Exact bound for histogram descriptors

In this supplementary material we derive an exact bound for the case of L;-normalized
histograms and y? distance.
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Given a window w we denote its L1-normalized histogram by h% = (\%\7 A ﬁ),
where @ is the set of bins considered and hy’ represents the number of pixels that fall in
bin ¢ in window w. For two windows w; and ws, with corresponding L;-normalized

histograms ~A%* and h™2, their x? distance is defined as:
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derive the upper bound B(wy, w2) such that x?(h¥t, h*2) < B(wy, ws), Ywy, wy with
o(wy,wy) = o.

For simplicity of explanation, in the following we will use the term color his-
tograms. However, our derivation holds for any histogram descriptors where the bins
refer to any quantization of the feature space (e.g. bag-of-words with interest points as
features).

For windows w; and ws with overlap o(wy,ws) = = 0, we want to

Theorem 1. Given two windows w1 and wo with overlap o(w,ws) = o we have:
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Proof. The x? distance between two color histograms At and h*? is maximized when
the two windows have no colors in common. In this case the y? distance is 2. For
overlapping windows w; and ws, the maximum x? distance is reached for the case
when the three regions wy N wa, wy \ we and ws \ w; contain three disjoint sets of
colors. Denoting with Q" the set of colors that appear in window w, the upper bound
B(w1,ws) of the x? distance is expressed as:
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Given the overlap o = o(w1, ws) we distinguish two cases:
i) o = 0: This means that w; Nwy = (), s0 wy \ we = wy, we \ w1 = we which
leads to

Blw,wy) =1+1+0=2 @)

which in fact is the maximum y? distance between two L1-normalized histograms.
ii) o # 0: We make the following notations:
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Using these notations we express each of the terms from eq. (6) based on r1, 79, I as:
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We can express the overlap o = o(w1, ws) using 71,732, I as:
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so that we can write 75 as a function of 1 and o:
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and replace ro from eq.(14) in eq.(12) in order we obtain:
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