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1 Proof of Proposition 2

We present the proof of Proposition 2 in a more general setting. Namely, A is updated as
Akt1 = A + YBR[ A(Xk41) + B(yr41) — ¢l. 2D

Even with this extra parameter -, the proof of Theorem 3 is almost unchanged. We have a more
general Proposition 2 as follows:

Proposition 2 If { 3} is non-decreasing and upper bounded, na > ||A||%, v € (0,2), np(2 —v) >

|B||, and (x*,y*, \*) is any KKT point of problem (1), then:

L A{nallxp—x*|2 = A(xe —x)[12+nsllye—y* |2+ 8 2| Ae = A*[|2} is non-increasing.
Yi+1 = Vel = 0 [[Agr1 — Axl| = 0.

2. ||X}€+1 — XkH — O,
The proof of Proposition 2 is based on the following lemma.

Lemma 1
nallxer1 — x*1* = |Axe 1 — x)[? + 08llyra —y*? +7’21,3;2H/\k+1 - X2
=nalxk —x*|? = Ak — x>+ nsllye — y* 112+ 7718, 21k — A¥]2
— {2 = B) 2 M1 — Mel? + nBllyrsr — yrll?
—2(v8k) " Mka1 — Me, B(yrt1 — y)) } (22)
—(nallxe1 — xill* = [A(Xp 41 — x2)[1?) )
=281 (Xpg1 — X, [ Bena(Xpg1 — xx) — A" (Aegr)] + A*(A*)>

—28; " (yra1 — ¥ [=Brns (Ve — yr) — B (Aegn)] + B*()\*)> .

This identity can be routinely checked, by using the definitions of ;\k+1 and 5\k+1 and the following
facts:

L 2(ap41 —a appr —ap) = [lagsr — 2| — Jlag — a*||* + fJagis — al|”.
2. A(x*)+ B(y*) =c.

3. </\7 A(X)> = <~A*()‘)7 X), <)‘7 B(Y)> = <B*()‘)a Y>'
As it is lengthy and tedious, we omit the complete details.

Proof (of Proposition 2) By Lemma 1 and the given conditions, it is easy to check that

nalwl? = [AW)|[> 20, forw =xp41 —x", %k — X", Xpt1 — Xk,



(2 =) (Bk) N1 = Mell® + n8llyeer — yill? = 20081) ™ k1 — Ai, By — yi)) > 0.
The last two terms in (22) are also nonnegative due to Proposition 1 and the monotonicity of sub-
gradient mapping. So Proposition 2 (1) is obvious due to the non-decrement of {5y }.

Then as {14 |xx —x*||2 — || A(xx —x*)||2 + 05 ||xx —x*||2+7 7 B 2[| Ak — A*||?} is non-increasing
and non-negative, it has a limit. Then we can see that

nalxeer —xil® = A1 — x| = 0,
(2 = NOB) N1 = Ml sy — ell® = 20986) 7 N1 = Ay By — yx)) — 0,
due to their non-negativity. So ||xx4+1 — x| — 0 follows from the first limit.
Note that

2=V B) 2 M k+1 — Ml + mBllye+1 — yell® = 2(v86) " Mkt — M, B(ygs+1 — yi))

> (2= (vBe) e — Mell? + nBllyee — yell® — 2(751«)’1H/\k~2+1 — MllIB(yr41 — yi)ll
=((2- W)”Q(Wﬂg)‘lllMH — el -2~ 7)_1/22”8(}%-&—1 —yu)l)

+08Yet1 — Yell? — (2 =) HIBYr+1 — yu)l

> nsllyer — el — 2= IByrsr — yu)lI*.

So we have that ||y;+1 — Y| — 0. On the other hand,

2 =B8R A k1 = Mell® +nllyeer — yell* = 2(755)_10\“1 — Moy B(Yrs1 — Yr))
= (2=N"Y2(v86) " Xkt1 — Ml = VB YRt — yrll)
+2038) 7 (Vi@ = Akt = Melllyies = vl = s = M By = 1))
2
> (2 =DY2(v8k) MMk — Mell = VIBIYE+1 — yell) -

So (2—=7)2(vBk) | Akt1 — Akl — /Bl Yk+1 — Yi|| — 0. This together with [[yx4+1 —y| — 0
results in |[Ag+1 — Ag]| = O.

2 Solving LRR via APG

The LRR problem can also be relaxed to the following unconstrained optimization problem:

. 1
min B|Z|. + BBz + 5| X - XZ — E|?, (23)

where 8 > 0 is a relaxation parameter. Then we can apply APG to solve this problem. The two
subproblems to update E and Z are:

T _ 1
21+ §||E — (Ey — EVEHX ~XZ - E|P|g, z,)|% (24a)

Ei1 = argmin ||

. T _ 1
Zyyr = argmin Bl|Z ] + SI1Z — (Zy — 5-Vz||X — XZ ~ E|?g, z)I%  (24b)

where 7 > o2 _(X) is a Lipschitz constant.

max

The APG approach, with the continuation technique, for the LRR problem is described in Algo-
rithm 3.

3 Convergence Behaviors of Tested Algorithms

In Figure 1, we plot the relative changes of Ej, and Zj, and the feasibility errors at all iterations for
four test algorithms, respectively. We can see the errors of LADMAP in the two KKT conditions
drop much quicker than other methods.



Algorithm 3 APG for LRR
Input: Observation matrix X and parameter p > 0.
Initialize: Set Eo =E_; =0andZo=7Z_, = 0.
Sete; > 0,60 > 0,80 > Bmin > 0,tg=t_1=1,0<1, 7> 01211ax(X)’ and k < 0.
while not converged do
Step 1: Update Ek =E; + %(Ek - Ek}—l)’ Zk =7 + %(Zk — Zk—l)-
Step 2: Update G} = Ej, + (X — XZ;, — Ey).
Step 3: Update E; 1 = Sus,, (GF), where S is the shrinkage operator.
Step 4: Update GZ = Z;, i IXT(X — XZj, — Ep).
Step 5: Update Zy. 1 = USg, (X)VT, where USVT is the SVD of G7.

1+4/4t2+1
Step 6: Update ¢ 1 = —5=%—, Bry1 = max(Bmin, O6k).
Step 7: Check the convergence conditions:
HXZk+1H+)5'|k+1*XH < £, and max (sz+1*ZkH HEk+1*EkH) < &,

Ixmr - 1XT]
If they are satisfied, break.
Step8: k +— k+ 1.
end while
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Figure 1: Convergence behaviors of APG, ADM, LADM, LADMAP on the toy data X generated
with parameters (5, 20, 100, 5). The changes and errors are in log;, scale. In (a) and (b), as the
relative changes of Ej, and Zj, in the first several iterations are zeros, which corresponds to —oc in
the plots, we only report the nonzero relative changes of E; and Zj.



