
Continuous-Time Regression Models for
Longitudinal Networks

Duy Q. Vu
Department of Statistics

Pennsylvania State University
University Park, PA 16802
dqv100@stat.psu.edu

Arthur U. Asuncion ∗

Department of Computer Science
University of California, Irvine

Irvine, CA 92697
asuncion@ics.uci.edu

David R. Hunter
Department of Statistics

Pennsylvania State University
University Park, PA 16802

dhunter@stat.psu.edu

Padhraic Smyth
Department of Computer Science
University of California, Irvine

Irvine, CA 92697
smyth@ics.uci.edu

Abstract

The development of statistical models for continuous-timelongitudinal network
data is of increasing interest in machine learning and social science. Leveraging
ideas from survival and event history analysis, we introduce a continuous-time
regression modeling framework for network event data that can incorporate both
time-dependent network statistics and time-varying regression coefficients. We
also develop an efficient inference scheme that allows our approach to scale to
large networks. On synthetic and real-world data, empirical results demonstrate
that the proposed inference approach can accurately estimate the coefficients of
the regression model, which is useful for interpreting the evolution of the network;
furthermore, the learned model has systematically better predictive performance
compared to standard baseline methods.

1 Introduction

The analysis of the structure and evolution of network data is an increasingly important task in
a variety of disciplines, including biology and engineering. The emergence and growth of large-
scale online social networks also provides motivation for the development of longitudinal models
for networks over time. While in many cases the data for an evolving network are recorded on a
continuous time scale, a common approach is to analyze “snapshot” data (also known as collapsed
panel data), where multiple cross-sectional snapshots of the network are recorded at discrete time
points. Various statistical frameworks have been previously proposed for discrete snapshot data,
including dynamic versions of exponential random graph models [1, 2, 3] as well as dynamic block
models and matrix factorization methods [4, 5]. In contrast, there is relatively little work to date on
continuous-time models for large-scale longitudinal networks.

In this paper, we propose a general regression-based modeling framework for continuous-time net-
work event data. Our methods are inspired by survival and event history analysis [6, 7]; specifically,
we employ multivariate counting processes to model the edgedynamics of the network. Building
on recent work in this context [8, 9], we use both multiplicative and additive intensity functions that
allow for the incorporation of arbitrary time-dependent network statistics; furthermore, we consider
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time-varying regression coefficients for the additive approach. The additive form in particular en-
ables us to develop an efficient online inference scheme for estimating the time-varying coefficients
of the model, allowing the approach to scale to large networks. On synthetic and real-world data, we
show that the proposed scheme accurately estimates these coefficients and that the learned model is
useful for both interpreting the evolution of the network and predicting future network events.

The specific contributions of this paper are: (1) We formulate a continuous-time regression model
for longitudinal network data with time-dependent statistics (and time-varying coefficients for the
additive form); (2) we develop an accurate and efficient inference scheme for estimating the regres-
sion coefficients; and (3) we perform an experimental analysis on real-world longitudinal networks
and demonstrate that the proposed framework is useful in terms of prediction and interpretability.

The next section introduces the general regression framework and the associated inference scheme
is described in detail in Section 3. Section 4 describes the experimental results on synthetic and
real-world networks. Finally, we discuss related work and conclude with future research directions.

2 Regression models for continuous-time network data

Below we introduce multiplicative and additive regressionmodels for the edge formation process
in a longitudinal network. We also describe non-recurrent event models and give examples of time-
dependent statistics in this context.

