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1 Proof

Proposition 1. For any number of experiments n and labs l, let SN be the set of corresponding N stage
schedules, where N must be at least dn/le. For any S ∈ SN , CPE(S) = maxS′∈SN CPE(S′) if and only if
S is uniform.

Proof. First, we rewrite the CPE objective as follows.

CPE(S) =

N∑
i=2

ni

i−1∑
j=1

nj =
1

2

N∑
i=1

∑
j 6=i

ninj

From this it is clear that all uniform schedules achieve the same CPE value since the multi-set of ni values
in any uniform schedule are identical. It remains to show that if a schedule S is not uniform, then it is not
optimal. Since S is not uniform we know that there exists two stages i and j with |ni − nj | > 1. Without
loss of generality, we assume that ni < nj . Consider the summation of terms in the above expression that
involve either ni and nj , denoting this sum as f(S, i, j), we have:

f(S, i, j) = ni
∑
l 6=i,j

nl + nj
∑
l 6=i,j

nl + ninj

Now consider a new schedule S′ with ni′ = ni + 1 and nj ′ = nj − 1, but otherwise identical to S, we have:

f(S′, i, j) = (ni + 1)
∑
l 6=i,j

nl + (nj − 1)
∑
l 6=i,j

nl + (ni + 1)(nj − 1)

= ni
∑
l 6=i,j

nl +
∑
l 6=i,j

nl + nj
∑
l 6=i,j

nl −
∑
l 6=i,j

nl + ninj + nj − ni − 1

= f(S, i, j) + nj − ni − 1

> f(S, i, j)

where the last inequality follows from our assumption that |ni − nj | > 1. This shows that CPE(S′) >
CPE(S) and thus S is not optimal in terms of CPE.
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Lemma 1. For any duration distribution Pd that is log-concave, if an N stage schedule S = 〈(ni, di)〉 is
p-safe, then there is a p-safe N stage schedule S′ = 〈(ni, d′i)〉 such that if ni = nj then d′i = d′j .

Proof. Consider an N stage schedule S = 〈(ni, di)〉. Based on the ni values, we group the N stages
into subsets that contain stages with the same ni values, denoted by Πj , j = 1, · · · , k, where k is the total
number of distinct ni values in S. Due to the IID nature of the stages, we can consider each group separately.
Focusing on a specific group Πj , the probability that an execution of the stages in Πj is safe is∏

i∈Πj

Pd(di)
nj

Taking the log of the probability, we have:

nj
∑
i∈Πj

f(di)

where f(di) = logPd(di). Since Pd is log-concave, f is a concave function. Based on Jensen’s inequality,
we have:

1

|Πj |
∑
i∈Πj

f(di) ≤ f(
1

|Πj |
∑
i∈Πj

di) = f(d̄j)⇒

∑
i∈Πj

f(di) ≤ |Πj |f(d̄j)⇒

nj
∑
i∈Πj

logPd(di) ≤ nj |Πj | logPd(d̄j)⇒

∏
i∈Πj

Pd(di)
nj ≤ Pd(d̄j)nj |Πj | =

∏
i∈Πj

Pd(d̄j)
nj

This shows that the probability of a safe execution is at least as large if we replace all di’s within group j
with their average d̄j . Since this can be done for all groups, this completes our proof.

Theorem 2. Let Π(s, t) be a policy generator and π̄ be the switching policy computed with ε-accurate
estimates. For any state s, stages-to-go t, and base policy π, C π̄t (s, π) ≥ maxπ′∈Π(s,t)∪{π} C

π′

t (s)− 2tε.

Proof. We use induction on t for which the base case of t = 1 is easily verified. For the inductive case,
let T (s, d) be a random variable that is distributed over next states given that a decision d is made in state
s. It is easily verified that Cπt+1(s) = E[Cπt (T (s, π(s, t)))] for any base policy π, s, and t. Also, we have
that C π̄t+1(s, π) = E[C π̄t (T (s, π∗(s, t)))], where π∗ is the base policy selected at t + 1, which returns the
decision d∗ = π∗(s, t+ 1).

