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Abstract

We extend the classical problem of predicting a sequence of outcomes from a fi-
nite alphabet to the matrix domain. In this extension, the alphabet of n outcomes is
replaced by the set of all dyads, i.e. outer products uu> where u is a vector in Rn

of unit length. Whereas in the classical case the goal is to learn (i.e. sequentially
predict as well as) the best multinomial distribution, in the matrix case we desire
to learn the density matrix that best explains the observed sequence of dyads. We
show how popular online algorithms for learning a multinomial distribution can
be extended to learn density matrices. Intuitively, learning the n2 parameters of a
density matrix is much harder than learning the n parameters of a multinomial dis-
tribution. Completely surprisingly, we prove that the worst-case regrets of certain
classical algorithms and their matrix generalizations are identical. The reason is
that the worst-case sequence of dyads share a common eigensystem, i.e. the worst
case regret is achieved in the classical case. So these matrix algorithms learn the
eigenvectors without any regret.

1 Introduction

We consider the extension of the classical online problem of predicting outcomes from a finite
alphabet to the matrix domain. In this extension, the alphabet of n outcomes is replaced by a set of
all dyads, i.e. outer products uu> where u is a unit vector in Rn. Whereas classically the goal is
to learn as well as the best multinomial distribution over outcomes, in the matrix case we desire to
learn the distribution over dyads that best explains the sequence of dyads seen so far. A distribution
on dyads is summarized as a density matrix, i.e. a symmetric positive-definite1 matrix of unit trace.
Such matrices are heavily used in quantum physics, where dyads represent states. We will show
how popular online algorithms for learning multinomials can be extended to learn density matrices.

Considerable attention has been placed recently on generalizing algorithms for learning and opti-
mization problems from probability vector parameters to density matrices [17, 19]. Efficient semi-
definite programming algorithms have been devised [1] and better approximation algorithms for
NP-hard problems have been obtained [2] by employing on-line algorithms that update a density
matrix parameter. Also two important quantum complexity classes were shown to collapse based on
these algorithms [8]. Even though the matrix generalization led to progress in many contexts, in the
original domain of on-line learning, the regret bounds proven for the algorithms in the matrix case
are often the same as those provable for the original classical finite alphabet case [17, 19]. Therefore
it was posed as an open problem to determine whether this is just a case of loose classical bound or
whether there truly exists a “free matrix lunch” for some of these algorithms [18]. Such algorithms
essentially would learn the eigensystem of the data for free without incurring any additional regret.
This is non-intuitive, since one would expect a matrix to have n2 parameters and be much harder to
learn than an n dimensional parameter vector.

1We use positive in the non-strict sense, and omit ‘symmetric’ and ‘definite’. Our matrices are real-valued.
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for trial t = 1, 2, . . . , T do
Algorithm predicts with probability vector ωt−1

Nature responds with outcome xt.
Algorithm incurs loss − logωt−1,xt .

end for
Probability vector prediction

for trial t = 1, 2, . . . , T do
Algorithm predicts with density matrixWt−1

Nature responds with density matrixXt.
Algorithm incurs loss − tr

(
Xt log(Wt−1)

)
.

end for
Density matrix prediction

Figure 1: Protocols

In this paper we investigate this frivolously named but deep “free matrix lunch” question in arguably
the simplest context: learning a multinomial distribution. In the classical case, there are n ≥ 2
outcomes and a distribution is parametrized by an n-dimensional probability vector ω, where ωi is
the probability of outcome i. One can view the base vectors ei as the elementary events and the
probability vector as a mixture of these events: ω =

∑
i ωiei. We define a “matrix generalization”

of a multinomial which is parametrized by a density matrix W (positive matrix of unit trace). Now
the elementary events are dyads of the form uu>, where u is a unit vector in Rn. Dyads are the
representations of states used in quantum physics [20]. A density matrix is a mixture of dyads.
Whereas probability vectors represent uncertainty over n basis vectors, density matrices can be
viewed as representing uncertainty over infinitely many dyads in Rn.