2.1 General framework

Assume in our network that nodes arrive according to some stochastic process and directed edges
among these nodes are created over time. Given the ordered pair (i, j) of nodes in the network at
time t, let Nij(t) be a counting process denoting the number of edges fromi to j up to timet.
In this paper, eachNij(t) will equal zero or one, though this can be generalized. Combining the
individual counting processes of all potential edges givesa multivariate counting processN(t) =
(Nij(t) : i, j ∈ {1, . . . n}, i 6= j); we make no assumption about the independence of individual
edge counting processes. (See [7] for an overview of counting processes.) We do not consider
an edge dissolution process in this paper, although in theory it is possible to do so by placing a
second counting process on each edge for dissolution events. (See [10, 3] for different examples
of formation–dissolution process models.) As proposed in [9], we model the multivariate counting
process via the Doob-Meyer decomposition [7],

N(t) =

∫ t

0

λ(s) ds+ M(t), (1)

where essentiallyλ(t) andM(t) may be viewed as the (deterministic) signal and (martingale) noise,
respectively. To model the so-called intensity processλ(t), we denote the entire past of the network,
up to but not including timet, by Ht− and consider for each potential directed edge(i, j) two
possible intensity forms, the multiplicative Cox and the additive Aalen functions [7], respectively:

λij(t|Ht−) = Yij(t)α0(t) exp
[

β⊤s(i, j, t)
]

; (2)

λij(t|Ht−) = Yij(t)
[

β0(t) + β(t)⊤s(i, j, t)
]

, (3)

where the “at risk” indicator functionYij(t) equals one if and only if(i, j) could form an edge
at time t, a concept whose interpretation is determined by the context (e.g., see Section 2.2). In
equations (2) and (3),s(i, j, t) is a vector ofp statistics for directed edge(i, j) constructed based on
Ht− ; examples of these statistics are given in Section 2.2. In each of the two models, the intensity
process depends on a linear combination of the coefficientsβ, which can be time-varying in the
additive Aalen formulation. When all elements ofsk(i, j, t) equal zero, we obtain the baseline
hazardsα0(t) andβ0(t).

The two intensity forms above, the Cox and Aalen, each have their respective strengths (e.g., see [7,
chapter 4]). In particular, the coefficients of the Aalen model are quite easy to estimate via linear
regression, unlike the Cox model. We leverage this computational advantage to develop an efficient
inference algorithm for the Aalen model later in this paper.On the other hand, the Cox model
forces the hazard function to be non-negative, while the Aalen model does not—however, in our
experiments on both simulated and real-world data we did notencounter any issues with negative
hazard functions when using the Aalen model.
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2.2 Non-recurrent event models for network formation processes

If tarri andtarrj are the arrival times of nodesi andj, then the risk indicator of equations (2) and (3)
is Yij(t) = I

(

max(tarri , tarrj ) < t ≤ teij
)

. The timeteij of directed edge(i, j) is taken to be+∞
if the edge is never formed during the observation time. The reason for the upper boundteij is that
the counting process is non-recurrent; i.e., formation of an edge means that it can never occur again.

The network statisticss(i, j, t) of equations (2) and (3), corresponding to the ordered pair(i, j), can
be time-invariant (such as gender match) or time-dependent(such as the number of two-paths from
i to j just before timet). Since it has been found empirically that most new edges in social networks
are created between nodes separated by two hops [11], we limit our statistics to the following:

1. Out-degree of senderi: s1(i, j, t) =
∑

h∈V,h 6=iNih(t
−)

2. In-degree of senderi: s2(i, j, t) =
∑

h∈V,h 6=iNhi(t
−)

3. Out-degree of receiverj: s3(i, j, t) =
∑

h∈V,h 6=j Njh(t
−)

4. In-degree of receiverj: s4(i, j, t) =
∑

h∈V,h 6=j Nhj(t
−)

5. Reciprocity:s5(i, j, t) = Nji(t
−)

6. Transitivity:s6(i, j, t) =
∑

h∈V,h 6=i,j Nih(t
−)Nhj(t

−)

7. Shared contactees:s7(i, j, t) =
∑

h∈V,h 6=i,j Nih(t
−)Njh(t

−)

8. Triangle closure:s8(i, j, t) =
∑

h∈V,h 6=i,j Nhi(t
−)Njh(t

−)

9. Shared contacters:s9(i, j, t) =
∑

h∈V,h 6=i,j Nhi(t
−)Nhj(t

−)

HereNji(t
−) denotes the value of the counting process(i, j) right before timet. While this paper

focuses on the non-recurrent setting for simplicity, one can also develop recurrent models using this
framework, by capturing an alternative set of statistics specialized for the recurrent case [8, 12, 9].
Such models are useful for data where interaction edges occur multiple times (e.g., email data).

