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Abstract

The development of statistical models for continuous-tiomgitudinal network

data is of increasing interest in machine learning and seciance. Leveraging
ideas from survival and event history analysis, we intr@daccontinuous-time
regression modeling framework for network event data thatincorporate both
time-dependent network statistics and time-varying regjom coefficients. We
also develop an efficient inference scheme that allows oprcagh to scale to
large networks. On synthetic and real-world data, emgiresults demonstrate
that the proposed inference approach can accurately éstiima coefficients of
the regression model, which is useful for interpreting tha@tion of the network;

furthermore, the learned model has systematically betetigtive performance
compared to standard baseline methods.

1 Introduction

The analysis of the structure and evolution of network datan increasingly important task in
a variety of disciplines, including biology and enginegrinThe emergence and growth of large-
scale online social networks also provides motivation far development of longitudinal models
for networks over time. While in many cases the data for arvawp network are recorded on a
continuous time scale, a common approach is to analyze $biaéipdata (also known as collapsed
panel data), where multiple cross-sectional snapshotseofietwork are recorded at discrete time
points. Various statistical frameworks have been preWopsoposed for discrete snapshot data,
including dynamic versions of exponential random graph ef®flL, 2, 3] as well as dynamic block
models and matrix factorization methods [4, 5]. In contriwtre is relatively little work to date on
continuous-time models for large-scale longitudinal reeks.

In this paper, we propose a general regression-based mgdedimework for continuous-time net-
work event data. Our methods are inspired by survival andtévstory analysis [6, 7]; specifically,
we employ multivariate counting processes to model the elggamics of the network. Building
on recent work in this context [8, 9], we use both multiplieatand additive intensity functions that
allow for the incorporation of arbitrary time-dependentwark statistics; furthermore, we consider
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time-varying regression coefficients for the additive agmh. The additive form in particular en-

ables us to develop an efficient online inference schemestonating the time-varying coefficients

of the model, allowing the approach to scale to large netad@i synthetic and real-world data, we
show that the proposed scheme accurately estimates theffieieats and that the learned model is
useful for both interpreting the evolution of the networlkdaomedicting future network events.

The specific contributions of this paper are: (1) We formeikatcontinuous-time regression model
for longitudinal network data with time-dependent stats{and time-varying coefficients for the
additive form); (2) we develop an accurate and efficientrigfiee scheme for estimating the regres-
sion coefficients; and (3) we perform an experimental aiglys real-world longitudinal networks
and demonstrate that the proposed framework is usefulimstef prediction and interpretability.

The next section introduces the general regression framkeaval the associated inference scheme
is described in detail in Section 3. Section 4 describes tiper@mental results on synthetic and
real-world networks. Finally, we discuss related work aodadude with future research directions.

2 Regression models for continuous-time network data

Below we introduce multiplicative and additive regressinadels for the edge formation process
in a longitudinal network. We also describe non-recurrgahémodels and give examples of time-
dependent statistics in this context.

2.1 General framework

Assume in our network that nodes arrive according to somehasgiic process and directed edges
among these nodes are created over time. Given the ordered,ga of nodes in the network at
time ¢, let N;;(t) be a counting process denoting the number of edges frton; up to timet.

In this paper, eactv;;(¢) will equal zero or one, though this can be generalized. Combithe
individual counting processes of all potential edges gavesultivariate counting proce$$(t) =
(Ni;(t) = 4,5 € {1,...n},7 # j); we make no assumption about the independence of individual
edge counting processes. (See [7] for an overview of cogrgiocesses.) We do not consider
an edge dissolution process in this paper, although in yhiédés possible to do so by placing a
second counting process on each edge for dissolution evé®¢ [10, 3] for different examples
of formation—dissolution process models.) As propose®@jnie model the multivariate counting
process via the Doob-Meyer decomposition [7],

N(t):/o Als) ds +M(1), )

where essentiallj\(¢) andM (¢) may be viewed as the (deterministic) signal and (martingalese,
respectively. To model the so-called intensity proce@s, we denote the entire past of the network,
up to but not including time, by H,— and consider for each potential directed edgig) two
possible intensity forms, the multiplicative Cox and théliside Aalen functions [7], respectively:

Nij(tlH-) = Yii(t)ao(t) exp [B's(i, j, 1)] ; )