In the classical case, the algorithm predicts at trial t with multinomial ωt−1. Nature produces an
outcome xt ∈ {1, . . . , n}, and the algorithm incurs loss− log(ωt−1,xt

). The most common heuristic
(a.k.a. the Laplace estimator) chooses ωt−1,i proportional to 1 plus the number of previous trials in
which outcome i was observed. The on-line algorithms are evaluated by their worst-case regret over
data sequences, where the regret is the additional loss of the algorithm over the total loss of the best
probability vector chosen in hindsight.

In this paper we develop the corresponding matrix setting, where the algorithm predicts with a den-
sity matrixWt−1, Nature produces a dyad xtx

>
t , and the algorithm incurs loss−x>t log(Wt−1)xt.

Here log denotes the matrix logarithm. We are particularly interested in how the regret changes
when the algorithms are generalized to the matrix case. Surprisingly we can show that for the
Laplace as well as the Krichevsky-Trofimov [10] estimators the worst-case regret is the same in the
matrix case as it is in the classical case. For the Last-Step Minimax algorithm [16], we can prove
the same regret bound for the matrix case that was proven for the classical case.

Why are we doing this? Most machine learning algorithms deal with vector parameters. The goal of
this line of research is to develop methods for handling matrix parameters. We are used to dealing
with probability vectors. Recently a probability calculus was developed for density matrices [20]
including various Bayes rules for updating generalized conditionals. The vector problems are typi-
cally retained as special cases of the matrix problems, where the eigensystem is fixed and only the
vectors of eigenvalues has to be learned. We exhibit for the first time a basic fundamental prob-
lem, for which the regret achievable in the matrix case is no higher than the regret achievable in the
original vector setting.

Paper outline Definitions and notation are given in the next section, followed by proofs of the
free matrix lunch for the three discussed algorithms in Section 3. At the core of our proofs is
a new technical lemma for mixing quantum entropies. We also discuss the minimax algorithm
for multinomials due to Shtarkov, and corresponding minimax algorithm for density matrices. We
provide strong experimental evidence that the free matrix lunch holds for this algorithm as well. To
put the results into context, we motivate and discuss our choice of the loss function, and compare it
to several alternatives in Section 4. More discussion and perspective is provided in the Section 5.

2 Setup

The protocol for the classical probability vector prediction problem and the new density matrix
prediction problem are displayed side-by-side in Figure 1. We explain the latter problem. Learning
proceeds in trials. During trial t the algorithm predicts with a density matrix Wt−1. We use index
t−1 to indicate that is based on the t−1 previous outcomes. Then nature responds with an outcome
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density matrix Xt. The discrepancy between prediction and outcome is measured by the matrix
entropic loss

`(Wt−1,Xt) := − tr
(
Xt log(Wt−1)

)
, (1)

where log denotes matrix logarithm2. When the outcome density matrix Xt is a dyad xtx
>
t , then

this loss becomes −x>t log(Wt−1)xt, which is the simplified form of the entropic loss discussed
in the introduction. Also if the prediction density matrix is diagonal, i.e. it has the form Wt−1 =∑

i ωt−1,i eie
>
i for some probability vector ωt−1, and the outcomeXt is an eigendyad eje>j of the

same eigensystem, then this loss simplifies to the classical log loss: `(Wt−1,Xt) = − log(ωt−1,j).
The above definition is not the only way to promote the log loss to the matrix domain. Yet, in Section
4 we justify this choice.

We aim to design algorithms with low regret compared to the best fixed density matrix in hindsight.
The loss of the best fixed density matrix can be expressed succinctly in terms of the von Neumann
entropy, which is defined for any density matrix D as H(D) := − tr(D logD), and the suffi-
cient statistic ST =

∑T
t=1Xt as follows: infW

∑T
t=1 `(W ,Xt) = TH

(
ST

T

)
. For fixed data

X1, . . . ,XT , the regret of a strategy that issues predictionWt after observingX1, . . . ,Xt is
T∑

t=1

`(Wt−1,Xt)− TH
(
ST

T

)
, (2)

and the worst-case regret on T trials is obtained by taking supX1,...,XT
over (2). Our aim is to

design strategies for density matrix prediction that have low worst-case regret.

