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Abstract

Support vector machines (SVM) are increasingly used in brain image analyses
since they allow capturing complex multivariate relationships in the data. More-
over, when the kernel is linear, SVMs can be used to localize spatial patterns
of discrimination between two groups of subjects. However, the features’ spa-
tial distribution is not taken into account. As a consequence, the optimal margin
hyperplane is often scattered and lacks spatial coherence, making its anatomical
interpretation difficult. This paper introduces a framework to spatially regularize
SVM for brain image analysis. We show that Laplacian regularization provides a
flexible framework to integrate various types of constraints and can be applied to
both cortical surfaces and 3D brain images. The proposed framework is applied
to the classification of MR images based on gray matter concentration maps and
cortical thickness measures from 30 patients with Alzheimer’s disease and 30 el-
derly controls. The results demonstrate that the proposed method enables natural
spatial and anatomical regularization of the classifier.

1 Introduction

Brain image analyses have widely relied on univariate voxel-wise analyses, such as voxel-based
morphometry (VBM) for structural MRI [1]. In such analyses, brain images are first spatially reg-
istered to a common stereotaxic space, and then mass univariate statistical tests are performed in
each voxel to detect significant group differences. However, the sensitivity of theses approaches
is limited when the differences are spatially complex and involve a combination of different vox-
els or brain structures [2]. Recently, there has been a growing interest in support vector machines
(SVM) methods [3, 4] to overcome the limits of these univariate analyses. Theses approaches allow
capturing complex multivariate relationships in the data and have been successfully applied to the
individual classification of a variety of neurological conditions [5, 6, 7, 8]. Moreover, the output of
the SVM can also be analyzed to localize spatial patterns of discrimination, for example by drawing
the coefficients of the optimal margin hyperplane (OMH) — which, in the case of a linear SVM, live
in the same space as the MRI data [7, 8]. However, one of the problems with analyzing directly
the OMH coefficients is that the corresponding maps are scattered and lack spatial coherence. This
makes it difficult to give a meaningful interpretation of the maps, for example to localize the brain
regions altered by a given pathology.

In this paper, we address this issue by proposing a framework to introduce spatial consistency into
SVMs by using regularization operators. Section 2 provides some background information on SVMs



and regularization operators. We then show that the regularization operator framework provides a
flexible approach to model different types of proximity (section 3). Section 4 presents the first type
of regularization, which models spatial proximity, i.e. two features are close if they are spatially
close. We then present in section 5 a more complex type of constraint, called anatomical proxim-
ity. In the latter case, two features are considered close if they belong to the same brain network;
for instance two voxels are close if they belong to the same anatomical or functional region or if
they are anatomically or functionally connected (based on fMRI networks or white matter tracts).
Finally, in section 6, the proposed framework is illustrated on the analysis of MR images using gray
matter concentration maps and cortical thickness measures from 30 patients with AD and 30 elderly
controls from the ADNI database (www.adni-info.org).

2 Priorsin SVM

In this section, we first describe the neuroimaging data that we consider in this paper. Then, after
some background on SVMs and on how to add prior knowledge in SVMs, we describe the frame-
work of regularization operators.

2.1 Brain imaging data

In this contribution, we consider any feature computed either at each voxel of a 3D brain image
or at any vertex of the cortical surface. Typically, for anatomical studies, the features could be
tissue concentration maps such as gray matter (GM) or white matter (WM) for the 3D case or
cortical thickness maps for the surface case. The proposed methods are also applicable to functional
or diffusion weighted MRI. We further assume that 3D images or cortical surfaces were spatially
normalized to a common stereotaxic space (e.g. [9]) as in many group studies or classification
methods [5, 6, 7, 8, 10].

Let V be the domain of the 3D images or surfaces. v will denote an element of V (i.e. a voxel or a
vertex). Thus, X = RY, together with the canonical dot product will be the input space.

Let x; € X be the data of a given subject s. In the case of 3D images, x,; can be considered in two
different ways: (i) as an element of R? where d denotes the number of voxels, (i4) as a real-valued
function defined on a compact subset of R3. Both finite and continuous viewpoints will be studied in
this paper because they allow different types of regularization. Similarly, in the surface case, x; can
be viewed either as an element of R? where d denotes the number of vertices or as a real-valued
function on a 2-dimensional compact Riemannian manifold.

We consider a group of N subjects with their corresponding data (x), en,N) € XN Each subject
is associated with a group (ys), en,n] € {—1,1}" (typically his diagnosis, i.e. diseased or healthy).