)\ij (t|Ht*) }/ij (t) [BO(t) —|—,8(t)TS(7;,j, t)] ) (3)
where the “at risk” indicator functiory;;(¢) equals one if and only ifi, j) could form an edge
at timet, a concept whose interpretation is determined by the corféey., see Section 2.2). In
equations (2) and (3¥(4, j, t) is a vector ofp statistics for directed edde, j) constructed based on
H,-; examples of these statistics are given in Section 2.2. ¢h e&the two models, the intensity
process depends on a linear combination of the coeffici@ntghich can be time-varying in the

additive Aalen formulation. When all elements ©f(i, j,t) equal zero, we obtain the baseline
hazardsy,(t) andSy(t).

The two intensity forms above, the Cox and Aalen, each haierbspective strengths (e.g., see [7,
chapter 4]). In particular, the coefficients of the Aalen mloare quite easy to estimate via linear
regression, unlike the Cox model. We leverage this comjmualtadvantage to develop an efficient
inference algorithm for the Aalen model later in this pap@mn the other hand, the Cox model
forces the hazard function to be non-negative, while theeAahodel does not—however, in our
experiments on both simulated and real-world data we dicenobunter any issues with negative
hazard functions when using the Aalen model.



2.2 Non-recurrent event models for network formation processes

If 7" andt}"" are the arrival times of nodésandj, then the risk indicator of equations (2) and (3)
is Yi;(t) = I(max(t¢™,t4"") <t < t.,;). The timet.,; of directed edgéi, j) is taken to bet-oo

if the edge is never formed during the observation time. Bason for the upper bourtd ; is that
the counting process is non-recurrent; i.e., formatiomoé@ge means that it can never occur again.

The network statistics(, j, t) of equations (2) and (3), corresponding to the ordered(pajy, can
be time-invariant (such as gender match) or time-deper{daoh as the number of two-paths from
1 to 7 just before time). Since it has been found empirically that most new edgesdiabnetworks
are created between nodes separated by two hops [11], welimstatistics to the following:

1. Out-degree of sendérsi (i, j, ) = >}, ey j; Nin(t ")
In-degree of sender s2 (i, j,t) = 3 _j,cy s Nni(t™)
Out-degree of receivgr ss(i, j,t) = >, ey p; Nin(t™)
In-degree of receiveit s4(i, j,t) = > ey pz; Nag(t7)
Reciprocity:ss (4, j, t) = N;;(t7)

Transitivity: s6 (i, j,t) = > pevprei; Nin(t™)Naj(t7)
Shared contactees; (i, j, 1) = > ey pzi; Nin(t™)Njn(t7)
Triangle closuress (i, j,t) = >y ey pzi; Noi(t7)Njn(t™)
Shared contactersy (i, j, 1) = >y cv i ; Vi () Nnji(t7)

© o Nog Rk wN

Here N;;(t~) denotes the value of the counting procésg) right before timet. While this paper
focuses on the non-recurrent setting for simplicity, oneaao develop recurrent models using this
framework, by capturing an alternative set of statisticscsgdized for the recurrent case [8, 12, 9].
Such models are useful for data where interaction edges oungltiple times (e.g., email data).

3 Inference techniques

In this section, we describe algorithms for estimating thefficients of the multiplicative Cox and
additive Aalen models. We also discuss an efficient onliferénce technique for the Aalen model.

3.1 Estimation for the Cox model

Recent work has posited Cox models similar to (2) with thel gbaestimating general network
effects [8, 12] or citation network effects [9]. Typicallyy(t) is considered a nuisance parameter,
and estimation fof proceeds by maximization of the so-called partial liketid@f Cox [13]:

exp (87 (ie,je,te))
HZZ 1 2 i Vi (te) exp (BTS(i, ji te)) @)

wherem is the number of edge formation events, and., andj. are the time, sender, and receiver
of theeth event. In this paper, maximization is performed via thevtdée-Raphson algorithm. The

covariance matrix of is estimated as the inverse of the negative Hessian mattivedést iteration.