3 Free Matrix Lunches

In this section, we will show how four popular online algorithms for learning multinomials can be
extended to learning density matrices. We start with the simple Laplace estimator, continue with
its improved version known as the Krichevsky-Trofimov estimator, and also extend the less known
Last Step Minimax strategy which has even less regret. We will prove a version of the free matrix
lunch (FML) for all three algorithms. Finally we discuss the minimax algorithm for which we have
experimental evidence that the free matrix lunch holds as well.

3.1 Laplace

After observing classical data with sufficient statistic vector σt =
∑t

q=1 exq
, classical Laplace

predicts with the probability vector ωt := σt+1
t+n consisting of the normalized smoothed counts. By

analogy, after observing matrix data with sufficient statisticSt =
∑t

q=1Xt, matrix Laplace predicts
with the correspondingly smoothed matrix Wt := St+I

t+n . Classical Laplace is commonly motivated
as either the Bayes predictive distribution w.r.t. the uniform prior or as a loss minimization with
virtual outcomes [3]. The latter motivation can be “lifted” to the matrix domain by adding n virtual
outcomes at I/n:

Wt = argmin
W dens. mat.

{
n `(W , I/n) +

t∑
q=1

`(W ,Xq)

}
=
St + I

t+ n
. (3)

The worst-case regret of classical Laplace after T iterations equals log
(
T+n−1
n−1

)
≤ (n−1) log(T+1)

(see e.g. [6]). We now show that in the matrix case, no additional regret is incurred.
Theorem 1 (Laplace FML). The worst-case regrets of classical and matrix Laplace coincide.

Proof. Let W ∗
t denote the best density matrix for the first t outcomes. The regret (2) of matrix

Laplace can be bounded as follows:
T∑

t=1

`(Wt−1,Xt)−
T∑

t=1

`(W ∗
T ,Xt) ≤

T∑
t=1

(
`(Wt−1,Xt)− `(W ∗

t ,Xt)
)
. (4)

2For any positive matrix with eigendecompositionA =
∑

i αi aia
>
i , log(A) :=

∑
i log(αi)aia

>
i .
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Now consider each term in the right-hand sum separately. The tth term equals

− tr

(
Xt

(
log

St−1 + I

t− 1 + n
− log

St

t

))
= log

(
t− 1 + n

t

)
− tr

(
Xt

(
log(St−1 + I)− logSt

))
.

Note that the first term constitutes the “classical” part of the per-round regret, while the second term
is the “matrix” part. The matrix part is non-positive since St−1 + I � St, and the logarithm is a
matrix monotone operation (i.e. A � B implies logA � logB). By omitting it, we obtain an
upper bound on the regret of matrix Laplace, that is tight: for any sequence of identical dyads the
matrix part is zero and (4) holds with equality since W ∗

t = W ∗
T for all t ≤ T . The same upper

bound is also met by classical Laplace on any sequence of identical outcomes [6].

We just showed that matrix Laplace has the same worst-case regret as classical Laplace, albeit matrix
Laplace learns a matrix of n2 parameters whereas classical Laplace only learns n probabilities. No
additional regret is incurred for learning the eigenvectors. Matrix Laplace can update Wt in O(n2)
time per trial. The same will be true for our next algorithm.

3.2 Krichevsky-Trofimov (KT)

Classical and matrix KT smooth by adding 1
2 to each count, i.e. ωt := σt+1/2

t+n/2 and Wt := St+I/2
t+n/2 .

The former can again be obtained as the Bayes predictive distribution w.r.t. Jeffreys’ prior, the latter
as the solution to the matrix entropic loss minimization problem (3) with n/2 virtual outcomes
instead of n for Laplace.

The leading term in the worst-case regret for classical KT is the optimal 1
2 log(T ) rate per parameter

instead of the log(T ) rate for Laplace. More precisely, classical KT’s worst-case regret after T
iterations is known to be log Γ(T+n/2)

Γ(T+1/2) + log Γ(1/2)
Γ(n/2) ≤

n−1
2

(
log(T + 1) + log(π)

)
(see e.g. [6]).

Again we show that no additional regret is incurred in the matrix case.
Theorem 2 (KT FML). The worst-case regrets of classical and matrix KT coincide.