3 Inference techniques

In this section, we describe algorithms for estimating the coefficients of the multiplicative Cox and
additive Aalen models. We also discuss an efficient online inference technique for the Aalen model.

3.1 Estimation for the Cox model

Recent work has posited Cox models similar to (2) with the goal of estimating general network
effects [8, 12] or citation network effects [9]. Typically,α0(t) is considered a nuisance parameter,
and estimation forβ proceeds by maximization of the so-called partial likelihood of Cox [13]:

L(β) =
m
∏

e=1

exp
(

β⊤s(ie, je, te)
)

∑n

i=1

∑

j 6=i Yij(te) exp
(

β⊤s(i, j, te)
) , (4)

wherem is the number of edge formation events, andte, ie, andje are the time, sender, and receiver
of theeth event. In this paper, maximization is performed via the Newton-Raphson algorithm. The
covariance matrix of̂β is estimated as the inverse of the negative Hessian matrix ofthe last iteration.

We use the caching method of [9] to compute the likelihood, the score vector, and the Hessian matrix
more efficiently. We will illustrate this method through thecomputation of the likelihood, where the
most expensive computation is for the denominator

κ(te) =

n
∑

i=1

∑

j 6=i

Yij(te) exp
(

β⊤s(i, j, te)
)

. (5)

For models such as the one in Section 2.2, a naı̈ve update forκ(te) needsO(pn2) operations, where
n is the the current number of nodes. A naı̈ve calculation oflogL(β) needsO(mpn2) operations
(wherem is the number of edge events), which is costly sincem andn may be large. Calculations
of the score vector and Hessian matrix are similar, though they involve higher exponents ofp.
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Alternatively, as in [9], we may simply writeκ(te) = κ(te−1) + ∆κ(te), where∆κ(te) entails all
of the possible changes that occur during the time interval[te−1, te). Since we assume in this paper
that edges do not dissolve, it is necessary to keep track onlyof the group of edges whose covariates
change during this interval, which we callUe−1, and those that first become at risk during this inter-
val, which we callCe−1. These groups of edges may be cached in memory during an initialization
step; then, subsequent calculations of∆κ(te) are simple functions of the values ofs(i, j, te−1) and
s(i, j, te) for (i, j) in these two groups (forCe−1, only the timete statistic is relevant).

The number of edges cached at each time step tends to be small,generallyO(n) because our network
statisticss are limited to those based on node degrees and two-paths. This leads to substantial
computational savings; since we must still initializeκ(t1), the total computational complexity of
each Newton-Raphson iteration isO(p2n2 +m(p2n+ p3)).

3.2 Estimation for the Aalen model

Inference in model (3) proceeds not for theβk parameters directly but rather for their time-integrals

Bk(t) =

∫ t

0

βk(s)ds. (6)

The reason for this is thatB(t) = [B1(t), . . . , Bp(t)] may be estimated straightforwardly using a
procedure akin to simple least squares [7]: First, let us impose some ordering on then(n − 1)
possible ordered pairs(i, j) of nodes. TakeW(t) to be then(n− 1)× p matrix whose(i, j)th row
equalsYij(t)s(i, j, t)⊤. Then

B̂(t) =

∫ t

0

J(s)W−(s)dN(s) =
∑

te≤t

J(te)W−(te)∆N(te) (7)

is the estimator ofB(t), where the multivariate counting processN(te) uses the same ordering of its
n(n− 1) entries as theW(t) matrix,

