Supplementary materials to "Kernel Bayes’ Rule”

A Proof of Propositions 3 and 4

These propositions can be proved in a similar manner wittplgirtinear algebra. We show the
proofs for completeness.

Proof of Proposition 3.We show only the proof fo€ zy, as the case af'yy is exactly the same.
Leth = (Cxx +enl)” 1m§;’), and decompose itds= >_;" | a;kx (-, X;) + hi = aTkx + hy,

whereh | is orthogonal to alkx (-, X;). Expansion o(@XX +en)h =m (E) derivesikl Gxa+

enkka+e,hy = ml(T By taking the inner product withx (-, X;), we have

(EGX + é‘nfn)Gxa = myj.

The coefficientu in Czy = a(yx)xh =30 hikx (-, X;) ® ky(+,Y;) is given by = Gxa,
and thus

~ 1 -1
H = (EGX + 571,In) myy.
O

Proof of Proposition 4.Let h = (@ ww + ond)” Cwwhky(-,y), and decompose it ab =
Zf 1@ky(LY) +h =« ky + hy, whereh, is orthogonal to alky(-,Y;). Expansion of

(C2, + 0,1)h = waky( y) deriveskl (AGy )?a + d, kLo + 6,h) = kL Aky (y). Taking
the inner product wittk, (-, ) derives

((GyA)2 + 57LIH)GyOz = GyAky(y)
The coefficientw in mg |, = @th =37 wikx(-, X;) is given byw = AGy«, and thus
— A((GyN)? +6,1,) Gy Aky (y) = AGy (AGy)? + 6,1,) " Aky (y).
O]

B Derivation of the KBR update rule for nonparametric state-space model

This section gives a more detailed derivation of the updatefor nonparametric state-space model,
which we sketched in Section 3.

Given the estimate of the kernel mean expressiopfor|7., - . ., 3:), the forward filtering with

PWer1|O1, - Te) = /P(yt+1\l‘t+1)/p(l’tﬂ\xﬁp(?ﬁt@h---7?3t)d$t+1dﬂft

can be realized by the two-times applications of forwarefittg procedure similar to Proposition
3. Namely, first the kernel mean ofz;11(91,....9:) = [ p(zes1l@e)p(2e|dn, - - ., §i)dz, can be
estimated by

. 1
Mgy (1,5 Zﬁzk‘x Xit1) where 8= (7Gx +erlr) Gxa.

In the same way, the second step is to compute the kernel meatfyo 1|91,...,9:) =
J pWir1|me41)p(Ti41)T15 - - -, Ge)dze g1, Which is estimated by

—1
yt+1|y17 Tt Z%k/\’ ), where ~ = (%GY + ETIT) Gx,x,.B.
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C Rates of consistency
The proof idea for the consistency rates of the KBR estinsatoessentially the same as [1, 3], in
which the basic techniques are taken from the general thiaggularization [2].

First we give integral expression for the kernel mean anditamce operators. Reacll that the kernel
meanm x of X onH y satisfies
(f;mx) = E[f(X)]

forany f € Hy. Pluggingf = kx (-, u) into this relation derives
mx (u) = Elk(u, X)] = /kx(u,i)dPX(i), (15)

which shows the explicit functional form of the kernel medam. a similar manner, the explicit
integral expression of the covariance operatdysy andC'x x are given by

wmﬂwzfm@@ﬂwW@m wmnmz/mm@mw&w» (16)

respectively. The covariance operators are thus integeiators with integral kernély or ky .

The first preliminary result is a rate of convergence for theamtransition in Theorem 2. In the
following R(C% ) meansH x.

Theorem 6. Assume thatr/px € R( XX) for somegs > 0, wherew andpx are the p.d.f. ofI
and Py, respectively. Lefh%" be an estimator ofnr; such thathH —mi|la, = Op(n™®) as

n — oo for somed < a < 1/2. Then, withe,, = n~ ™>{3* 185} we have

Hé\'}(fn))( (C“gg)( + EnI) mgl) mq, HHy =Op(n~ min{Fa égiéa}) (n — 0).

