
A Supplementary File for “Projection onto A Nonnegative

Max-Heap”

A.1 Examples for Elaborating the Related Definitions

A.1.1 Root-Tree in Definition 1

For the tree depicted in Figure 1 (a), the following three trees are valid root-trees:

(1) T t
1 = (V t

1 , E
t
1), V

t
1 = {x1}, E1 = ∅;

(2) T t
2 = (V t

2 , E
t
2), V

t
2 = {x1, x2}, E

t
2 = {(x1, x2)};

(3) T t
3 = (V t

3 , E
t
3), V

t
3 = {x1, x3, x6}, E

t
3 = {(x1, x3), (x3, x6)}.

Similarly, for the tree depicted in Figure 1 (b), the following three trees are valid root-trees:

(1) T t
1 = (V t

1 , E
t
1), V

t
1 = {x1}, E

t
1 = ∅;

(2) T t
2 = (V t

2 , E
t
2), V

t
2 = {x1, x2}, E

t
2 = {(x1, x2)};

(3) T t
3 = (V t

3 , E
t
3), V

t
3 = {x1, x2, x3}, E

t
3 = {(x1, x2), (x2, x3)}.

A.1.2 Root-Tree Set in Definition 2

When T is a sequential list of length p, we have |R(T)| = p. For example, the sequential
list depicted in Figure 1 (b) has 7 root-trees. When T is a full binary tree of depth d (the

number of nodes p = 2d+1 − 1), we have |R(T)| = 1 − d +
∑d

i=1 2
(2i). For example, the

binary tree depicted in Figure 1 (a) has 19 root-trees. When T is a tree of depth 1 that
contains p nodes, we have |R(T)| = 2p−1. For example, the tree shown in Figure 1 (c) has
26 = 64 root-trees.

A.1.3 Tree Value in Definition 3

For the tree in Figure 2 (b), its value is 0.8. For the tree depicted in the first row of
Figure 4 (b), its value is 1.

A.1.4 Maximal Root-Tree in Definition 4

For the tree T (sequential list) depicted in the first row of Figure 4 (b), we havemmax(T) = 2.
There are two root-trees of T that achieve the maximal root-tree value:

(1) T1 = (V1, E1) with V1 = {v1} and E1 = ∅;

(2) T2 = (V2, E2) with V2 = {v1, v2, x3} and E2 = {(v1, v2), (v2, v3)}.

According to Definition 4, we have Mmax(T) = T2.

For the tree T depicted in Figure 2 (a), we have mmax(T) = 3. There are two root-trees of
T that achieve the maximal root-tree value:

(1) T1 = (V1, E1), where V1 = {v1, v2}, E1 = {(v1, v2)};

(2) T2 = (V2, E2), where V2 = {v1, v2, v3}, E2 = {(v1, v2), (v1, v3)}.

According to Definition 4, we have Mmax(T) = T2.

A.1.5 Maximal Root-Tree in Definition 5

When treating each tree enclosed by the dashed frame as a super-node, the plot in the last
row of Figure 4 (b) is a super-tree of the plot in the first row of the same figure, and the
plot in Figure 2 (d) is a super-tree of the tree shown in Figure 2 (b).

10

A.2 Justification of Atda for A Sequential List

When the target tree is a sequential list T t = (V t, Et) with V t = {xi, i = 1, 2, . . . , p) and
Et = {(xi−1, xi), i = 2, 3, . . . , p}, the problem (3) reduces to

min
x1≥x2≥x3≥...≥xp≥0

1

2
‖x− v‖22. (22)

With the target tree T t, we can construct the input tree T = (V,E), where V = {vi, i =
1, 2, . . . , p) and E = {(vi−1, vi), i = 2, 3, . . . , p}.

