
Efficient Methods for Overlapping Group Lasso: Supplemental
Material

A. Properties of the Functionω(·) in (15)

Theorem 3. The functionω(Y ) is convex and continuously differentiable with

ω′(Y ) = −max(u− Y e,0)eT. (24)

In addition,ω′(Y ) is Lipschitz continuous with constantg2, i.e.,

‖ω′(Y1)− ω′(Y2)‖F ≤ g2‖Y1 − Y2‖F , ∀ Y1, Y2 ∈ R
p×g. (25)

To prove Theorem 3, we first present two technical lemmas. Thefirst lemma is related to the optimal
value function [4, 9], and it was used in a recent study [27] oninfinite kernel learning.

Lemma 4. [4] Let X be a metric space andU be a normed space. Suppose that for allx ∈ X,
the functionψ(x, ·) is differentiable and thatψ(x, Y ) andDY ψ(x, Y ) (the partial derivative of
ψ(x, Y ) with respect toY ) are continuous onX × U . LetΦ be a compact subset ofX. Define the
optimal value function asϕ(Y ) = infx∈Φ ψ(x, Y ). The optimal value functionϕ(Y ) is directionally
differentiable. In addition, if∀Y ∈ U , ψ(·, Y ) has a unique minimizerx(Y ) overΦ, thenϕ(Y ) is
differentiable atY and the gradient ofϕ(Y ) is given byϕ′(Y ) = DY ψ(x(Y ), Y ).

The second lemma shows that the operatory = max(x,0) is non-expansive.

Lemma 5. ∀x,y ∈ R
p, we have‖max(x,0)−max(y,0)‖ ≤ ‖x− y‖.

Proof. The results follows since|max(x, 0)−max(y, 0)| ≤ |x− y|, ∀x, y ∈ R.

Proof of Theorem 3: To prove the differentiability ofω(Y ), we apply Lemma 4 withX = R
p,

U = R
p×g andΦ = {x ∈ X : u + λ2

∑

wie ≥ x ≥ 0}. It is easy to verify that 1)ψ(x, ·) is
differentiable; 2)ψ(x, Y ) andDY ψ(x, Y ) = xeT are continuous onX × U ; 3) Φ be a compact
subset ofX; and 4)∀Y ∈ U ,ψ(x, Y ) has a unique minimizerx(Y ) = max(u−Y e,0) overΦ. Note
that, the last result follows fromu > 0 andu − Y e ≤ u + λ2

∑

wie, where the latter inequality
utilizes ‖Y i‖ ≤ λ2wi; and this indicates thatx(Y ) = max(u − Y e,0) = argminx ψ(x, Y ) =
argminx∈Φ ψ(x, Y ). It follows from Lemma 4 that

ϕ(Y ) = inf
x∈Φ

ψ(x, Y ) = ψ(max(u− Y e,0), Y )

is differentiable withϕ′(Y ) = max(u− Y e,0)eT.

In (13), ψ(x, Y ) is convex inx and concave inY , and the constraint sets are closed convex for
bothx andY , thus the existence of the saddle point is guaranteed by the well-known von Neumann
Lemma [21]. As a result,

ϕ(Y ) = inf
x∈Φ

ψ(x, Y ) = ψ(max(u− Y e,0), Y )

is concave, andω(Y ) = −ϕ(Y ) is convex. For anyY1, Y2, we have

‖ω′(Y1)− ω′(Y2)‖F
=‖max(u− Y1e,0)e

T −max(u− Y2e,0)e
T‖F

≤‖e‖ × ‖max(u− Y1e,0)−max(u− Y2e,0)‖
≤‖e‖ × ‖(Y1 − Y2)e‖
≤g2‖Y1 − Y2‖F ,

(26)

where the second inequality follows from Lemma 5. We prove (25). �
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B. Dykstra-like Proximal Splitting Method for Computing the P roximal
Operator in (5)

In the field of signal processing, one classical problem is theconvex feasibility problem:

find x ∈
m
⋂

i=1

Ci, (27)

whereCi’s are convex sets. Efficient methods have been designed for (27) where at each itera-
tion, only one convex set is considered and the solution is updated iteratively by cycling through
all convex sets. Under certain conditions, convergence is guaranteed. For our problem, since (5)
can be considered as the projection of a vectoru onto a collection of convex sets induced by the
regularization componentswi‖xGi

‖, the proximal splitting ideas can be applied.

We definefi = λ‖xGi
‖, the proximal operator in (5) can be rewritten as:

min
x∈Rp

1

2
‖x− u‖2 +

g
∑

i=1

wifi (28)

Then, the Dykstra-like proximal algorithm can be summarized in Algorithm 2.