We use the caching method of [9] to compute the likelihooel sitore vector, and the Hessian matrix
more efficiently. We will illustrate this method through tbemputation of the likelihood, where the
most expensive computation is for the denominator

ZZYU )exp (B7s(i, j, te))- (5)

i=1 j#i

For models such as the one in Section 2.2, a naive updatéffgrneedsO(pn?) operations, where
n is the the current number of nodes. A naive calculatiolgf.(3) needsO(mpn?) operations
(wherem is the number of edge events), which is costly sincandn may be large. Calculations
of the score vector and Hessian matrix are similar, though itvolve higher exponents pf



Alternatively, as in [9], we may simply write(t.) = x(t.—1) + Ak(te), whereAx(t.) entails all

of the possible changes that occur during the time intétyal , ¢.). Since we assume in this paper
that edges do not dissolve, it is necessary to keep trackadrhe group of edges whose covariates
change during this interval, which we céll 1, and those that first become at risk during this inter-
val, which we callC._. These groups of edges may be cached in memory during aalization
step; then, subsequent calculationg\of(t. ) are simple functions of the values &, j,¢._1) and
s(i, j, t.) for (4, j) in these two groups (faf'._1, only the timet,. statistic is relevant).

The number of edges cached at each time step tends to begematallyO (n) because our network
statisticss are limited to those based on node degrees and two-paths I&8dds to substantial
computational savings; since we must still initializé€,), the total computational complexity of
each Newton-Raphson iteration@§p?n? + m(p?n + p%)).

3.2 Estimation for the Aalen model

Inference in model (3) proceeds not for thgparameters directly but rather for their time-integrals

~ [ Auloyas. (6)
0

The reason for this is th&(t) = [Bi(t),..., B,(t)] may be estimated straightforwardly using a
procedure akin to simple least squares [7]: First, let usosepsome ordering on then — 1)
possible ordered pailg, j) of nodes. Tak&V(t) to be then(n — 1) x p matrix whose(i, j)th row
equalsy;; (t)s(i, j,t)T. Then

80 = [ Jw = 3 (W (1) AN(E) ™)

te<t
is the estimator oB(¢), where the multivariate counting procdég&. ) uses the same ordering of its
n(n — 1) entries as th&/(¢) matrix,
W () = [W(t)TW()] W)

and.J(t) is the indicator tha¥V (¢) has full column rank, where we taki&t)W ~ (t) = 0 whenever
W (t) does not have full column rank. As with typical least squasesovariance matrix for these

é(t) may also be estimated [7]; we give a formula for this matriequation (11). If estimates of
Bk (t) are desired for the sake of interpretability, a kernel sthimgt method may be used:

= bZK( )ABk() (8)

whereb is the bandwidth parameteﬁBk(te) = Bk(te) — Bk(te_l), and K is a bounded kernel
function with compact suppoft-1, 1] such as the Epanechnikov kernel.

-1

3.3 Online inference for the Aalen model

Similar to the caching method for the Cox model in Section 8.i1s possible to streamline the
computations for estimating the integrated Aalen modelf'mimtsB( ) First, we rewrite (7) as

B(t) = Y J(t)[W(te) TW(te)] W(t) TAN(t) = Y AT to)TAN(t.), (9)

te<t te<t

whereA(t.) = W(t.)"W(t.) and.J(t.) is omitted because for large network data sets and for
reasonable choices of starting observation times, therizdgamatrix is always of full rank. The
computation ofW (¢.) " AN(¢.) is simple becaus&N(t.) consists of all zeros except for a single
entry equal to one. The most expensive computation is totefda(p + 1) x (p + 1) matrix A(t.)

at every event time,; invertingA(¢.) is not expensive singeis relatively small.

UsingU._; andC,_; as in Section 3.1, the componéht ) of the matrixA(t.) corresponding to
covariatess and! can be written asly; (te) = Agi(te— 1) + AAgi(te—1), where

AAAkl Z ngk e— 1 z]l Z ngk zgl(t ) (10)

(7J)EU€ 1 (,J)EUe 1UC 1



For models such as the one presented in Section 2:dsithe current number of nodes, the cost of
naively calculatingdy; (t.) by iterating through all “at-risk” edges is nearly. As in Section 3.1,
the cost will beO(n) if we instead use caching together with equation (10). Ireotases, there
may be restrictions on the set of edges at risk at a partitioiar Here the computational burden for
the naive calculation can be substantially smaller thén?); yet it is generally the case that using
(10) will still provide a substantial reduction in compugiaffort.