The proof uses the following key entropy decomposition lemma (proven in Appendix A):
Lemma 1. For positive matricesA,B withA =

∑
i αi aia

>
i the eigendecomposition ofA:

H(A+B) ≥
n∑

i=1

a>i Bai

tr(B)
H
(
A+ tr(B)aia

>
i

)
,

Proof of Theorem 2. We start by telescoping the regret (2) of matrix KT as follows
T∑

t=1

(
− tr

(
Xt log(Wt−1)

)
− tH

(
St−1 +Xt

t

)
+ (t− 1)H

(
St−1

t− 1

))
. (5)

We bound each term separately. Let us denote the eigendecomposition of St−1 by St−1 =∑n
i=1 σi sis

>
i . Notice that sinceWt−1 plays in the eigensystem of St−1, we have:

− tr
(
Xt log(Wt−1)

)
= − tr

(
Xt

n∑
i=1

log(ωt−1,i) sis
>
i

)
= −

n∑
i=1

s>i Xtsi log(ωt−1,i).

Moreover, it follows from Lemma 1 that:

H

(
St−1 +Xt

t

)
≥

n∑
i=1

s>i XtsiH

(
St−1 + sis

>
i

t

)
.

Taking this equality and inequality into account, the tth term in (5) is bounded above by:

δt :=

n∑
i=1

s>i Xtsi

(
− log(ωt−1,i)− tH

(
St−1 + sis

>
i

t

)
+ (t− 1)H

(
St−1

t− 1

))
, (6)

which, in turn, is at most:

δt ≤ sup
i

(
− log(ωt−1,i)− tH

(
St−1 + sis

>
i

t

)
+ (t− 1)H

(
St−1

t− 1

))
.
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In other words the per-round regret increase is largest for one of the eigenvectors of the sufficient
statistic St−1, i.e. for classical data. To get an upper bound, maximize over S0, . . . ,ST−1 indepen-
dently, each with the constraint that tr(St) = t. A particular maximizer is St = t e1e

>
1 , which is

the sufficient statistic of the sequence of outcomes all equal to Xt = e1e
>
1 . For this sequence all

bounding steps hold with equality. Hence the matrix KT regret is below the classical KT regret. The
reverse is obvious.

3.3 Last Step Minimax

The bounding technique, developed using Lemma 1 and applied to KT can be used to prove bounds
for a much broader class of prediction strategies. The crucial part of the KT proof was showing
that each term in the telescoped regret (5) can be bounded above by δt as defined in (6), in which
all matrices share the same eigensystem, and which is hence equivalent to the corresponding clas-
sical expression. The only property of the prediction strategy that we used was that it plays in the
eigensystem of the past sufficient statistic. Therefore, using the same line of argument, we can show
that if for some classical prediction strategy we can obtain a meaningful regret bound by bounding
each term in the regret δt independently, we can obtain the same bound for the corresponding matrix
strategy, i.e. its spectral promotion.

In particular, we can push this argument to its limit by considering the algorithm designed to mini-
mize δt in each iteration. This algorithm is known as Last Step Minimax.

In fact, the Last Step Minimax (LSM) principle is a general recipe for online prediction, which states
that the algorithm should minimize the worst-case regret with respect to the next outcome [16]. In
other words, it should act as the minimax algorithm given that the time horizon is one iteration
ahead. In the classical case for the multinomial distribution, after observing data with sufficient
statistic σt−1, classical LSM predicts with

ωt−1 := argmin
ω

max
xt

{
`(ω, xt)︸ ︷︷ ︸

− log(ωt−1,xt )

−
t∑

q=1

`(ω∗t , xq)︸ ︷︷ ︸
tH(σt

t )

}
=

n∑
i=1

exp
(
−tH(σt−1+ei

t )
)∑

j exp
(
−tH(

σt−1+ej
t )

)ei. (7)

Classical LSM is analyzed in [16] for the Bernoulli (n = 2) case. For our straightforward gener-
alization to the classical multinomial case, the regret is bounded by n−1

2 ln(T + 1) + 1. LSM is
therefore slightly better than KT.

Applying the Last Step Minimax principle to density prediction, we obtain matrix LSM which issues
prediction:

Wt−1 := argmin
W

max
Xt

{
− tr

(
Xt log(W )

)
− tH

(
St

t

)}
.