Algorithm 2 Dykstra-like Proximal Splitting Method
1: Setx0 = u, q1,0, . . . ,qg,0 = x0, n = 0
2: repeat
3: for i = 1, . . . , g do
4: pi,n = proxfiqi,n

5: end for
6: xn+1 =

∑g
i=1 wipi,n

7: for i = 1, . . . , g do
8: qi,n+1 = xn+1 + qi,n − pi,n

9: end for
10: n = n+ 1
11: until Convergence

The last piece of puzzle in Algorithm 2 is to solvep = proxfiq, defined as:

p = arg min
x∈Rp

1

2
‖x− q‖2 + λ‖xGi

‖

Clearly, we havepGi
= qGi

. For index setGi, a close form solution is known to exist:

pGi
=

max(‖qGi
‖ − λ, 0)

‖qGi
‖ qGi

.

Thus, at each iteration, we have a closed-form solution.

C. Alternating Direction Method of Multipliers for Computing the Proximal
Operator in (5)

Besides splitting the proximal operators, we can also bypass the difficulty brought by overlapping
groups by introducing auxiliary variables, and reformulate (5) as:

min
x,z

1

2
‖x− u‖2 + λ

g
∑

i=1

wi‖zi‖

s.t. zi = xGi
, i = 1, . . . , g

(29)

We can therefore form the augmented Lagrangian as follows:

Lρ(x, z,y) =
1

2
‖x− u‖2 + λ

g
∑

i=1

wi‖zi‖+
g
∑

i=1

yT
i (zi − xGi

) + (ρ/2)

g
∑

i=1

‖zi − xGi
‖2.
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The Alternating Direction Method of Multipliers (ADMM) consists of the following iterations:

xk+1 := argmin
x
Lρ(x, z

k,yk)

zk+1 := argmin
z
Lρ(x

k+1, z,yk)

yk+1
i := yk

i + ρ(zk+1
i − xk+1

Gi
)

(30)

One nice property of ADMM is, each iterative step admits a closed-form solution. We define⊗ as
the point-wise product,⊙ as the point-wise division,e thep-dimensional vector with all ones, and
the indicator vector̃ei such that̃ei(j) = 1 if j ∈ Gi and 0 otherwise. We further definẽyi, z̃i ∈ R

p

such that̃yi(Gi) = yi, ỹi(G
C
i ) = 0 andz̃i(Gi) = zi, z̃i(G

C
i ) = 0. For updatingx, we have:

∂

∂x
Lρ(x, z

k,yk) = x− u−
g
∑

i=1

ỹk
i + ρ

(

g
∑

i=1

ẽi

)

⊗ x− ρ

(

g
∑

i=1

z̃ki

)

and therefore,

xk+1 =

(

u+

g
∑

i=1

ỹk
i + ρ

g
∑

i=1

z̃ki

)

⊙
(

e+ ρ

g
∑

i=1

ẽi

)

.

For updatingzi, we use the sub-differential method:z∗ is the optimal solution if and only if 0
belongs to the sub-differential set∂Lρ(x

k+1, z∗,yk). Decouple the problem with respect to groups,
we have:

0 ∈ zk+1
i − xk+1

Gi
+

1

ρ
yk
i +

λwi

ρ
∂‖zk+1

i ‖

where

∂‖zk+1
i ‖ =

{

z
k+1

i

‖zk+1

i
‖

‖zk+1
i ‖ 6= 0

{t|t ∈ R
|Gi|, ‖t‖ ≤ 1} ‖zk+1

i ‖ = 0.

Thus, we have:

zk+1
i =

max{‖x̃k+1
Gi

‖ − λ̃i, 0}
‖x̃k+1

Gi
‖

x̃k+1
Gi

where

x̃k+1
Gi

= xk+1
Gi

− 1

ρ
yk
i , λ̃i =

λwi

ρ
.

Optimality conditions and stopping criterion The KKT conditions for (29) are primal feasibility:

z∗i − x∗
Gi

= 0 (31)

and the dual feasibility:

0 = x∗ − u−
g
∑

i=1

ỹ∗
i

0 ∈ λwi∂‖z∗i ‖+ y∗
i

(32)

Sincezk+1 minimizesLρ(x
k+1, z,yk), we have

0 ∈ zk+1
i − xk+1

Gi
+

1

ρ
yk
i +

λwi

ρ
∂‖zk+1

i ‖

=
1

ρ
yk+1
i +

λwi

ρ
∂‖zk+1

i ‖

Therefore, the second condition in the dual feasibility is always satisfied, and the optimization comes
down to attaining the primal and the first dual feasibility.
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Defineri = zi−xGi
. We haveyk+1

i = yk
i +ρr

k+1. Sincexk+1 minimizesLρ(x, z
k,yk), we have

0 = xk+1 − u−
g
∑

i=1

ỹk
i + ρ

(

g
∑

i=1

ẽi

)

⊗ xk+1 − ρ

(

g
∑

i=1

z̃ki

)

= xk+1 − u−
g
∑

i=1

ỹk+1
i + ρ

(

g
∑

i=1

(z̃k+1
i − z̃ki )

)

or equivalently,

ρ

(

g
∑

i=1

(z̃ki − z̃k+1
i )

)

= xk+1 − u−
g
∑

i=1

ỹk+1
i .