Our online inference algorithm during the time interfsal 1, t.) may be summarized as follows:
1. UpdateA(t.—1) using equation (10).
2. ComputeB(te_1) = B(te—2) + A" (te—1)W (te—1)'AN(to_1).
3. Compute and cache the network statistics changed by &@mev 1, then initializeU,
with a list of those at-risk edges whose network statistieschanged by this event.
4. Compute and cache all values of network statistics cléhmiyging the time interval
[te—1,t.). DefineC._; as the set of edges that switch to at-risk during this inferva
5. Before considering the evest
(a) Compute look-ahead summations at time, indexed byU,_ ;.
(b) Update the covariate mati%/ (¢._ ) based on the cache.
(c) Compute forward summations at timeindexed byU,_; andC,_;.

For the first eventA (¢, ) must be initialized by naive summation over all currenisit-edges, which
requiresO(p?n?) calculations. Assuming that the numbeof nodes stays roughly the same over
each of then edge events, the overall computational complexity of thiéne inference algorithm
is thusO(p?n? 4+ m(p*n + p®)). If a covariance matrix estimate f&(t) is desired, it can also be
derived online using the ideas above, since we may write it as

B(t) =Y W (t)diag{ AN(t) YW ()T = > A7 (t) [Wij (te) @ Wi ()] A (t), (11)

te<t te<t

whereW,; (t.) denotes the vectal (t.) " AN(t.) and® is the outer product.

4 Experimental analysis

In this section, we empirically analyze the ability of ouference methods to estimate the regression
coefficients as well as the predictive power of the learnedetso Before discussing the experimen-
tal results, we briefly describe the synthetic and real-vddta sets that we use for evaluation.

We simulate two data sets, SIM-1 and SIM-2, from groundktmeigression coefficients. In par-
ticular, we simulate a network formation process startimognf time unit 0 until time 1200, where
nodes arrive in the network at a constant raje= 10 (i.e., on average, 10 nodes join the network
at each time unit); the resulting simulated networks havy8€974 nodes. The edge formation pro-
cess is simulated via Otaga’s modified thinning algorithA [&ith an additive conditional intensity
function. From time 0 to 1000, the baseline coefficient isteet, = 10~; the coefficients for
sender out-degree and receiver in-degree are $htto3, = 10~7; the coefficients for reciprocity,
transitivity, and shared contacters are sefio= 3¢ = By = 10~°; and the coefficients for sender
in-degree, receiver out-degree, shared contactees,iandl& closure are setto 0. For SIM-1, these
coefficients are kept constant and 118,672 edges are crdate&IM-2, between times 1000 and
1150, we increase the coefficients for transitivity and sl@ontacters t6s = 8y = 4 x 10~°, and
after 1150, the coefficients return to their original valueghis case, 127,590 edges are created.

We also evaluate our approach on two real-world data seYdNIR and METAFILTER. IRVINE

is a longitudinal data set derived from an online social ekwof students at UC Irvine [15]. This
dataset has 1,899 users and 20,296 directed contact edgeshbeisers, with timestamps for each
node arrival and edge creation event. This longitudinalvogt spans April to October of 2004.
The METAFILTER data set is from a community weblog where asem share links and discuss
Web contertt This dataset has 51,362 users and 76,791 directed codtgest between users. The
continuous-time observation spans 8/31/2007 to 2/5/2Rbie that both data sets are non-recurrent
in that the creation of an edge between two nodes only octunsst once.

1The METAFILTER data are available bt t p: / / mssv. net / wi ki /i ndex. php/ | nf odunp
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Figure 1: (a,b) Estimated time-varying coefficients on SIMe,d) Estimated time-varying coeffi-
cients on SIM-2. Ground-truth coefficients are also showreéhdashed lines.
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Figure 2: Estimated time-varying coefficients on IRVINE alaf hese plots suggest that there are
two distinct phases of network evolution, consistent withradlependent analysis of these data [15].
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Figure 3: Estimated time-varying coefficients on METAFILREHere, the network effects continu-
ously change during the observation time.