2.2 Linear SVM

The linear SVM solves the following optimization problem [3, 4, 11]:

N
(wOP b%PY) = argmin > lhinge (s [(W,xs) + b)) + A || w || )

weX beR S5

where A € R is the regularization parameter and lyinge the hinge loss function defined as:
lhinge tu € R — maX(O, 1-— u)

With a linear SVM, the feature space is the same as the input space. Thus, when the input features
are the voxels of a 3D image, each element of woP* = (wSP'),cy also corresponds to a voxel.
Similarly, for the surface-based methods, the elements of w°P' can be represented on the vertices
of the cortical surface. To be anatomically consistent, if v(1) € V and v(®) € V are close according

to the topology of V, their weights in the SVM classifier, wf}f’lt) and wa’;) respectively, should be

similar. In other words, if v") and v(®) correpond to two neighboring regions, they should have a
similar role in the classifier function. However, this is not guaranteed with the standard linear SVM
(as for example in [7]) because the regularization term is not a spatial regularization. The aim of
the present paper is to propose methods to ensure that w°P* is spatially regularized.



2.3 How to include priors in SVM

To spatially regularize the SVM, one has to include some prior knowledge on the proximity of
features. In the literature, three main ways have been considered in order to include priors in SVMs.

In an SVM, all the information used for classification is encoded in the kernel. Hence, the first way
to include prior is to directly design the kernel function [4]. But this implies knowing a metric on
the input space X consistent with the prior knowledge.

Another way is to force the classifier function to be locally invariant to some transformations. This
can be done: (i) by directly engineering a kernel which leads to locally invariant SVM, (ii) by
generating artificially transformed examples from the training set to create virtual support vectors
(virtual SV), (4i7) by using a combination of both these approaches called kernel jittering [12, 13,
14]. But the main difficulty here is how to define the transformations to which we would like the
kernel to be invariant.

The last way is to consider SVM from the regularization viewpoint [15, 4]. The idea is to force the
classifier function to be smooth with respect to some criteria. This is the viewpoint which is adopted
in this paper.

2.4 Regularization operators

Our aim is to introduce a spatial regularization on the classifier function of the SVM which can be
written as sgn (f(x;) + b) where f € R¥. This is done through the definition of a regularization
operator P on f. Following [15, 4], P is defined as a linear map from a space 7 C R into a dot
product space (D, (-, }p).

G : X x X — Ris a Green’s function of a regularization operator P iff:
VfeF, vxeX, f(x)=(P(G(x,), P(f))p 2

If P admits at least a Green’s function called G, then G is a positive semi-definite kernel and the
minimization problem:

N
(foP,0°PY) = argmin’>_ lhinge (s [f (%) + ) + A || P(f) |1, 3)
fEFLER

is equivalent to the SVM minimization problem with kernel G.

Since in linear SVM, the feature space is the input space, f lies in the input space. Therefore, the
optimisation problem (3) is very convenient to include spatial regularization on f via the definition of
P. Note that, usually, F is a Reproducing Kernel Hilbert Space (RKHS) with kernel K and D = F.

Hence, if P is bounded, injective and compact, P admits a Green’s function G = (PJr P)_lK where
PT denotes the adjoint of P.

One has to define the regularization operator P so as to obtain the suitable regularization for the
problem.

3 Laplacian regularization

Spatial regularization requires the notion of proximity between elements of V. This can be done
through the definition of a graph in the discrete case or a metric in the continuous case. In this sec-
tion, we propose spatial regularizations based on the Laplacian for both of these proximity models.
This penalizes the high-frequency components with respect to the topology of V.

3.1 Graphs

When V is finite, weighted graphs are a natural framework to take spatial information into consid-
eration. Voxels of a brain image can be considered as nodes of a graph which models the voxels’
proximity. This graph can be the voxel connectivity (6, 18 or 26) or a more sophisticated graph.

We chose the following regularization operator:

P:w' e F=LRR)~ (Hw) eF )



where L denotes the graph Laplacian [16] and w* the dual vector of w. ( controls the size of the
regularization. The optimization problem then becomes:
N

(WPt b°PY) = arg min Zlhingc (ys [(w,x5) +b]) + A || e2 lw % 3)
weX beR 7

Such a regularization exponentially penalizes the high-frequency components and thus forces the
classifier to consider as similar voxels highly connected according to the graph adjacency matrix.
According to the previous section, this new minimization problem (5) is equivalent to an SVM
optimization problem. The new kernel K is given by:
Kj(x1,%x2) = xFe Plx, (6)
This is a heat or diffusion kernel on a graph. Our approach differs from the diffusion kernels intro-
duced by Kondor et al. [17] because the nodes of the graph are the features, here the voxels, whereas
in [17], the nodes were the objects to classify. Laplacian regularization was also used in satellite
imaging [18] but, again, the nodes were the objects to classify. Our approach can also be considered
as a spectral regularization on the graph [19]. To our knowledge, such spectral regularization has
not been applied to brain images but only to the classification of microarray data [20].

3.2 Compact Riemannian manifolds

In this paper, when V is continuous, it can be considered as a 2-dimensional (e.g. surfaces) or a
3-dimensional (e.g. 3D Euclidean or more complex) compact Riemannian manifold. The metric
then models the notion of proximity. On such spaces, the heat kernel exists [21, 22]. Therefore, the
Laplacian regularization presented in the previous paragraph can be extended to compact Rieman-
nian manifolds [22]. Similarly to the graphs, we chose the following regularization operator:

P: w*e F=L(R",R) — (éﬁﬁw)* e F 7

where A denotes the Laplace-Beltramin operator. The optimization problem is also equivalent to
an SVM optimization problem with kernel K5 (x1,X2) = x7 e~#2x,. Note the difference between
our approach and that of Laferty and Lebanon [22]. In our case, the points of the manifolds are the
features, whereas in [22], they were the objects to classify.