This means that the quantity

sk+1 = ρ

(

g
∑

i=1

(z̃k+1
i − z̃ki )

)

can be viewed as the residual for the first dual feasibility. Paired with the primal residualrk+1, we
can terminate the algorithm by checking whether they are small enough.

D. Alternating Direction Method of Multipliers for Solving Ov erlapping
Group Lasso

Using the least squared loss and observing thatℓ1 norm is a special case of (2), we can rewrite the
overlapping group lasso problem (1) as:

min
x,z

1

2
‖Ax− u‖2 + λ

g
∑

i=1

wi‖zi‖

s.t. zi = xGi

We can therefore form the augmented Lagrangian as follows:

Lρ(Ax, z,y) =
1

2
‖Ax− u‖2 + λ

g
∑

i=1

wi‖zi‖+
g
∑

i=1

yT
i (zi − xGi

) + (ρ/2)

g
∑

i=1

‖zi − xGi
‖2

The Alternating Direction Method of Multipliers (ADMM) consists of the iterations:

xk+1 := argmin
x
Lρ(x, z

k,yk)

zk+1 := argmin
z
Lρ(x

k+1, z,yk)

yk+1
i := yk

i + ρ(zk+1
i − xk+1

Gi
)

We definee thep-dimensional vector with all ones, and the indicator vectorẽi such that̃ei(j) = 1
if j ∈ Gi and 0 otherwise. We further definẽyi, z̃i ∈ R

p such that̃yi(Gi) = yi, ỹi(G
C
i ) = 0 and

z̃i(Gi) = zi, z̃i(G
C
i ) = 0. For updatingx, we have:

∂

∂x
Lρ(x, z

k,yk) = ATAx−ATu−
g
∑

i=1

ỹk
i + ρ

(

g
∑

i=1

ẽi

)

⊗ x− ρ

(

g
∑

i=1

z̃ki

)

and therefore, the update forxk+1 involves solving the following linear system:

Ãx = b̃,

where

Ã = ATA+ diag

(

ρ

g
∑

i=1

ẽi

)

b̃ = ATu+

g
∑

i=1

ỹk
i + ρ

g
∑

i=1

z̃ki
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Please note that, for a given problem,Ã is fixed. Therefore, for moderate size problems, we can
save the Cholesky decomposition ofÃ such that the linear system can be solved very fast in each
iteration. For large (high dimensional) problems, the storage ofÃ might not be practical. However,
since we can calculatẽAx without having to calculatẽA, methods such as Preconditioned Conjugate
Gradient (PCG) or BB method can be applied.

For updatingzi, we use the sub-differential method:z∗ is the optimal solution if and only if 0
belongs to the sub-differential set∂Lρ(x

k+1, z∗,yk). Decouple the problem with respect to groups,
we have:

0 ∈ zk+1
i − xk+1

Gi
+

1

ρ
yk
i +

λwi

ρ
∂‖zk+1

i ‖

where

∂‖zk+1
i ‖ =

{

z
k+1

i

‖zk+1

i
‖

‖zk+1
i ‖ 6= 0

{t|t ∈ R
|Gi|, ‖t‖ ≤ 1} ‖zk+1

i ‖ = 0.

Thus, we have:

zk+1
i =

max{‖x̃k+1
Gi

‖ − λ̃i, 0}
‖x̃k+1

Gi
‖

x̃k+1
Gi

where

x̃k+1
Gi

= xk+1
Gi

− 1

ρ
yk
i , λ̃i =

λwi

ρ
.

E. Additional Experiments

To illustrate the scalability of our proposed method, we also evaluate our method using numbers (p)
of genes larger than 2000. The results are summarized in Table 2.

Table 2: Scalability study of the proposed FoGLasso algorithm under different numbers (p) of genes
involved. The reported results are the total computationaltime (seconds) including all nine regular-
ization parameter values.

p 3000 4000 5000 6000 7000 8141
pathways 37.6 48.3 62.5 68.7 86.2 99.7
edges 58.8 84.8 102.7 140.8 173.3 247.8
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