4.1 Recovering the time-varying regression coefficients

This section focuses on the ability of our additive Aalen elody approach to estimate the time-
varying coefficients, given an observed longitudinal netwo

The first set of experiments attempts to recover the growutti-toefficients on SIM-1 and SIM-2.
We run the inference algorithm described in Section 3.3 aedam Epanechnikov smoothing kernel
(with a bandwidth of 10 time units) to obtain smoothed cogffits. On SIM-1, Figures 1(a,b)
show the estimated coefficients associated with the traitygiand shared contacters statistics, as
well as the ground-truth coefficients. Likewise, Figuresd) show the same estimated and ground-
truth coefficients for SIM-2. These results demonstratedbainference algorithm can accurately
recover the ground-truth coefficients in cases where thificieats are fixed (SIM-1) and modulated
(SIM-2). We also tried other settings for the ground-trutkefficients (e.g., multiple sinusoidal-like
bumps) and found that our approach can accurately recoreottfficients in those cases as well.

On the IRVINE and METAFILTER data, we also learn time-vagyicoefficients which are use-
ful for interpreting network evolution. Figure 2 shows salef the estimated coefficients for the
IRVINE data, using an Epanechnikov kernel (with a bandwidfttBO days). These coefficients
suggest the existence of two distinct phases in the evolutidghe network. In the first phase of
network formation, the network grows at an accelerated mtssitive coefficients for sender out-
degree, reciprocity, and transitivity in these plots imfitat users with a high numbers of friends
tend to make more friends, tend to reciprocate their reiatiand tend to make friends with their
friends’ friends, respectively. However, these coeffitsatecrease towards zero (the blue line) and
enter a second phase where the network is structurallyest&ulth of these phases have also been
observed in an independent study of the data [15]. Figureo@/stthe estimated coefficients for
METAFILTER, using an Epanechnikov kernel (with a bandwidf80). Interestingly, the coeffi-
cients suggest that there is a marked change in the edgetforpaocess around 7/10/10. Unlike
the IRVINE coefficients, the estimated METAFILTER coeffitie continue to vary over time.



Table 1: Lengths of building, training, and test periodse finmber of events are in parentheses.

Building Training Test
IRVINE 4/15/04 —5/11/04 (7073) | 5/12/04 — 5/31/04 (7646) 6/1/04 — 10/19/04 (5507
METAFILTER | 6/15/04 —12/21/09 (60376) 12/22/09 — 7/9/10 (8763) 7/10/10 — 2/5/11 (7620)

4.2 Predicting future links

We perform rolling prediction experiments over the reakdalata sets to evaluate the predictive
power of the learned regression models. Following the emn methodology of [9], we split
each longitudinal data set into three periods: a statistiglsling period, a training period, and a test
period (Table 1). The statistics-building period is usdelgdo build up the network statistics, while
the training period is used to learn the coefficients andekeperiod is used to make predictions.
Throughout the training and test periods, the time-depenskatistics are continuously updated.
Furthermore, for the additive Aalen model, we use the ontiference technique from Section 3.3.
When we predict an event in the test period, all the previmests from the test period are used
as training data as well. Meanwhile, for the multiplicat@ex model, we adaptively learn the
model in batch-online fashion; during the test period, farg 10 days, we retrain the model (using
the Newton-Raphson technique described in Section 3.h)adtlitional training examples coming
from the test set. Our Newton-Raphson implementation uséspahalving procedure, halving the
length of each step if necessary uliif L(3) increases. The iterations continue until every element
in Vlog L(3) is smaller that 0~3 in absolute value, or until the relative increasédg L(3) is less
than10~1%°, or until 100 Newton-Raphson iterations are reached, whichever ocasts fi

The baseline that we consider is logistic regression (LRhhie same time-dependent statistics
used in the Aalen and Cox models. Note that logistic regoess a competitive baseline that

has been used in previous link prediction studies (e.g])[M/e learn the LR model in the same

adaptive batch-online fashion as the Cox model. We also ase control sampling to address the
imbalance between positive and negative cases (since lat|gasitive” edge event there are order
of n? “negative” training cases). At each event, we samgl@egative training examples for that

same time point. We use two settings frin the experimentsk’ = 10 and KX = 50.

To make predictions using the additive Aalen model, one @oekd to extrapolate the time-varying
coefficients to future time points. For simplicity, we userdform smoothing kernel (weighting all
observations equally), with a window size of 1 or 10 days. Aeraxdvanced extrapolation technique
could yield even better predictive performance for the Aateodel.

Each model can provide us with the probability of an edge &diom event between two nodes at a
given point in time, and so we can calculate an accumulagigall metric across all test events:

Z(i%j,t)eTestSetl [j € Top(,t, K))
|TestSet )

where Tofi, ¢, K) is the top4 list of ¢’'s potential “friends” ranked based on intensky; (¢).