W−(t) =
[

W(t)⊤W(t)
]−1

W(t)⊤,

andJ(t) is the indicator thatW(t) has full column rank, where we takeJ(t)W−(t) = 0 whenever
W(t) does not have full column rank. As with typical least squares, a covariance matrix for these
B̂(t) may also be estimated [7]; we give a formula for this matrix inequation (11). If estimates of
βk(t) are desired for the sake of interpretability, a kernel smoothing method may be used:

β̂k(t) =
1

b

∑

te

K
( t− te

b

)

∆B̂k(te), (8)

whereb is the bandwidth parameter,∆B̂k(te) = B̂k(te) − B̂k(te−1), andK is a bounded kernel
function with compact support[−1, 1] such as the Epanechnikov kernel.

3.3 Online inference for the Aalen model

Similar to the caching method for the Cox model in Section 3.1, it is possible to streamline the
computations for estimating the integrated Aalen model coefficientsB(t). First, we rewrite (7) as

B̂(t) =
∑

te≤t

J(te)
[

W(te)
⊤W(te)

]−1
W(te)

⊤∆N(te) =
∑

te≤t

A−1(te)W(te)
⊤∆N(te), (9)

whereA(te) = W(te)
⊤W(te) andJ(te) is omitted because for large network data sets and for

reasonable choices of starting observation times, the covariate matrix is always of full rank. The
computation ofW(te)

⊤∆N(te) is simple because∆N(te) consists of all zeros except for a single
entry equal to one. The most expensive computation is to update the(p+1)× (p+1) matrixA(te)
at every event timete; invertingA(te) is not expensive sincep is relatively small.

UsingUe−1 andCe−1 as in Section 3.1, the component(k, l) of the matrixA(te) corresponding to
covariatesk andl can be written asAkl(te) = Akl(te−1) + ∆Akl(te−1), where

∆Akl(te−1) = −
∑

(i,j)∈Ue−1

Wijk(te−1)Wijl(te−1) +
∑

(i,j)∈Ue−1∪Ce−1

Wijk(te)Wijl(te). (10)
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For models such as the one presented in Section 2.2, ifn is the current number of nodes, the cost of
naı̈vely calculatingAkl(te) by iterating through all “at-risk” edges is nearlyn2. As in Section 3.1,
the cost will beO(n) if we instead use caching together with equation (10). In other cases, there
may be restrictions on the set of edges at risk at a particulartime. Here the computational burden for
the naı̈ve calculation can be substantially smaller thanO(n2); yet it is generally the case that using
(10) will still provide a substantial reduction in computing effort.

Our online inference algorithm during the time interval[te−1, te) may be summarized as follows:
1. UpdateA(te−1) using equation (10).

2. ComputêB(te−1) = B̂(te−2) + A−1(te−1)W(te−1)
′∆N(te−1).

3. Compute and cache the network statistics changed by the evente− 1, then initializeUe−1

with a list of those at-risk edges whose network statistics are changed by this event.
4. Compute and cache all values of network statistics changed during the time interval

[te−1, te). DefineCe−1 as the set of edges that switch to at-risk during this interval.
5. Before considering the evente:

(a) Compute look-ahead summations at timete−1 indexed byUe−1.
(b) Update the covariate matrixW(te−1) based on the cache.
(c) Compute forward summations at timete indexed byUe−1 andCe−1.

For the first event,A(t1) must be initialized by naı̈ve summation over all current at-risk edges, which
requiresO(p2n2) calculations. Assuming that the numbern of nodes stays roughly the same over
each of them edge events, the overall computational complexity of this online inference algorithm
is thusO(p2n2 +m(p2n + p3)). If a covariance matrix estimate for̂B(t) is desired, it can also be
derived online using the ideas above, since we may write it as

Σ̂(t) =
∑

te≤t

W−(te)diag{∆N(te)}W−(te)
⊤ =

∑

te≤t

A−1(te)
[

Wije
(te)⊗ Wije

(te)
]

A−1(te), (11)

whereWije
(te) denotes the vectorW(te)

⊤∆N(te) and⊗ is the outer product.