2 -1 5 -2 4 -2
i = 1

m1 = 2

-2 4 -2

-2
i = 3

m3 = 0

1

1

1

2 -1 5 -2 4 -2 1

V1 = {v1, v2, v3}

i = 2

m2 = 1
V2 = {v4, v5}

V3 = {v6, v7}

m1 = 2 m2 = 1 m3 = 0

x1 x2 x3 x4 x5 x6 x7

2 2 2 1 1 0 0

2 -1
0

5
3

-2 4
3

-2
00

1
2

(a)

(c) (b)

1

Figure 4: Illustration of Algorithm 1 for solving (22) with the tree being a sequential list. Plot (a)
depicts the sequential list. Plot (b) illustrates the calling of Atda three times to the input v ∈ R

7:
v1 = 2, v2 = −1, v3 = 5, v4 = −2, v5 = 4, v6 = −2, v7 = 1. The last row of plot (c) depicts the
solution x̃ ∈ R

7: x̃1 = x̃2 = x̃3 = 2, x̃4 = x̃5 = 1, and x̃6 = x̃7 = 0. The values on the edges of the
first row of plot (c) correspond to the dual variables, from which we can also obtain the optimal
solution x̃ (refer to the proof of Theorem 3 for details).

Figure 4 illustrates how Algorithm 1 solves (22) via x̃ = Atda(T, 0), where v ∈ R
7 is the

input, and x̃ ∈ R
7 is the optimal solution. Figure 4 (a) shows the target tree T t = (V t, Et)

with V t = {x1, x2, . . . , x7) and Et = {(xi−1, xi), i = 2, 3, . . . , 7}. From the target tree
T t, we can construct the input tree T = (V,E) using v. As shown in Figure 4 (b), we
call Atda three times in order to yield the optimal solution depicted in the last row of
Figure 4 (c). Firstly, we identify the maximal root-tree T1 = (V1, E1) with V1 = {v1, v2, v3}
and E1 = {(v1, v2), (v2, v3)}. The value of T1 is m1 = m(T1) = mmax(T) = 2. Therefore, we
set x̃1 = x̃2 = x̃3 = m1 = 2. We remove T1 from T , and apply the above process recursively
to obtain the optimal solution x̃ given in the last row of Figure 4 (c). For the convenience
of understanding the proof of Theorem 3, we also give the value of the dual variables (refer
to the proof of Theorem 3 for details) in the first row of Figure 4 (c), from which we can
also compute the optimal solution x̃. The following theorem shows that, x̃ = Atda(T, 0)
provides the optimal solution to (22).

Theorem 3. x̃ = Atda(T, 0) provides the unique and optimal solution to (22).

Proof: We prove the theorem using the KKT conditions [2], i.e., verifying that the solution
x̃ = Atda(T, 0) satisfies the corresponding KKT conditions.

The Lagrangian of (22) can be written as

L(x,y) =
1

2
‖x− v‖22 +

p
∑

i=2

(xi − xi−1)yi−1 − ypxp,

where y ∈ R
p, yi−1, i = 2, 3, . . . p is the dual variable for the constraint xi ≥ xi−1 and yp is

the dual variable for the constraint xp ≥ 0.

The objective function of (22) is strictly convex, so that it admits a unique solution. In
addition, the constraints in (22) satisfy the Slater’s condition. Therefore, it suffices to verify

11

that the primal optimal x̃ and the dual optimal ỹ satisfy the following KKT conditions:

x̃1 ≥ x̃2 ≥ x̃3 ≥ . . . ≥ x̃p ≥ 0 (23)

∀i = 2, . . . , p, (x̃i − x̃i−1)ỹi−1 = 0 (24)

ỹpx̃p = 0 (25)

x̃1 − v1 − ỹ1 = 0 (26)

∀i = 2, . . . , p, x̃i − vi + ỹi−1 − ỹi = 0 (27)

∀i = 1, 2, . . . , p, ỹi ≥ 0. (28)

For the length of the sequence {mi, i = 1, 2, . . . , k}, it is clear 1 ≤ k ≤ p. We set the optimal
dual variable ỹ as follows:

ỹi = x̃i − vi + ỹi−1, i = 1, 2, . . . , p, (29)

where ỹ0 = 0. In the following, we show that x̃ and ỹ satisfy the KKT conditions.

According to Algorithm 1, we have

m1 > m2 > . . . > mk ≥ 0.

In addition, the indices of the nodes in Vi are smaller than those of the nodes in Vi+1. It
follows from x̃j = mi, ∀vj ∈ Vi that (23) holds.

