Multilinear Subspace Regression: An Orthogonal Tensor Decomposition Approach

Qibin Zhao¹, Cesar F. Caiafa², Danilo P. Mandic³, Liqing Zhang⁴, Tonio Ball⁵, Andreas Schulze-Bonhage⁵, and Andrzej Cichocki¹

¹ Brain Science Institute, RIKEN, Japan
 ² IAR, CONICET, Argentina
 ³ Imperial College, UK
 ⁴ Shanghai Jiao Tong University, China
 ⁵ Albert-Ludwigs-University, Germany

NIPS 2011

Presented by Qibin Zhao

LABSP: http://www.bsp.brain.riken.jp/

Multilinear regression and applications

- Tensor representation of multidimensional data
 - EEG, ECoG (spatial, temporal, frequency, epoch,...)
 - Physical meaning ease of interpretation
- From multivariate to multi-way array processes partial least squares (PLS)

Proposed approach

Objective function

$$\min_{\{\mathbf{P}^{(n)}, \mathbf{Q}^{(m)}\}} \left\| \underline{\mathbf{X}} - \llbracket \underline{\mathbf{G}}; \mathbf{t}, \mathbf{P}^{(1)}, \dots, \mathbf{P}^{(N-1)} \rrbracket \right\|^2 + \left\| \underline{\mathbf{Y}} - \llbracket \underline{\mathbf{D}}; \mathbf{t}, \mathbf{Q}^{(1)}, \dots, \mathbf{Q}^{(M-1)} \rrbracket \right\|^2$$
s. t. $\{\mathbf{P}^{(n)T} \mathbf{P}^{(n)}\} = \mathbf{I}_{L_{n+1}}, \{\mathbf{Q}^{(m)T} \mathbf{Q}^{(m)}\} = \mathbf{I}_{K_{m+1}},$

Brain data Behavior data

Latent variable

Extension of PLS to higher-order tensor data - HOPLS

- Goal: to predict a tensor Y from a tensor X
- Approach: to extract the common latent variables

Properties:

- Flexible multilinear regression framework
- Projection on tensor subspace basis
- Efficient optimization algorithm using HOOI on the *n*-mode cross-covariance tensor

Key advantages

Small sample size

Robustness against overfitting and noise

Stability of the performance of HOPLS, NPLS and PLS for a varying number of latent vectors under different noise conditions

POSTER: W043