Proof. Taken € H.x such thatr /px = C'% . Then, from Egs. (15) and (16),

i = [ ko) Z @) = Ol (17)

First we show the rate of the estimation error:
|CE (% +en) ) — Oy (Cxx +ead) ', = Op(n2e; ), (18)

asn — oo. By using the factthab—! — A~! = B~!(A— B)A~! holds for any invertible operators
A andB, the left hand side of Eq. (18) is upper bounded by

n - ~(n -1
GV (CX% + )™ (s — ) [, + [[(CV% = Cyx) (Coxx +end)
+ [ YR (CF% +end) ™ (Cxx = CX%) (Cxx +eal) m],,,
By the decomposition@,(/"% = O e with | W < 1 (see [2]), the first term
is of Op(n~ 1/2). From Eq. (17), the second and third terms are of the oftjgn~'/2) and
O,(n~2¢, /2) respectively, by|(Cx x + &,1) !Cxx|| < 1. This means Eq. (18).
Next, we show

||CYX (CXX + En.[)ilmn me, ||7-i =0(e; min{(1+24)/2, 1}) (n — 0). (29)

LetCyx = Csl,@WYXO;/f( be the decomposition witfii¥y x || < 1. It follows from the relation

may = [ [ ke

that the left hand side of Eq. (19) is upper bounded by

%p@zwdux@OWuﬂw‘—C?xcﬁxn

IOy Wy x || [(Cxx + end) T CEST 0 — CETT |13

X
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By the eigendecompositiofix x = Y. \;i¢; (¢, -), where{¢;} are the unit eigenvectors afd; }
are the corresponding eigenvalues, the expansion

(25+3 (2/3+1 V2 2 En)\(2ﬁ+1)/2 ,
[ (Cxx +end) " CE -Cx N, = ;(M) (n, ¢3)
ﬂ)\(2ﬁ+1)/2 )\<2ﬁ+1)/2 (1—-28)/2 (28+1)/2
holds. If0 < B < 1/2 we have: N Ten = N +€n)(2ﬁ+1)/2 ™ isn)(l 38/2En <
A (26+1)/2
e T2 0 B > 1/2, then=3—— < ||Cxx|le,. The dominated convergence theorem shows

that the the above sum converges to zere,as> 0 of the ordel()(eﬁi“{%*m}).

From Egs. (18) and (19), the optimal ordersqf and the optimal rate of consistency are given as
claimed. O

The(fc;llowing theorem shows the consistency rate of theregtr used in the conditioning step
Eq. (8).

Theorem 7. Let f be a function inH x, and (Z, W) be a random variable taking value iti x ).
Assume thall[f(Z)|W = -] € R(Cy,y, ) for somer > 0, and@é{})z : Hx — Hy and 5‘(,(})”, :
‘Hy — Hy be compact operators, which may not be positive definitdy Ehainég})z —Cwzl| =
0,(n=7) and |C\),, — Cwwl| = O,(n=7) for somey > 0. Then, fors, = n~ ">{57z457}
and anyy € ), we have as — oo

|G (Cln)? +6,0) O f — ELF(X)IW =]

e, = Optn” 38557,
X

Proof. Letn € Hx such thatE[f(Z)|W = -] = C}, - First we show
~(n ~(n —-1:5(n — e
[CSA (C)? + 61) " Clip f — Cww (Chow + 8u1) " Cwz f |5, = Op(n™ 78,74,