If k = 1, (24) naturally holds, as x̃j = m1, ∀vj ∈ V1 = V , where V contains all the nodes of
the input tree. Next, we consider the case when k ≥ 2. To prove (24), it suffices to establish
the relationship:

ỹji = 0, ∀i = 1, 2, . . . , k − 1,

where ji denotes the largest index of the nodes in the set Vi. Since x̃j = mi = m(Ti), ∀vj ∈
Vi, i = 1, 2, . . . , k − 1, we have

∑

j:vj∈Vi
x̃j =

∑

j:vj∈Vi
vj = |Vi|mi, ∀i = 1, 2, . . . , k − 1.

Incorporating (29), we have

ỹji =

i
∑

l=1





∑

vj∈Vl

x̃j −
∑

vj∈Vl

vj



+ ỹ0 = ỹ0 = 0, ∀i = 1, 2, . . . , k − 1. (30)

When x̃p = 0, (25) naturally holds. For the case x̃p > 0, we can verify ỹp = 0 following the
similar argument for deriving (30).

As indicated by (29), (26) and (27) naturally hold.

The condition (28) can be rewritten as:

ỹj ≥ 0, j : vj ∈ Vi, i = 1, 2, . . . k. (31)

Next, we prove the result for i = 1 and the underlying methodology can be extended to
prove the remaining inequalities of (31). According to (29), we have

ỹj =

j
∑

l=1

x̃l −

j
∑

l=1

vl + ỹ0 = j(m1 −

∑j
l=1 vl
j

) ≥ 0, ∀vj ∈ V1,

where the last inequality holds as m1 is the largest maximal value of T . �

A.3 Computational Cost of Anae for Finding the Maximal Root-Tree

We study the computational cost of Anae (a naive algorithm with enumeration) for finding
the maximal root-tree. Before conducting analysis, we note that, it is challenging, if not
impossible, to analyze the time complexity for Algorithm 1 for an arbitrary tree. There-
fore, in the sequel, we focus on analyzing the time complexity for three special trees: 1) a
sequential list, 2) a binary tree, and 3) a tree with depth 1. In addition, we assume that
the value of the root-tree can be evaluated in O(1)3, and thus make use of the number of
root-trees for measuring the complexity.

3For the sequential list and the tree with depth 1, the O(1) evaluation of the mean can be easily
obtained. For the binary tree, we can also achieve this goal by enumerating the root-trees in a
proper order.

12

A Sequential List When the tree is a sequential list depicted in Figure 1 (b), the worst-
case time complexity of Algorithm 1 is O(p2). It is easy to check that, the worst case happens
when the input u ∈ R

p satisfies ui > ui−1 > 0, so that, after each call of Algorithm 1, we
output one node only. In this case, we need to enumerate

∑p
i=1 i = p(p+ 1)/2 root-trees.

A Tree with Depth 1 When the tree is of depth 1 depicted in Figure 1 (c), the worst case
time complexity is O(2p). Specifically, for the input tree, it has 2p−1 root-trees; and after
removing the first root-tree, the resulting trees are of depth 0, so that we need to enumerate
at most p− 1 additional root-trees. Therefore, Anae has exponential complexity.

A Full Binary Tree When the tree is a complete binary tree depicted in Figure 1 (a),
the worst-case happens when the input u follows a max-heap structure and the entries
of u are positive and different. When the complete binary tree has depth d, it has p =

2d+1 − 1 nodes. For the input tree T , it has |R(T)| = 1 − d +
∑d

i=1 2
(2i) root-trees, which

satisfies 22
d

≤ |R(T)| < 22
d+1. After removing the root node, the resulting two trees have

2(1 − d +
∑d−1

i=1 2(2
i)) root-trees, which satisfies 2(1 − d +

∑d−1
i=1 2(2

i)) < 22
d+1. Therefore,

∑d
j=0 2

j(1−d+
∑d−i

i=1 2
(2i)), the total number of root-trees is in the interval (22

d

, (d+1)22
d+1),

or equivalently (2(p+1)/2, log2(p+ 1)2(p+3)/2). Therefore, Anae has exponential complexity.

A.4 Proof of Lemma 1

Lemma 1 is an extension of the following lemma, and can be proven in a similar way.

