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1 Gaussian Process Inference from Point Processes

We follow the demonstration in [1]. We have

P (ξ|X) = exp

(
−
∑
m

∫ tf

t0

λm(X(t), t)dt

)∏
i

λmi(X(ti), ti),

where X represents all values of X(t) for t0 < t < tf . Using that
∑
m λm(X(t), t) = λ(t) we can

write

P (ξ|X) = exp

(
−
∫ tf

t0

λ(t)dt−
∑
i

(X(ti)− θmi)2/2α(ti)
2

)
We want to obtain the marginal probability

P (X(tf )|ξ) ∝ P (X(tf ))P (ξ|X(tf )) = P (X(tf ))

∫
dµ(X[t0,tf ))P (ξ|X[t0,tf ))P (X[t0,tf )|X(tf )),

where we abuse the notation saying that
∫
dµ(X[t0,tf )) is an integral over all values of X(t)

apart from X(tf ). Since X(t) is a Gaussian process with covariance function K(t − t′), we
have P (X(t1), X(t2), . . . , X(tn)) = N (X(ti); 0,K), where Ki,j = K(ti − tj). We then
have P (X(t1), . . . , X(tn)|X(tf )) = N (X(t1), . . . , X(tn);mi,Ki,j), with mi = X(tf )K(ti −
tf )/K(0) and

Ki,j = K(ti − tj)−K(tf − ti)K(tf − tj)/K(0).

Since the integral is a convolution, the variances and means simply add up. Evaluating the integrals
and using the Woodbury formula we obtain

P (ξ|X(tf )) = N (θ;mi,K + Diag(α(ti)
2)).

And finally, applying the matrix inversion lemma we obtain P (X(tf )|ξ) =
N (X(tf );µ(t, ξ, σ2(t, ξ), with

µ(t, ξ) =
∑
i,j

K(t− ti)C−1
ij Θj , σ2(t, ξ) = K(0)−

∑
i,j

K(t− ti)C−1
ij K(tj − t), 1 (1)

1Cij(ξ) = K(ti − tj) + δijα(ti)
2
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2 Differential Chapman-Kolmogorov Equation

Given a random process X(t) with a transition probability P (z, t′|x, t) = P (X(t′) = z|X(t) = x),
we define the quantities for all ε > 0

W (x|z, t) = lim
∆t→0

P (x, t+ ∆t|z, t)/∆t,∀x, z such that |x− z| ≥ ε,

Ai(z, t) =
1

∆t
lim

∆t→0

∫
|x−z|<ε

dx(xi − zi)P (x, t+ ∆t|z, t) +O(ε), and

Bij(z, t) =
1

∆t
lim

∆t→0

∫
|x−z|<ε

dx(xi − zi)(xj − zj)P (x, t+ ∆t|z, t) +O(ε).

The evolution of P (z, t|y, t′) is then given by

∂P (z, t|y, t′)
∂t

= −
∑
i
∂
∂zi

[Ai(z, t)P (z, t|y, t′)] + 1
2

∑
i,j

∂2

∂zi∂zi
[Bij(z, t)P (z, t|y, t′)]

+
∫
dx [W (z|x, t)P (x, t|y, t′)−W (x|z, t)P (z, t|y, t′)] (2)

WhenW (z|x, t) = 0 this reduces to the Fokker-Planck equation and whenAi(z, t) = Bij(z, t) = 0
we obtain the master equation. We refer the interested reader to [2, p. 47] for more details.

3 Filtering Smooth Markov Processes from Spike Trains

We consider Markov processes to obtain processes of a certain correlation structure. Consider a
continuous-time version of the classic autoregressive process of order P∑

apX
(p)(t) = bZ(t),

where X(p)(t) denotes the p-th derivative of the process X(t). This can be cast into the form of a
system of stochastic differential equations

dXi = Xi+1dt, i ∈ {0, p− 2}, aP dXP−1 = −
P−1∑
i=0

aiXidt+ bdW, (3)

this can be easily simulated via an Euler numerical integration scheme. The correlation structure
of the stochastic process X0(t) can be obtained as follows. We start by calculating the Fourier
transform of equation 3. We obtain∑

ap(2πiw)pX̃(w) = bZ̃(w)

Taking a product with itself and averaging, we obtain the power spectrum of X(∑
ap(2πiw)p

)(∑
ap(−2πiw′)p

)〈
X̃(w)X̃(w′)

〉
= b2.

Taking ap =
(
P
p

)
γP−p, we obtain〈

X̃(w)X̃(w′)
〉

=
b2

(γ + 2πiw)
P

(γ − 2πiw′)
P
.