Cπ̄t+1(s, π) = E[Cπ̄t (T (s, d
∗), π∗)]

≥ E[ max
π′∈Π(s,t)∪{π∗}

Cπ
′

t (T (s, d∗))− 2tε]

≥ max
π′∈Π(s,t)∪{π∗}

E[Cπ
′

t (T (s, d∗))]− 2tε

≥ E[Cπ
∗

t (T (s, d∗))]− 2tε

= Cπ
∗

t+1(s)− 2tε

≥ max
π′∈Π(s,t)∪{π}

Cπ
′

t+1(s)− 2(t+ 1)ε
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The first inequality follows from the inductive hypothesis and the estimation error bound. The third and
fourth steps follow from the definition of expectation and maximization. Finally, the last step follows from
our assumption of ε-accurate loss estimates.

2 Results

In this section we present the results of the proposed policies with their corresponding variances. In general,
each number in Tables 1,2, 3 represents the average regret of each policy± its variance for different horizons.
It can be seen that the variance is very small for all of the proposed policies.

Table 1: Horizon=4
Function h =∞ OnFCP OfStaged OfIL OnMEL PS
Cosines .142± .00 .339± .04 .181± .01 .195± .01 .275± .03 .205± .01
FuelCell .160± .01 .240± .01 .182± .01 .191± .01 .258± .01 .206± .01
Hydro .025± .00 .115± .01 .069± .00 .070± .00 .123± .02 .059± .00
Rosen .008± .00 .013± .00 .010± .00 .009± .00 .013± .00 .008± .00
Hart(3) .037± .00 .095± .00 .070± .00 .069± .00 .096± .00 .067± .00
Michal .465± .01 .545± .01 .509± .01 .508± .01 .525± .01 .502± .01
Shekel .427± .03 .660± .04 .630± .03 .648± .03 .688± .03 .623± .03
Hart(6) .265± .01 .348± .01 .338± .01 .340± .01 .354± .01 .347± .01
CPE 190 55 100 100 66 100

Table 2: Horizon=5
Function h =∞ OnFCP OfStaged OfIL OnMEL PS
Cosines .142± .00 .339± .04 .181± .01 .194± .01 .274± .04 .150± .01
FuelCell .160± .01 .240± .01 .167± .01 .190± .01 .239± .01 .185± .01
Hydro .025± .00 .115± .01 .071± .01 .069± .01 .086± .01 .042± .00
Rosen .008± .00 .013± .00 .009± .00 .008± .00 .011± .00 .008± .00
Hart(3) .037± .00 .095± .00 .055± .00 .064± .00 .081± .01 .045± .00
Michal .465± .01 .545± .01 .500± .01 .510± .01 .521± .01 .494± .01
Shekel .427± .04 .660± .04 .635± .04 .645± .03 .682± .03 .540± .04
Hart(6) .265± .01 .348± .01 .334± .01 .330± .01 .333± .01 .297± .01
CPE 190 55 100 100 91 118

Table 3: Horizon=6
Function h =∞ OnFCP OfStaged OfIL OnMEL PS
Cosines .142± .00 .339± .04 .167± .01 .147± .00 .270± .03 .156± .00
FuelCell .160± .01 .240± .01 .154± .01 .163± .01 .230± .01 .153± .01
Hydro .025± .00 .115± .01 .036± .00 .035± .00 .064± .00 .025± .00
Rosen .008± .00 .013± .00 .007± .00 .009± .00 .010± .00 .009± .00
Hart(3) .037± .00 .095± .00 .045± .00 .050± .00 .070± .00 .038± .00
Michal .465± .01 .545± .01 .477± .01 .460± .01 .502± .02 .480± .01
Shekel .427± .03 .660± .03 .530± .04 .564± .03 .576± .05 .510± .03
Hart(6) .265± .01 .348± .01 .304± .01 .266± .01 .301± .01 .262± .01
CPE 190 55 133 137 120 138
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