Multilinear Subspace Regression: An Orthogonal Tensor Decomposition Approach

Qibin Zhao ${ }^{1}$, Cesar F. Caiafa ${ }^{2}$, Danilo P. Mandic ${ }^{3}$, Liqing Zhang ${ }^{4}$, Tonio Ball ${ }^{5}$, Andreas Schulze-Bonhage ${ }^{5}$, and Andrzej Cichocki ${ }^{1}$
${ }^{1}$ Brain Science Institute, RIKEN, Japan
${ }^{2}$ IAR, CONICET, Argentina
${ }^{3}$ Imperial College, UK
${ }^{4}$ Shanghai Jiao Tong University, China
${ }^{5}$ Albert-Ludwigs-University, Germany

NIPS 2011
Presented by Qibin Zhao

Multilinear regression and applications

- Tensor representation of multidimensional data
- EEG, ECoG (spatial, temporal, frequency, epoch,...)
- Physical meaning - ease of interpretation
- From multivariate to multi-way array processes - partial least squares (PLS)

- Standard PLS applied on matricization of both X and Y
- Small sample size problem
- Overfitting problem (high dimension of subspace basis)
- Lack of physical interpretation for loadings

Proposed approach

Objective function

$$
\begin{aligned}
& \min _{\left\{\mathbf{P}^{(n)}, \mathbf{Q}^{(m)}\right\}}\left\|\underline{\mathbf{X}}-\llbracket \underline{\mathbf{G}} ; \mathbf{t}, \mathbf{P}^{(1)}, \ldots, \mathbf{P}^{(N-1)} \rrbracket\right\|^{2}+\left\|\underline{\mathbf{Y}}-\llbracket \underline{\mathbf{D}} ; \mathbf{t}, \mathbf{Q}^{(1)}, \ldots, \mathbf{Q}^{(M-1)} \rrbracket\right\|^{2} \\
& \text { s. t. } \quad\left\{\mathbf{P}^{(n) T} \mathbf{P}^{(n)}\right\}=\mathbf{I}_{L_{n+1}}, \quad\left\{\mathbf{Q}^{(m) T} \mathbf{Q}^{(m)}\right\}=\mathbf{I}_{K_{m+1}},
\end{aligned}
$$

Extension of PLS to higher-order tensor data - HOPLS

- Goal: to predict a tensor Y from a tensor X
- Approach: to extract the common latent variables

Properties:

- Flexible multilinear regression framework
- Projection on tensor subspace basis
- Efficient optimization algorithm using HOOI on the n-mode crosscovariance tensor

Key advantages

Small sample size

HOPLS: better prediction performance and enhanced robustness to noise

Robustness against overfitting and noise

A

Stability of the performance of HOPLS, NPLS and PLS for a varying number of latent vectors under different noise conditions

POSTER: W043