Lemma 2. For a nonempty tree T = (V,E) rooted at vi0 , denote its maximal root-tree as
Tmax = (Vmax, Emax). Let the root vi0 have n child nodes, denoted by vi1 , . . . , vin . If n ≥ 1,
we denote the subtree of T rooted at vij as T j = (V j , Ej), j = 1, 2, . . . , n, the maximal

root-tree of T j as T j
max = (V j

max, E
j
max), and m̃ = maxj=1,2,...,n m(T j

max). Then, we have:

1. If n = 0, then Tmax = T .

2. If n ≥ 1, vi0 ≤ 0, and m̃ = 0, then Tmax = T .

3. If n ≥ 1, vi0 > 0, and vi0 > m̃, then Vmax = {vi0} and Emax = ∅.

4. If n ≥ 1, vi0 > 0, and vi0 ≤ m̃, then V j
max ⊆ Vmax, E

j
max ⊆ Emax and (vi0 , vij) ∈

Emax, ∀j : m(T j
max) = m̃.

5. If n ≥ 1, vi0 ≤ 0, and m̃ > 0, then V j
max ⊆ Vmax, E

j
max ⊆ Emax and (vi0 , vij) ∈

Emax, ∀j : m(T j
max) = m̃.

Proof: There are two cases with Tmax, the maximal root-tree of T : 1) Tmax has only one
node vi0 , which, together with (4) lead to

m(Tmax) = max(vi0 , 0), (32)

and 2) the nodes of Tmax include the root vi0 and the nodes of T̃ j = (Ṽ j , Ẽj) for some

j = j1, j2, . . . , jq, 1 ≤ jl ≤ n, l = 1, 2, . . . , q, where T̃ j is a given root-tree of T j . According
to Definition 3, we have

m(Tmax) = max

(

vi0 +
∑q

l=1 |Ṽ
jl |m(T̃ jl)

1 +
∑q

l=1 |Ṽ
jl |

, 0

)

≤ max

(

vi0 +
∑q

l=1 |Ṽ
jl |m̃

1 +
∑q

l=1 |Ṽ
jl |

, 0

)

. (33)

If n = 0, the tree T only has one node, so that it has a unique root-tree, which is T itself.

If n ≥ 1, vi0 ≤ 0, and m̃ = 0, it follows from (32) and (33) that m(Tmax) = 0.

It follows from (4), (5), and (6) that, if mmax(T) = m(Tmax) = 0, then Tmax = T .

If n ≥ 1, vi0 > 0, and vi0 > m̃, we obtain from (32) that m(Tmax) = vi0 when Tmax has
only one node vi0 , and obtain from (33) that m(Tmax) < vi0 if Tmax contains nodes besides

13

the root vi0 . Therefore, we have that, if n ≥ 1, vi0 > 0, vi0 > m̃, then Vmax = {vi0} and
Emax = ∅.

If n ≥ 1, vi0 > 0, and vi0 ≤ m̃, we obtain from (32) that m(Tmax) = vi0 when Tmax has only
one node vi0 , and obtain from (33) thatm(Tmax) ≤ m̃ if Tmax contains nodes besides the root
vi0 . Therefore, we have m(Tmax) ≤ m̃. According to (4) and (5), T j

max, ∀j : m(T j
max) = m̃

should be included into the maximal root-tree Tmax.

If n ≥ 1, vi0 ≤ 0, and m̃ > 0, we can verify that m(Tmax) < m̃, and thus it follows from (4)
and (5) that, T j

max, ∀j : m(T j
max) = m̃ should be included into the maximal root-tree Tmax.

This completes the proof. �

A.5 Illustration of Abuam

We briefly explain Algorithm 2 as follows. The input tree T is built with the target tree T t

and the input v. In line 1, we generate T0, which is the root-tree of T that only contains
the root. According to the definition of the maximal root-tree in Definition 4, we have
that, T0 is a root-tree of Tmax, the maximal root-tree of T . Lines 2-4 correspond to case 1 of
Lemma 2 (see A.4), and lines 5-20 repeatedly make use of Lemma 1 to compute the maximal
root-tree. Lines 7-9 correspond to case 1 of Lemma 1, and the maximal root-tree of T is
T itself. In lines 10-12, T j is a subtree of T rooted at vij , with vij being a child node of a

given node in V0. We find T j
max, the maximal root-tree of T j , and compute m̃, the maximal

value among m(T j
max), j = 1, 2, . . . , n. As we need to recursively call Abuam in line 11, the

maximal root-trees are generated in a bottom-up manner, i.e., the maximal root-tree of the
subtree rooted at the parent node is obtained after the maximal root-trees of the subtrees
rooted at the child nodes are all processed. This explains why the algorithm is performed in
a bottom-up manner. Lines 13-14 correspond to case 2 of Lemma 1, lines 15-16 correspond
to case 3 of Lemma 1, and lines 17-19 correspond to cases 4 & 5 of Lemma 1.