(20)
The left hand side of Eq. (20) is upper bounded by

~(n ~(n -1, 3(n ~(n —
1w (C3)* +0u1) ™ (O3 =Cw 2)f |y, + | (it = Coww ) (Clow +80) ™ Cow 2 [
+ [ (Cw)? + 8ud) " (O = Clow) (Chow +0a1) ™ Cwz £,
Let 5‘(,[%[, = Y . Noi(¢s,-) be the eigendecomposition, whefe;} is the unit eigenvec-
tors and{)\;} is the corresponding eigenvalues. Fram/(A\? + 6,)| = 1/ + 6,/ <
1/2v/INIVE./IN) = 1/(2/8,), we have| C, ((Cipl )2 + 641) || < 1/(2v/3,), and thus
the first term of the above bound is 6f,(n=76, '/*). A similar argument by the eigendecomposi-

tion of Cyyw combined with the decompositiatyy ; = Ciy 5 Uw zCy with |Uy z|| < 1 shows
that the second term is @p(n—wf’/‘l). From the facq|(C(W”W) - C&wll < ||C§(}%,V(C§(}W

Cow) ||+ 1(Cy = Cww)Cww | = O,(n=7), the third term is 0D, (=75, */*). This implies
Eq. (20).
FromE[f(Z)|W =] = C%,wn andCyw 2 f = CwwE[f(Z)|W = -] = Cy},in, the convergence
rate

ICww (Cw +0uD) "' Cw 2 f — BIF(Z)W = ]|, = 0" "5, (21)

can be proved by the same way as Eq. (19).
Combination of Egs.(20) and (21) proves the assertion. O

It is possible to extend the covariance operdtgry to the one defined oh?(Qw ) b
Cowo = [ ko w)o@)dQu (), (0 L(@Qw). (22)

The following theorem shows the consistency rate on avetdgeeR (CY, ;) meansL?(Qw ).
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Theorem 8. Let f be a function ir{x, and(Z, W) be a random variable taking values iti x )
with distributionQ. Assume thalE[f(Z)|W = -] € R(Cl ) N Hy for somev > 0, andé‘(,(})z :

Hr — Hy and 5(W”%,V : Hy — Hy be compact operators, which may not be positive definitdy suc
that H@‘(,(})Z — Cwzl|l = Op(n~7) and ||@&'}%4, — Cww| = Op(n~7) for somey > 0. Then, for

5, =n~m>{27:7327} we have as — oo

|GGy (CSWN? +6,1) T G, = E[F(X)[W =]

: ||L2(Qw) = Op(n~ min{%%"%ﬂ})a

whereQy is the marginal distribution ofV'.

Proof. Note that forh,g € Hy we have(h, )12, = E[R(W)g(W)] = (h,Cwwg)ny. It
follows that the left hand side of the assertion is equal to

1w Ciitt (Chi)? + 0uT) ™' Ciitp f = Culy BIFDIW = |-
First, by the similar argument to the proof of Eq. (20), itésg to show that the rate of the estimation
error is given by

1

|CHEACK (C5)? +621) ™ CYf — G (Chw +021) " Cuvzf

= 0,(n75;1).
It suffices then to prove
|Cww (Coyw + 6u1) ' Cwzf — E[f(Z)|W = ']HL2( = O(5mm{1 )-
Let ¢ € L*(Qw) such thatE[f(Z)[W = -] = Chw& In a similar way to Theorem 1,

CwwE[f(Z)W] = Cwzf holds, whereCyy is the extension oy, and thusCyy ,f =
C{j[jrv%/f The left hand side of the above equation is equal to

||CWW(wa+5nI) 10"“5 CWW€HL2

By the eigendecomposition 6ty 1y in L2(Qyy), a similar argument to the proof of Eq. (21) shows
the assertion.

Combining the above theorems, we have the following coesest of KBR.

Theorem 9. Let f be a function in x, (Z, W) be a random variable that has the distributigh
with p.d.f.p(y|z)n(x), andmn) be an estimator ofny; such that||A<" —mnllu, = Op(n™%)
(n — o) for somed < a < 1/2. Assume that /px € R(C'y ) with 3 > 0, and E[f(Z)|W =
1 € R(Cyw ) for somer > 0. For the regularization constants, = n -max{3orzel and
5, =n~ ™57 w57 wherey = min{Z2a, ggi%a} we have forany € )

f{ R pyvky (y) = B (D)W =] = Op(n~ "7 55570), - (n - o0),

whereff Ry yky (y) is the estimator of2[ f (Z)|W = y] given by Eq. (11).
Proof. By applying Theorem 6 t& = (Y, X) andY = (Y,Y), we see that both QF@(Z”V)V —Czw]|
and||€‘$%,v — Cww]| are ofO,(n~7). Since