We show that matrix LSM learns the eigenvectors without additional regret.
Theorem 3 (LSM FML). The regrets of classical and matrix LSM are at most n−1

2 ln(T + 1) + 1.

Proof. We determine the form ofWt−1. By Sion’s minimax theorem [15]:

min
W

max
Xt

{
− tr

(
Xt log(W )

)
− tH

(
St

t

)}
= max

P
min
W

EP

[
− tr

(
Xt log(W )

)
− tH

(
St

t

)]
,

where P ranges over probability distribution on density matrices Xt. Plugging in the minimizer
W = EP [Xt], the right hand side becomes:

max
P

{
H
(
EP [Xt]

)
− EP

[
tH

(
St

t

)]}
. (8)

Now decompose St−1 as
∑n

i=1 σi sis
>
i . Using Lemma 1, we can bound the second expression

inside the maximum:

EP

[
tH

(
St

t

)]
≥ EP

[
t

n∑
i=1

s>i XtsiH

(
St−1 + sis

>
i

t

)]
= t

n∑
i=1

s>i EP [Xt] siH

(
St−1 + sis

>
i

t

)
.
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On the other hand, we know that the entropy does not decrease when we replace the argument
EP [Xt] by its pinching (a.k.a. projective measurement)

∑n
i=1(u>i EP [Xt]ui)uiu

>
i w.r.t. any

eigensystem ui [12]. Therefore, we have:

H
(
EP [Xt]

)
≤ H

(
n∑

i=1

(s>i EP [Xt]si) sis
>
i

)
= H(p),

where the last entropy is a classical entropy and p is a vector such that pi = s>i EP [Xt]si. Com-
bining those two results together, we have:

H
(
EP [Xt]

)
− EP

[
tH

(
St

t

)]
≤ H(p)− t

n∑
i=1

piH

(
σt−1 + ei

t

)
.

Note that we have equality only when the distribution P puts nonzero mass only on the eigenvectors
s1, . . . , sn. This means that when p is fixed, we will maximize (8) by using a distribution with such
a property, i.e. P is restricted to the eigensystem of St−1. This, in turn, means thatWt−1 = EP [Xt]
will play in the eigensystem of St−1 as well. It follows that Wt−1 is the classical LSM strategy in
the eigensystem of St−1, i.e.Wt−1 =

∑
i ωt−1,i sis

>
i , where ωt−1 are taken as in (7).

The proof of the classical LSM guarantee is based on bounding the per-round regret increase:

δt := − log(ωt−1,xt
)− tH

(
σt−1 + ext

t

)
+ (t− 1)H

(
σt−1

t− 1

)
,

by choosing the worst case w.r.t. xt and σt−1. Since, for matrices, the worst case for the correspond-
ing matrix version of δt, see (6), is the diagonal case, the whole analysis immediately goes through
and we get the same bound as for classical LSM.

Note that the bound for LSM is not tight, i.e. there exists no data sequence for which the bound is
achieved. Therefore, the bound for matrix LSM is also not tight. This theorem is a weaker FML
because it only relates worst-case regret bounds. We have verified experimentally that the actual
regrets coincide in dimension n = 2 for up to T = 5 outcomes, using a grid of 30 dyads per trial,
with uniformly spaced (x>e1)2. So we believe that in fact

Conjecture 1 (LSM FML). The worst-case regrets of classical and matrix LSM coincide.

To execute the LSM matrix strategy, we need to have the eigendecomposition of the sufficient statis-
tic. For density matrix data Xt, we may need to recompute it each trial in Ω(n3) time. For dyadic
data xtx

>
t it can be incrementally updated in O(n2) per trial with methods along the lines of [11].

3.4 Shtarkov

Fix horizon T . The minimax algorithm for multinomials, due to Shtarkov [14], minimizes the worst-
case regret

inf
ω0

sup
x1

. . . inf
ωT−1

sup
xT

T∑
t=1

`(ωt−1, xt)− TH
(σT

T

)
. (9)

After observing data with sufficient statistic σt and hence with r := T − t rounds remaining,
classical Shtarkov predicts with

ωt :=

n∑
i=1

φr−1(σt + ei)

φr(σt)
ei where φr(σ) :=

∑
c1,...,cn∑n
i=1 ci=r

(
r

c1, . . . , cn

)
exp

(
−TH

(σ + c

T

))
.