4 Experimental analysis

In this section, we empirically analyze the ability of our inference methods to estimate the regression
coefficients as well as the predictive power of the learned models. Before discussing the experimen-
tal results, we briefly describe the synthetic and real-world data sets that we use for evaluation.

We simulate two data sets, SIM-1 and SIM-2, from ground-truth regression coefficients. In par-
ticular, we simulate a network formation process starting from time unit 0 until time 1200, where
nodes arrive in the network at a constant rateλ0 = 10 (i.e., on average, 10 nodes join the network
at each time unit); the resulting simulated networks have 11,997 nodes. The edge formation pro-
cess is simulated via Otaga’s modified thinning algorithm [14] with an additive conditional intensity
function. From time 0 to 1000, the baseline coefficient is setto β0 = 10−6; the coefficients for
sender out-degree and receiver in-degree are set toβ1 = β4 = 10−7; the coefficients for reciprocity,
transitivity, and shared contacters are set toβ5 = β6 = β9 = 10−5; and the coefficients for sender
in-degree, receiver out-degree, shared contactees, and triangle closure are set to 0. For SIM-1, these
coefficients are kept constant and 118,672 edges are created. For SIM-2, between times 1000 and
1150, we increase the coefficients for transitivity and shared contacters toβ6 = β9 = 4× 10−5, and
after 1150, the coefficients return to their original values; in this case, 127,590 edges are created.

We also evaluate our approach on two real-world data sets, IRVINE and METAFILTER. IRVINE
is a longitudinal data set derived from an online social network of students at UC Irvine [15]. This
dataset has 1,899 users and 20,296 directed contact edges between users, with timestamps for each
node arrival and edge creation event. This longitudinal network spans April to October of 2004.
The METAFILTER data set is from a community weblog where users can share links and discuss
Web content1. This dataset has 51,362 users and 76,791 directed contact edges between users. The
continuous-time observation spans 8/31/2007 to 2/5/2011.Note that both data sets are non-recurrent
in that the creation of an edge between two nodes only occurs at most once.

1The METAFILTER data are available athttp://mssv.net/wiki/index.php/Infodump
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Figure 1: (a,b) Estimated time-varying coefficients on SIM-1; (c,d) Estimated time-varying coeffi-
cients on SIM-2. Ground-truth coefficients are also shown inred dashed lines.
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Figure 2: Estimated time-varying coefficients on IRVINE data. These plots suggest that there are
two distinct phases of network evolution, consistent with an independent analysis of these data [15].
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Figure 3: Estimated time-varying coefficients on METAFILTER. Here, the network effects continu-
ously change during the observation time.

4.1 Recovering the time-varying regression coefficients
This section focuses on the ability of our additive Aalen modeling approach to estimate the time-
varying coefficients, given an observed longitudinal network.

The first set of experiments attempts to recover the ground-truth coefficients on SIM-1 and SIM-2.
We run the inference algorithm described in Section 3.3 and use an Epanechnikov smoothing kernel
(with a bandwidth of 10 time units) to obtain smoothed coefficients. On SIM-1, Figures 1(a,b)
show the estimated coefficients associated with the transitivity and shared contacters statistics, as
well as the ground-truth coefficients. Likewise, Figures 1(c,d) show the same estimated and ground-
truth coefficients for SIM-2. These results demonstrate that our inference algorithm can accurately
recover the ground-truth coefficients in cases where the coefficients are fixed (SIM-1) and modulated
(SIM-2). We also tried other settings for the ground-truth coefficients (e.g., multiple sinusoidal-like
bumps) and found that our approach can accurately recover the coefficients in those cases as well.