For this particular choice of process, we can Fourier transform the power spectrum
〈
X̃(w)X̃(w)

〉
to obtain the autocorrelation of X0(t). We obtain

〈X0(t)X0(t+ τ)〉 =
η22−ν√

πΓ(ν + 1/2)γν
(γτ)

ν
Kν (γτ) ,

where Kν(t) is the modified Bessel function of the second kind, and P = ν − 1/2. The advantage
of using Markov processes is that the covariance between observations does not depend explicitly
on the observations. We rewrite the stochastic equations as a multidimensional OU process Y:

d~Y = −Γ~Y dt+HdW,
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with

Γi,j = −δi+1,j + δP,i

(
P

j − 1

)
γP−j+1, Hi,j = δi,P δj, Pη.

Note that to avoid confusion we have renamed the process to Y , so that Yi = Xi−1, Y1 = X0. From
standard OU process theory, we can write the evolution of the mean µ = 〈Y 〉 and covariance matrix
Σi,j = 〈YiYj〉 as

µ̇ = −Γµ, Σ̇ = −ΓΣ− ΣΓT +H2.
Under the assumption of dense tuning functions, which in turn implies that the probability of no
spikes occurring is independent of the value of the observed value, the optimal Bayesian filtering
scheme evolves according to the equations above in the absence of spikes. The posterior estimator
for X1(t) is simply given by µ1(t) with a variance associated to the estimative of Σ1,1(t). In the
case of a spike, we have to update the distribution according to Bayes’ rule. The likelihood of an
observed spike at time t is given by P (spike|Y1(t)) = φ exp−(θ−Y1(t))2/2α2

. We write the precision
matrix Λ = Σ−1 as follows

Λ =

(
c bt

b A

)
.

By matrix inversion lemmas we have

Σ =

(
(c− btA−1b)−1 (c− btA−1b)−1A−1bt

(c− btA−1b)−1bA−1 A−1 + (c− btA−1b)−1A−1bbtA−1

)
.

The multiplication by the likelihood results in a Gaussian distribution with precision matrix

Λ′ =

(
c+ 1

α2 bt

b A

)
.

Inverting we obtain

Σ′ =

(
(c+ 1

α2 − btA−1b)−1 (c+ 1
α2 − btA−1b)−1A−1bt

(c+ 1
α2 − btA−1b)−1bA−1 A−1 + (c+ 1

α2 − btA−1b)−1A−1bbtA−1

)
.

Rearranging and writing k = c− btA−1b, we obtain

Σ′ =

(
(1 + 1

α2k )−1k−1 (1 + 1
α2k )−1k−1A−1bt

(1 + 1
α2k )−1k−1bA−1 A−1 + (1 + 1

α2k )−1k−1A−1bbtA−1

)
.

Rearranging and substituting the terms for Σi,j we obtain

Σ′ =

 Σ1,1

1+
Σ1,1

α2

Σ1,i

1+
Σ1,1

α2

Σi,1

1+
Σ1,1

α2

Σi,j − Σ1,iΣi,j
α2+Σ1,1

 .

The update relations for the mean are also straightforward. We obtain

µ′ = Σ′
(

Σ−1µ+
Θ

α2

)
,

where Θ = (θ, 0, . . .) is a vector with the preferred stimulus of the spiking neuron θ in the first
coordinate and zero elsewhere. This can also be written more summarily, writing the likelihood as
P (spike|Y1(t)) = φ exp−(Θ−Y (t))tA+(Θ−Y (t))/2, where Ai,j = δ1,iδ1,jα

2 and A+ = δ1,iδ1,j/α
2

is the pseudoinverse of A. The relations then simplify to

Σ′ =
(
Σ−1 +A+

)−1
,

and
µ′ =

(
Σ−1 +A+

)−1
(Σ−1µ+A+Θ).

When A+ is of the form mentioned above we can simplify it further, and obtain
Σ′ = Σ− Σ:,1Σt:,1/(α

2 + Σ1,1),

in which no matrix inversion is required. Here Σ:,1 = (Σ1,1,Σ2, 1, . . .)t.

We can summarize this dynamics in two sets of filtering equations for the mean and variance of the
estimator. We have then

µ̇(t) = −Γµ(t) + S(t)
(
Σ(t)−1 +A+

)−1
A+ (Θt − µ(t))

and
Σ̇(t) = −ΓΣ(t)− Σ(t)Γt +H2 + S(t)

(
Σ(t)−1 +A+

)−1
A+Σ(t),

where S(t) =
∑
i δ(t− ti) is a sum of Dirac deltas over the spike times and Θt = (θt, 0, . . .), where

θt is the preferred stimulus of the spiking neuron.
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4 Additional Figures

Figure 1: Relative error of the mean-field approach for the OU process.

Figure 2: Relative error of the mean-field approach for the second-order Markov process.
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Figure 3: Stochastic processes of different orders as described above. From top to bottom we have p = 1, 2
corresponding to Matern kernels with ν = 1/2, 3/2.
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