Next, we illustrate how Algorithm 2 finds the maximal root-tree for the two examples used
in Figure 2 and Figure 4. For the convenience of discussion, we denote Ti as the maximal
root-tree of the subtree rooted at vi.

2 -1 5 -2 4 -2 12 -1 5 -2 4 -2 1

2 -1 5 -2 4 -2 1 2 -1 5 -2 4 -2 1

2 -1 5 -2 4 -2 1

2 -1 5 -2 4 -2 1 2 -1 5 -2 4 -2 1x1 x2 x3 x4 x5 x6 x7

2 2 2 1 1 0 0

Figure 5: Application of Algorithm 2 for finding the maximal root-tree for a sequential list. The
target tree is depicted in the top left box, the solution to (3) is shown in the bottom right box,
and the internal boxes depict the maximal root-trees for the subtrees associated with the nodes in
a bottom-up manner.

A Sequential List In Figure 5, we illustrate how Algorithm 2 finds the maximal root-
tree for the same sequential list used in Figure 4. According to lines 2-3 (see also case 1
of Lemma 2), we have T7 = ({v7}, ∅). It follows from lines 17-18 that (see also case 5 of
Lemma 2), to get T6, we need to merge v6 with T7, as v6 = −2 < m(T7) = 1 , and then we
have T6 = ({v6, v7}, {(v6, v7)}) according to lines 7-8. According to lines 15-16 (see also case
3 of Lemma 2), we have T5 = ({v5}, ∅), as v5 = 4 > m(T6) = 0 . Following a similar analysis,
we have T4 = ({v4, v5}, {(v4, v5)}), T3 = ({v3}, ∅), and T2 = ({v2, v3}, {(v2, v3)}). For the
maximal root-tree of the input tree T , its maximal tree T1 = ({v1, v2, v3}, {(v1, v2), (v2, v3)})
as v1 = 3 = m(T2) (see also case 4 of Lemma 2). As shown in the bottom right box, the
solution to (3) is identical to the one shown in Figure 4.

A Tree With Depth 3 In Figure 6, we illustrate how Algorithm 2 finds the maximal
root-tree for the same tree with depth 3 employed in Figure 4. In plot (b), we fill the tree
with values in v, and compute the maximal root-trees of the subtrees rooted at the leaf

14

1

5 3 -4

-1 -4 2 -1 2 1 -1

1 2 4 2

(b)

(e)

1

5 3 -4

-1 -4 2 -1 2 1 -1

1 2 4 2

(c)

1

5 3 -4

-1 -4 2 -1 2 1 -1

1 2 4 2

(d)

1

5 3 -4

-1 -4 2 -1 2 1 -1

1 2 4 2

(f)

1

5 3 -4

-1 -4 2 -1 2 1 -1

1 2 4 2

(g)

1

5 3 -4

-1 -4 2 -1 2 1 -1

1 2 4 2

x1

x2 x3 x4

x5 x6 x7 x8 x9 x10 x11

x12 x13 x14 x15

(a)

(h)

1

5 3 -4

-1 -4 2 -1 2 1 -1

1 2 4 2

(i)

3

3 3 1

0 0 2 0 1 1 0

0 0 1 1

Figure 6: Application of Algorithm 2 for finding the maximal root-tree for a tree with depth 3.
Plot (a) depicts the target tree T t. Plot(b)-plot(h) show the bottom-up procedure for finding the
maximal root-trees of all the subtrees of the input tree T . Plot(h) illustrates the super-tree obtained
by Abuam, and plot (i) gives the solution to (3), which is identical to the one given in Figure 2 (e).

nodes, according to lines 2-3 (see also case 1 of Lemma 2). In plot (c), we begin the process
for finding the maximal root-trees of the subtrees rooted at v3, v6, and v9, respectively, as
the maximal root-trees of the subtrees rooted at their child nodes have been identified in
plot (b). Plot (d) shows the results for T6 and T9. Plots (e-f) depict the process for finding
T4. In plot (g), we begin finding T1, as T2, T3, and T4 have been computed in plot (e),
plot(c), and plot (f), respectively. In plot (h), the top dashed frame corresponds to the
maximal root-tree T1. All the dashed frames in plot (h) constitute a super-tree, with which
we can obtain the optimal solution to (3), shown in plot (i). It is clear that, the solution is
identical the one shown in Figure 2 (e).