On the IRVINE and METAFILTER data, we also learn time-varying coefficients which are use-
ful for interpreting network evolution. Figure 2 shows several of the estimated coefficients for the
IRVINE data, using an Epanechnikov kernel (with a bandwidthof 30 days). These coefficients
suggest the existence of two distinct phases in the evolution of the network. In the first phase of
network formation, the network grows at an accelerated rate. Positive coefficients for sender out-
degree, reciprocity, and transitivity in these plots implythat users with a high numbers of friends
tend to make more friends, tend to reciprocate their relations, and tend to make friends with their
friends’ friends, respectively. However, these coefficients decrease towards zero (the blue line) and
enter a second phase where the network is structurally stable. Both of these phases have also been
observed in an independent study of the data [15]. Figure 3 shows the estimated coefficients for
METAFILTER, using an Epanechnikov kernel (with a bandwidthof 30). Interestingly, the coeffi-
cients suggest that there is a marked change in the edge formation process around 7/10/10. Unlike
the IRVINE coefficients, the estimated METAFILTER coefficients continue to vary over time.
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Table 1: Lengths of building, training, and test periods. The number of events are in parentheses.

Building Training Test
IRVINE 4/15/04 – 5/11/04 (7073) 5/12/04 – 5/31/04 (7646) 6/1/04 – 10/19/04 (5507)
METAFILTER 6/15/04 – 12/21/09 (60376) 12/22/09 – 7/9/10 (8763) 7/10/10 – 2/5/11 (7620)

4.2 Predicting future links

We perform rolling prediction experiments over the real-world data sets to evaluate the predictive
power of the learned regression models. Following the evaluation methodology of [9], we split
each longitudinal data set into three periods: a statistics-building period, a training period, and a test
period (Table 1). The statistics-building period is used solely to build up the network statistics, while
the training period is used to learn the coefficients and the test period is used to make predictions.
Throughout the training and test periods, the time-dependent statistics are continuously updated.
Furthermore, for the additive Aalen model, we use the onlineinference technique from Section 3.3.
When we predict an event in the test period, all the previous events from the test period are used
as training data as well. Meanwhile, for the multiplicativeCox model, we adaptively learn the
model in batch-online fashion; during the test period, for every 10 days, we retrain the model (using
the Newton-Raphson technique described in Section 3.1) with additional training examples coming
from the test set. Our Newton-Raphson implementation uses astep-halving procedure, halving the
length of each step if necessary untillogL(β) increases. The iterations continue until every element
in ∇ logL(β) is smaller that10−3 in absolute value, or until the relative increase inlogL(β) is less
than10−100, or until 100 Newton-Raphson iterations are reached, whichever occurs first.

The baseline that we consider is logistic regression (LR) with the same time-dependent statistics
used in the Aalen and Cox models. Note that logistic regression is a competitive baseline that
has been used in previous link prediction studies (e.g., [11]). We learn the LR model in the same
adaptive batch-online fashion as the Cox model. We also use case control sampling to address the
imbalance between positive and negative cases (since at each “positive” edge event there are order
of n2 “negative” training cases). At each event, we sampleK negative training examples for that
same time point. We use two settings forK in the experiments:K = 10 andK = 50.

To make predictions using the additive Aalen model, one would need to extrapolate the time-varying
coefficients to future time points. For simplicity, we use a uniform smoothing kernel (weighting all
observations equally), with a window size of 1 or 10 days. A more advanced extrapolation technique
could yield even better predictive performance for the Aalen model.

Each model can provide us with the probability of an edge formation event between two nodes at a
given point in time, and so we can calculate an accumulative recall metric across all test events:

Recall=

∑

(i→j,t)∈TestSetI [j ∈ Top(i, t,K)]

|TestSet|
, (12)

where Top(i, t,K) is the top-K list of i’s potential “friends” ranked based on intensityλij(t).