X Rxyky (y) — E[f(Z)|W = y]
A(n ~(n -1:5(n
= (y (), Oy (CV)2 + 6,1) 'R f = BIF (D)W =)oy,
combination of Theorems 6 and 7 proves the theorem. O

The next theorem shows the rate on average @jist. The proof is similar to the above theorem,
and omitted.
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Theorem 10. Let f be a function iy, (Z, W) be arrandom variable that has the distributigh
with p.d.f.p(y|z)w(x), andm ) be an estimator ofny; such that||A(" —mullu, = Op(n™%)
(n — o0) for somed < a < 1/2 Assume that /px € R(C's ) with 8 > 0, and E[f(Z)|W =
] € R(C%w ) NHy for somev > 0. For the regularization constants, = n —max{Ze. 50} gngd

ax{ i~ 2~ .
86, = n~ {37557} wherey = mm{3 , ;giéa} we have

6% Ry ey (W) = ELFDIW]| 1o gy = Opn™ "™ 557), - (n  o0).

Iz

We have also the consistency of estimator for the kernel roéposterior, if we make stronger as-
sumptions. First, we formulate the mean of the conditiomabability ¢(x|y) in terms of operators.
Let (Z, W) be a random variable with distributidp. Assume that for any € # x the conditional
meanE|[f(Z)|W = -] is included inHy. We have a linear operatdtdefined by

S:’HX*>'H3;, fl—)E[f(ZNW:]
If we further assume théf is bounded, the adjoint operatst : Hy — H y satisfies

<S*ky(’7 y)v f>7‘lX = <ky('a y)7 Sf>3"[y = E[f(Z)|W = y]
foranyy € ), and thusS*ky (-, y) is equal to the kernel mean of conditional probability digttion
of Z givenW = y.

We make the following further assumptions:
Assumption (S)

1. The canonical mady : Hy — L?(Qw ) is injective, that isCyw is injective.
2. There existy > 0 such that for anyf € H there isny € H with Sf = C},yny, and
the linear map
CQ/VI/VS:IHX — Hy, =y
is bounded.
Theorem 11. Let (Z, W) be a random variable that has the distributihwith p.d.f.p(y|z)m(x),
and m{"” be an estimator ofny such that||m{! — mu|y, = Op(n=) (n — oo) for some
0 < a < 1/2. Assume (S) above, andpx € R(C% ) with some3 > 0. For the regularization
constants:,, = n~ {3059 andg, = n~ {6757} wherey = min{2a, 2+1a}, we

25+2
have . 4. 2y
k% Rxyky (y) — mQx\yHHX = Op(n~ e,
asn — oo, wheremg . |, is the kernel mean of the posterior givgn
Proof. First, in a similar manner to the proof of Eq. (20), we have
n n 1 5(n
[Com (O )? +820)  Citky (4 y) — Czw (Cryy + 6u1) " Cwwky (-, )1/

= 0pn75,71%)
The assertion is thus obtained if
|Czw (Corw + 6 D)™ Cwwky (-, y) — S*ky (-,
is proved. The left hand side of Eq. (23) is upper-bounded by
HCZW(CI%VW + 8, 0) ' Oww — S| |1k (-, 9) |2y,
= ||[Coww (Clyw + 6uD) " Cwz — S| I1ky (-, 9) 134

It follows from Theorem 1 tha€'y z = Cyww S, and thus|Cyyw (CEy + 0,1) 1Cwz — S|| =
ICww (Céry + 621) L Cww S — S|| < 8, (CErw + 6uD) ' Clrw I |ICiw S1I. The eigende-
composition ofCy, - together with the mequalltyA— smin{l.v/2} (A > ) completes the
proof. O

9y, = 0@ (23)
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