(10)
The so-called Shtarkov sum φr can be evaluated in timeO

(
n r log(r)

)
using a straightforward exten-

sion of the method described in [9] for computing φT (0), which is based on dynamic programming
and Fast Fourier Transforms.

The regret of classical Shtarkov equals log φT (0) ≈ n−1
2

(
log(T ) − log(n − 2) + 1

)
[6]. This is

again better than Last Step Minimax, which is in turn better than KT which dominates Laplace.
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The minimax algorithm for density matrices, called matrix Shtarkov, optimizes the worst-case regret

inf
W0

sup
X1

. . . inf
WT−1

sup
XT

T∑
t=1

`(Wt−1,Xt)− TH
(
ST

T

)
. (11)

To this end, after observing data with sufficient statistic St, with r rounds remaining, it predicts with

Wt := argmin
W

sup
X

`(W ,X) +Rr−1(St +X),

where Rr is the tail sequence of inf/sups of (11) of length r. We now argue that the FML holds
for matrix Shtarkov. Matrix Shtarkov is surprisingly difficult to analyze. However, we provide a
simplifying conjecture that we verified experimentally. A rigorous proof remains an open problem.
Our conjecture is that Lemma 1 holds with the entropy H replaced by the minimax regret tail Rr:
Conjecture 2. For each integer r, for each pair of positive matricesA andB

Rr(A+B) ≥
∑
i

a>i Bai

tr(B)
Rr

(
A+ tr(B)aia

>
i

)
.

Note that this conjecture generalizes Lemma 1, which is retained as the case r = 0. It follows
from this conjecture, using the same argument as for LSM, that matrix Shtarkov predicts in the
eigensystem of St, i.e. withWt =

∑
i ωt,i sis

>
i , where ωt as in (10), and furthermore that

Conjecture 3 (Shtarkov FML). The worst-case regrets of classical and matrix Shtarkov coincide.

We have verified Conjecture 3 for the matrix Bernoulli case (n = 2) up to T = 5 outcomes, using a
grid of 30 dyads per trial, with uniformly spaced (x>e1)2. Then assuming thatRr(S) = log(φ(σ)),
where σ are the eigenvalues of S, for each n from 2 to 5 we drew 105 trace pairs uniformly from
[0, 10], then drew matrix pairsA andB uniformly at random with those traces. Conjecture 2 always
held.

Obtaining the FML for the minimax algorithm is mathematically challenging and of academic inter-
est but of minor practical relevance. First, the time horizon T must be specified in advance, so the
minimax algorithm can not be used in a purely online fashion. Secondly, the running time is super-
linear in the number of rounds remaining, while it is constant for the previous three algorithms.

4 Motivation and Discussion of the Loss Function

The matrix entropic loss (1) that we choose as our loss function has a coding interpretation and it is
a proper scoring rule. The latter seems to be a necessary condition for the free matrix lunch.

Quantum coding Classical log-loss forecasting can be motivated from the point of view of data
compression and variable-length coding [7]. In information theory, the Kraft-McMillan inequality
states that, ignoring rounding issues, for every uniquely decodable code with a code length function
λ, there is a probability distribution ω such that λi = − logωi for all symbols i = 1, . . . , n, and
vice versa. Therefore, the log loss can be interpreted as the code length assigned to the observed out-
come. Quantum information theory[13, 5] generalizes variable length coding to the quantum/density
matrix case. Instead of messages composed of bits, the sender and the receiver exchange messages
described by density matrices, and the role analogous to the message length is now played by the
dimension of the density matrix. Variable-length quantum coding requires the definition of a code
length operator L, which is a positive matrix such that for any density matrix X , tr(XL) gives
the expected dimension (“length”) of the message assigned to X . The quantum version of Kraft’s
inequality states that, ignoring rounding issues, for every variable-length quantum code with code-
length operator L, there exists a density matrix W such that L = − logW . Therefore, the matrix
entropic loss can be interpreted as the (expected) code length of the observed outcome.