We evaluate the predictive performance of the Aalen model (with smoothing windows of 1 and 10),
the Cox model, and the LR baseline (with case control ratios 1:10 and 1:50). Figure 4(a) shows the
recall results on IRVINE. In this case, both the Aalen and Coxmodels outperform the LR baseline;
furthermore, it is interesting to note that the Aalen model with time-varying coefficients does not
outperform the Cox model. One explanation for this result isthat the IRVINE coefficients are pretty
stable (apart from the initial phase as shown in Figure 2), and thus time-varying coefficients do not
provide additional predictive power in this case. Also notethat LR with ratio 1:10 outperforms 1:50.
We also tried an LR ratio of 1:3 (not shown) but found that it performed nearly identically to LR
1:10; thus, both the Aalen and Cox models outperform the baseline substantially on these data.

Figure 4(b) shows the recall results on METAFILTER. As in theprevious case, both the Aalen and
Cox models significantly outperform the LR baseline. However, the Aalen model with time-varying
coefficients also substantially outperforms the Cox model with time-fixed coefficients. In this case,
estimating time-varying coefficients improves predictiveperformance, which makes sense because
we have seen in Figure 3 that METAFILTER’s coefficients tend to vary more over time. We also
calculated precision results (not shown) on these data setswhich confirm these conclusions.
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Figure 4: Predictive performance of the additive Aalen model, multiplicative Cox model, and logistic
regression baseline on the IRVINE and METAFILTER data sets,using recall as the metric.

5 Related Work and Conclusions

Evolving networks have been descriptively analyzed in exploratory fashion in a variety of domains,
including email data [16], citation graphs [17], and onlinesocial networks [18]. On the model-
ing side, temporal versions of exponential random graph models [1, 2, 3] and latent space mod-
els [19, 4, 5, 20] have been developed. Such methods operate on cross-sectional snapshot data, while
our framework models continuous-time network event data. It is worth noting that continuous-time
Markov process models for longitudinal networks have been proposed previously [21]; however,
these approaches have only been applied to very small networks, while our regression-based ap-
proach can scale to large networks. Recently, there has alsobeen work on inferring unobserved
time-varying networks from evolving nodal attributes which are observed [22, 23, 24]. In this paper,
the main focus is the statistical modeling of observed continuous-time networks.

More recently, survival and event history models based on the Cox model have been applied to
network data [8, 12, 9]. A significant difference between ourprevious work [9] and this paper is
that scalability is achieved in our earlier work by restricting the approach to “egocentric” modeling,
in which counting processes are placed only on nodes. In contrast, here we formulate scalable
inference techniques for the general “relational” settingwhere counting processes are placed on
edges. Prior work also assumed static regression coefficients, while here we develop a framework for
time-varying coefficients for the additive Aalen model. Regression models with varying coefficients
have been previously proposed in other contexts [25], including a time-varying version of the Cox
model [26], although to the best of our knowledge such modelshave not been developed or fitted on
longitudinal networks.

A variety of link prediction techniques have also been investigated by the machine learning commu-
nity over the past decade (e.g., [27, 28, 29]). Many of these methods use standard classifiers (such as
logistic regression) and take advantage of key features (such as similarity measures among nodes)
to make accurate predictions. While our focus is not on feature engineering, we note that arbitrary
network and nodal features such as those developed for link prediction can be incorporated into our
continuous-time regression framework. Other link prediction techniques based on matrix factoriza-
tion [30] and random walks [11] have also been studied. Whilethese link prediction techniques
mainly focus on making accurate predictions, our proposed approach here not only gives accurate
predictions but also provides a statistical model (with time-varying coefficient estimates) which can
be useful in evaluating scientific hypotheses.

In summary, we have developed multiplicative and additive regression models for large-scale
continuous-time longitudinal networks. On simulated and real-world data, we have shown that
the proposed inference approach can accurately estimate regression coefficients and that the learned
model can be used for interpreting network evolution and predicting future network events. An in-
teresting direction for future work would be to incorporatetime-dependent nodal attributes (such as
textual content) into this framework and to investigate regularization methods for these models.
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