Recall=

(12)

We evaluate the predictive performance of the Aalen modigh(smoothing windows of 1 and 10),
the Cox model, and the LR baseline (with case control ratid8 &nd 1:50). Figure 4(a) shows the
recall results on IRVINE. In this case, both the Aalen and @mdels outperform the LR baseline;
furthermore, it is interesting to note that the Aalen modehwime-varying coefficients does not
outperform the Cox model. One explanation for this resutét the IRVINE coefficients are pretty
stable (apart from the initial phase as shown in Figure 2J,thas time-varying coefficients do not
provide additional predictive power in this case. Also ribeg LR with ratio 1:10 outperforms 1:50.
We also tried an LR ratio of 1:3 (not shown) but found that itfpemed nearly identically to LR
1:10; thus, both the Aalen and Cox models outperform thelin@sgubstantially on these data.

Figure 4(b) shows the recall results on METAFILTER. As in fitevious case, both the Aalen and
Cox models significantly outperform the LR baseline. Howgtle Aalen model with time-varying
coefficients also substantially outperforms the Cox mod#i time-fixed coefficients. In this case,
estimating time-varying coefficients improves predicipegformance, which makes sense because
we have seen in Figure 3 that METAFILTER’s coefficients temddry more over time. We also
calculated precision results (not shown) on these datadeth confirm these conclusions.
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Figure 4: Predictive performance of the additive Aalen niaaeltiplicative Cox model, and logistic
regression baseline on the IRVINE and METAFILTER data seti#)g recall as the metric.

5 Related Work and Conclusions

Evolving networks have been descriptively analyzed in @esgibry fashion in a variety of domains,
including email data [16], citation graphs [17], and onlsmial networks [18]. On the model-
ing side, temporal versions of exponential random graphetsod, 2, 3] and latent space mod-
els[19, 4, 5, 20] have been developed. Such methods operatess-sectional snapshot data, while
our framework models continuous-time network event ddts. worth noting that continuous-time
Markov process models for longitudinal networks have bemp@sed previously [21]; however,
these approaches have only been applied to very small netywahile our regression-based ap-
proach can scale to large networks. Recently, there hashakso work on inferring unobserved
time-varying networks from evolving nodal attributes whare observed [22, 23, 24]. In this paper,
the main focus is the statistical modeling of observed cmmtiis-time networks.

More recently, survival and event history models based enGbx model have been applied to
network data [8, 12, 9]. A significant difference between previous work [9] and this paper is
that scalability is achieved in our earlier work by restrigtthe approach to “egocentric” modeling,
in which counting processes are placed only on nodes. Irastmthere we formulate scalable
inference techniques for the general “relational” settivitere counting processes are placed on
edges. Prior work also assumed static regression coefficighile here we develop a framework for
time-varying coefficients for the additive Aalen model. Regsion models with varying coefficients
have been previously proposed in other contexts [25], dinwa time-varying version of the Cox
model [26], although to the best of our knowledge such mold&ie not been developed or fitted on
longitudinal networks.

A variety of link prediction techniques have also been itigaged by the machine learning commu-
nity over the past decade (e.g., [27, 28, 29]). Many of thesthods use standard classifiers (such as
logistic regression) and take advantage of key feature(as similarity measures among nodes)
to make accurate predictions. While our focus is not on fea¢émgineering, we note that arbitrary
network and nodal features such as those developed fordedigiion can be incorporated into our
continuous-time regression framework. Other link predittechniques based on matrix factoriza-
tion [30] and random walks [11] have also been studied. Wthigse link prediction techniques
mainly focus on making accurate predictions, our propoggiiaach here not only gives accurate
predictions but also provides a statistical model (withetiarying coefficient estimates) which can
be useful in evaluating scientific hypotheses.

In summary, we have developed multiplicative and additiegression models for large-scale
continuous-time longitudinal networks. On simulated aedl+world data, we have shown that
the proposed inference approach can accurately estingatesston coefficients and that the learned
model can be used for interpreting network evolution andligtang future network events. An in-
teresting direction for future work would be to incorportitee-dependent nodal attributes (such as
textual content) into this framework and to investigateutagzation methods for these models.
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