Proper score function In decision theory, the loss function `(ω, x) assessing the quality of pre-
dictions is also referred to as a score function. A score function is said to be proper, if for
any distribution p on outcomes, the expected loss is minimized by predicting with p itself, i.e.
argminω Ex∼p[`(ω, x)] = p. Minimization of a proper score function leads to well-calibrated
forecasting. The log loss is known to be a proper score function [4].
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We will say that a matrix loss function `(W ,X) is proper if for any distribution P on density
matrix outcomes, the expected loss with respect to P is minimized by predicting with the mean out-
come of P , i.e. argminW EX∼P [`(W ,X)] = EX∼P [X]. The matrix entropic loss (1) is proper,
for EX∼P [− tr(X logW )] = − tr

(
EX∼P [X] logW

)
is minimized at W = EX∼P [X] [12].

Therefore, minimization of the matrix entropic loss leads to well-calibrated forecasting, as in the
classical case.

A second generalization of the log loss to the matrix domain used in quantum physics [12] is the
log trace loss `(W ,X) := − log

(
tr(XW )

)
. Note that here the trace and the logarithm are ex-

changed compared to (1). The expression tr(XW ) plays an important role in quantum physics
as the expected value of a measurement outcome, and for X = xx>, tr(xx>W ) is interpreted
as a probability. However, log trace loss is not proper. The counterexample is straightforward:
if we take P uniform on {x1x

>
1 ,x2x

>
2 }, then the minimizer of the expected log trace loss is

W ∝ (x1 + x2)(x1 + x2)>, which differs from EX∼P [X] = 1
2 (x1x

>
1 + x2x

>
2 ). Also for

log trace loss we found an example (not presented) against the FML for the minimax algorithm.

A third generalization of the loss is `(W ,X) := − log
(
tr(X�W )

)
, where� denotes the commu-

tative “product” between matrices that underlies the probability calculus of [20].3 This loss upper
bounds the log trace loss. We don’t know whether it is a proper scoring function. However, it equals
the matrix entropic loss whenX is a dyad.

Finally, another loss explored in the on-line learning community is the trace loss `(W ,X) :=
tr(WX). This loss is not a proper scoring function (it behaves like the absolute loss in the vector
case) and we have an example that shows that there is no FML for the minimax algorithm in this
case (not presented).

In summary, for there to exist a FML, properness of the loss function seems to be required.

5 Conclusion

We showed that the free matrix lunch holds for the matrix version of the KT estimator. Thus the
conjectured free matrix lunch [18] is realized. Our paper raises many open questions. Perhaps the
main one is whether the free matrix lunch holds for the matrix minimax algorithm. Also we would
like to know what properties of the loss function and algorithm cause the free matrix lunch to occur.
From the examples given in this paper it is tempting to believe that you always get a free matrix
lunch when upgrading any classical sufficient-statistics-based predictor to a matrix version by just
playing this predictor in the eigensystem of the current matrix sufficient statistics. However the
following counter example shows that a general reduction must be more subtle: Consider floored
KT, which predicts with ωt,i ∝ bσt,ic + 1/2. For T = 5 trials in dimension n = 2, the worst-case
regret is 1.297 for the classical log loss and 1.992 for matrix entropic loss.

A Proof of Lemma 1

We prove the following slightly stronger inequality for all γ ≥ 0. The lemma is the case γ = 1.

f(γ) := H(A+ γB)−
n∑

i=1

a>i Bai

tr(B)
H(A+ γ tr(B)aia

>
i ) ≥ 0.

Since f(0) = 0, it suffices to show that f ′(γ) ≥ 0. Since ∂H(D)
∂D = − log(D)− I ,

f ′(γ) = − tr
(
B log(A+ γB)

)
+

n∑
i=1

a>i Bai tr
(
aia

>
i log

(
A+ γ tr(B)aia

>
i

))
= tr

(
B log

(
A+ γ tr(B)I

))
− tr

(
B log(A+ γB)

)
.

Since tr(B)I � B, we have A+ γ tr(B)I � A+ γB, and hence the matrix monotonicity of the
logarithm implies that log

(
A+ γ tr(B)I

)
� log(A+ γB), so that f ′(γ) ≥ 0.

3We can computeA�B as the matrix exponential of the sum of matrix logarithms ofA andB.
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