(n)
i,t } , ∀i.

end for

return X:,t.

1



O∆t
1,t

O∆t
2,t O∆β

1,tO∆β
1,t−1

O∆β
M−1,t−1 O∆β

M−1,t

ζM,t−1 ζM,t

ζ2,t

ζ1,tζ1,t−1

ζ2,t−1

btbt−1

System Equations:

p(ζ0) = N (µ0,Σ0)

p(ζt | ζt−1) = N (ζt−1,Σζ)

p(O(∆t)
t | ζt, ζt−1) = N (C[ζt, ζt−1]T , Σ∆t)

p(O(∆β)
t | ζt) = N (Hζt,Σ∆β)

C =

2664 IM

1
0
...
0

−IM

0
0
...
0

3775

H =

2664
−1 +1 0 0 0

0 −1 +1 0
... 0

. . . 0
0 0 0 −1 +1 0

3775

Figure 1: A directed graphical model for log partition function tracking. The shaded nodes represent observed
variables, and the double-walled nodes represent the tractable ζM,: with βM = 0. For clarity of presentation,
we show the bias term as distinct from the other ζi,t (recall bt = ζM+1,t.)

Inference Equations:

(i) p
“
ζt−1, ζt | O(∆t)

t−1:0, O
(∆β)
t−1:0

”
= N (ηt−1,t−1, Vt−1,t−1)

with ηt−1,t−1 =

»
µt−1,t−1

µt−1,t−1

–
and Vt−1,t−1 =

»
Pt−1,t−1 Pt−1,t−1

Pt−1,t−1 Σζ + Pt−1,t−1

–
(ii) p(ζt−1, ζt | O(∆t)

t:0 , O
(∆β)
t−1:0) = N (ηt,t−1 , Vt,t−1)

with Vt,t−1 = (V −1
t−1,t−1 + CTΣ−1

∆tC)−1 and ηt,t−1 = Vt,t−1(CTΣ∆tO
(∆t)
t + V −1

t−1,t−1ηt−1,t−1)

(iii) p
“
ζt | O(∆t)

t:0 , O
(∆β)
t−1:0

”
= N (µt,t−1 , Pt,t−1) with µt,t−1 = [ηt,t−1]2 and Pt,t−1 = [Vt,t−1]2,2

(iv) p(ζt | O(∆t)
t:0 , O

(∆β)
t:0 ) = N (µt,t, Pt,t)

with Pt,t = (P−1
t,t−1 +HTΣ−1

∆βH)−1 and µt,t = Pt,t(H
TΣ∆βO

(∆β)
t + P−1

t,t−1µt,t−1)

Figure 2: Inference equations for our log partition tracking algorithm, a variant on the Kalman filter. For any
vector v and matrix V , we use the notation [v]2 to denote the vector obtained by preserving the bottom half
elements of v and [V ]2,2 to indicate the lower right-hand quadrant of V .

2 Kalman Filter

Algorithm 2 presents the tracking algorithm. The statistical estimateO(∆t)
i,t is computed as an average

of importance weights, measured between adjacent models qi,t and qi,t−1. The estimate O
(∆β)
i,t

is computed through bridge sampling, applied to models qi+1,t and qi,t. These observations are
combined through a Kalman filter, which also exploits a smoothness prior on the evolution of ζt.

We include the graphical model, system equations and inference equations in Figures 1 & 2 for com-
pleteness. We however refer the reader to the accompanying paper for a more thorough description
of these figures.

3 Simultaneous Tracking and Learning

Finally, Algorithm 3 ties everything together, performing joint training and estimation of the log
partition function. Note that using two sets of samples from the target distribution (X1,t and Yt)

2



Algorithm 2 kalman filter (q:,t−1, q:,t, µt−1,t−1, Pt−1,t−1, si,t,Σζ)
Using µt−1,t−1, Pt−1,t−1 and Σζ , compute ηt−1,t−1 and Vt−1,t−1 through equation (i).

for i ∈ [1,M ] do

w
(n)
i,t ←

q̃i,t

“
x
(n)
i,t−1

”
q̃i,t−1

“
x
(n)
i,t−1

” ; O
(∆t)
i,t ← log

[
1
N

∑N
n=1 w

(n)
i,t

]
; Σ∆t ← Diag

[
Var[wi,t]“P

n w
(n)
i,t

”2

]
end for

Using O(∆t)
i,t and Σ∆t, compute ηt,t−1 and Vt,t−1. through equation (ii).

Compute µt,t−1 and Pt,t−1 using equation (iii).

for i ∈ [1,M − 1] do

u
(n)
i,t ←

q∗i,t

“
x
(n)
i,t

”
q̃i,t

“
x
(n)
i,t

” ; v
(n)
i,t ←

q∗i,t

“
x
(n)
i+1,t

”
q̃i+1,t

“
x
(n)
i+1,t

”
O

(∆β)
i,t ← log 1

N

∑N
n=1 u

(n)
i,t − log 1

N

∑N
n=1 v

(n)
i,t

Σ∆β ← Diag

[
Var[ui,t]“P

n u
(n)
i,t

”2 + Var[vi,t]“P
n v

(n)
i,t

”2

]
end for

Using O(∆β)
i,t and Σ∆β , compute ηt,t and Vt,t through equation (iv).

Return (ηt,t, Vt,t).

is not required. Their use is inspired from [2] and allows us to separately tune N , the number of
“tempered” mini-batches and NY , the size of the mini-batch used to estimate the gradient.

Algorithm 3 main

Initialize θ1 and compute exact log partition functions ζ:,1.
Initialize µ1,1 with ζ:,1, P1,1[1 : M, 1 : M ] = 0 and P1,1[M + 1,M + 1] = εinit · σ2

b .
Initialize samples X:,1 and Y:,1 according to the RBM visible biases.
Initialize si,1 to exp(ζi+1,1 − ζi,1), ∀i ∈ [1,M − 1].

for t ∈ [2, T ] do

Obtain training examples X+
t = {x(n) ∈ D;n ∈ [1, N ]}

θt ← θt−1 − εt
(

1
N

∑
x∈X+

t

[
∂F (x;θt)

∂θ

]
− 1

N

∑
y∈Yt

[
∂F (y;θF,t)

∂θ

])
.

Choose N samples from Yt to swap with X1,t.
X:,t ← sample PT (q:,t,X:,t−1, k).
Yt ← sample Gibbs (q1,t,Yt−1, k).
(µt,t, Pt,t)← kalman filter (q:,t−1, q:,t, µt−1,t−1, Pt−1,t−1, si,t,Σζ)

ζ̂:,t ← µt,t; si,t+1 ← exp(ζ̂i+1,t − ζ̂i,t), ∀i ∈ [1,M − 1].

end for

References
[1] Desjardins, G., Courville, A., Bengio, Y., Vincent, P., and Delalleau, O. (2010). Tempered Markov chain

monte carlo for training of restricted Boltzmann machine. In JMLR W&CP: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (AISTATS 2010), volume 9, pages 145–152.

[2] Salakhutdinov, R. (2010). Learning deep boltzmann machines using adaptive mcmc. In L. Bottou and
M. Littman, editors, Proceedings of the Twenty-seventh International Conference on Machine Learning
(ICML-10), volume 1, pages 943–950. ACM.

3