A.6 Time Complexity of Abuam

Let us analyze the time complexity of Algorithm 2 for finding the maximal root-tree of a
tree with p nodes. For convenience of analysis, we denote the number of leaf nodes by p1,
the number of internal nodes by p2, and the number of the super-nodes in the resulting
super-tree of Algorithm 2 by p̃. It is clear that p = p1 + p2, and 1 ≤ p̃ ≤ p. We let ni

denote the times line i is called for all the recursive calls of Abuam. We note that, 1) the
merge operation defined in Definition 6 can be implemented in O(1) flops (floating point
operations), and 2) the most time-consuming steps among lines 5-20 are lines 10-12, with
time complexity of O(n).

Since there are p nodes, we have n1 = p. Similarly, as there are p1 leaf nodes, we have
n3 = p1. Therefore, lines 1-4 cost O(p). Next, we discuss the computational cost for
lines 5-20. The key is to estimate the number of calls of lines 10-12. A key observation is
n8+n14+n16 = p2, as there are p2 internal nodes (for the p1 leaf nodes, Abuam terminates
via line 3). Therefore, we have

n14 + n16 ≤ p2. (34)

15

Table 1: Worst-case time complexity of Anae and Abuam.
Anae Abuam

sequential list O(p2) O(p)
tree with depth 1 exponential O(p2) ⇒ O(p log p)
binary tree exponential at most O(p2)
general tree exponential O(p2)

It is clear that, Tmax = T line 14 is equivalent to T0=merge(T0, T
j
max, T), ∀j = 1, 2, . . . , n

and Tmax = T , as m̃ = 0. We have

n14 + n18 ≤ p− p̃, (35)

as 1) the number of merges in the recursive calls of Abuam is p− p̃, and 2) line 14 and line
18 consists of at least one merge. It follows from (34) and (35) that

n14 + n16 + n18 ≤ p− p̃+ p2, (36)

so that lines 10-12 are called at most p − p̃ + p2 times. Due to the structure of the tree,
we have n ≤ p1, i.e., the number of the nodes that fall outside of T0 and meanwhile have a
node in T0 as the parent node is less than p1, the number of leaf nodes. Therefore, we have
n11 ≤ (p− p̃+ p2)p1.

As (p− p̃+ p2)p1 ≤ (2p−p̃)2

2 , we have that, the overall time complexity for a general tree is

at most O(p2). In addition, when the input tree is of depth 1 (see Figure 1 (c)) and satisfies

0 < v1 < v2 < v3 < . . . < vp and
∑i−1

j=1 vj ≤ vi, ∀i, line 11 will be called
∑p−1

i=1 (p−i) = (p−1)p
2

times, so that such O(p2) complexity can be achieved. However, we note that, for the tree
of depth 1, the time complexity can be improved to O(p log p), by sorting the values of the
leaf node in a decreasing order. When the tree is a sequential list, we have p1 = 1, which
leads to n11 ≤ (p − p̃ + p2)p1 = p − p̃ + p − 1 ≤ 2p. Therefore, Abuam has a linear time
complexity for the sequential list. The worst-case time complexity of Anae and Abuam is
presented in Table 1.

We would like to emphasize that, in the practical application of Abuam, n, the number of
the nodes that not only fall outside of T0 and but also have a node in T0 as the parent
node, is much less than p1, the number of leaf nodes. In addition, when the solution is
sparse, n14 + n18 can be much less than p − p̃, as line 14 typically merges many nodes at
one time. Therefore, we expect that the practical performance is much better than O(p2)
for the general tree, which is verified by our experimental study.

The computational cost of Anae and Abuam is given in Table 1.

16