In sections 4 and 5, we present different types of proximity models which correspond to different
types of graphs or distances.

4 Spatial proximity

In this section, we consider the case of regularization based on spatial proximity, i.e. two voxels (or
vertices) are close if they are spatially close.

4.1 The 3D case

When V are the image voxels (discrete case), the simplest option to encode the spatial proximity
is to use the image connectivity (e.g. 6-connectivity) as a regularization graph. Similarly, when V
is a compact subset of R? (continuous case), the proximity is encoded by a Euclidean distance. In
both cases, this is equivalent to pre-process the data with a Gaussian smoothing kernel with standard
deviation o = /B [17].

However, smoothing the data with a Gaussian kernel would mix gray matter (GM), white mat-
ter (WM) and cerebrospinal fluid (CSF). Instead, we propose a graph which takes into considera-
tion both the spatial localization and the tissue types. Based on tissue probability maps, in each
voxel v, we have the set of probabilities p,, that this voxel belongs to GM, WM or CSF. We con-
sidered the following graph. Two voxels are connected if and only if they are neighbors in the
image (6-connectivity). The weight a, , of the edge between two connected voxels u and v is

2 2
Ay = e~ I (Pure)™/(207)  \where dy: is the x2-distance between two distributions. We chose
beforehand o equal to the standard deviation of d,2 (., pv).

To compute the kernel, we computed e ~#Lx, for each subject s in the training set by scaling the
Laplacian and using the Taylor series expansion.



4.2 The surface case

The connectivity graph is not directly applicable to surfaces. Indeed, the regularization would then
strongly depend on the mesh used to discretize the surface. This shortcoming can be overcome
by reweighing the graph with conformal weights. In this paper, we chose a different approach by
adopting the continuous viewpoint: we consider the cortical surface as a 2-dimensional Riemannian
manifold and use the regularization operator defined by equation (7). Indeed, the Laplacian is an
intrinsic operator and does not depend on the chosen surface parameterization. The heat kernel has
already been used for cortical smoothing for example in [23, 24, 25, 26]. We will therefore not detail
this part. We used the implementation described in [26].

5 Anatomical proximity

In this section, we consider a different type of proximity, which we call anatomical proximity. Two
voxels are considered close if they belong to the same brain network. For example, two voxels
can be close if they belong to the same anatomical or functional region (defined for example by
a probabilistic atlas). This can be seen as a “short-range” connectivity. Another example is that
of “long-range” proximity which models the fact that distant voxels can be anatomically (through
white matter tracts) or functionally connected (based on fMRI networks).

We first focus on the discrete case. The presented framework can be used either for 3D images or
surfaces and computed very efficiently. However, such an efficient implementation was obtained at
the cost of the spatial proximity. Therefore, we then show a continuous formulation which enables
to consider both spatial and anatomical proximity.

5.1 On graphs: atlas and connectivity

Let (Ay,- -, Ar) be the R regions of interest (ROI) of an atlas and p(v € A,) the probabil-
ity that the voxel v belongs to region A,. Then the probability that two voxels v(Y) and v(7)
belong to the same region is: Zilp (v, o)) € A%). We assume that if v # v\ then:
p((v@,09)) € A2) = p (v € A,) p (v € A4,). Let E € R¥F be the right stochastic matrix
defined by: E;,, = p (v € A,). Then, fori # j, the (4, j)-th entry of the adjacency matrix EE*
is the probability that the voxels v(*) and v() belong to the same regions.

For “long-range* connections (structural or functional), one can consider an R-by-R matrix C' with
the (r1,72)-th entry being the probability that A,, and A,, are connected. Then the adjacency
matrix becomes: ECE?. We considered the normalized Laplacian L [16], to be sure that the two
terms commute:

L=I,-D :ECE'D? (8)

where D is a diagonal matrix. Hence, if CE'D~'FE is not singular, we have:
e Pl = =P [Id + D 3E(CEPTE ) (CE'D'E) '\CE'D" 3 9)

The computation requires only the computation of D~z which is done efficiently since D is a
diagonal matrix, and the computation of inverse and the matrix exponential of an R-by-R matrix,
which is also efficient since R ~ 102.

This method can be directly applied to both 3D images and cortical surfaces. Unfortunately, the
efficient implementation was obtained at the cost of the spatial proximity. The next section presents
a combination of anatomical and spatial proximity using the continuous viewpoint.

5.2 On statistical manifolds

In this section, the goal is to take into account various prior informations such as tissue information,
atlas information and spatial proximity. We first show that this can be done by considering the
images or surfaces as statistical manifolds together with the Fisher metric. We then give some
details about the computation of the kernel.



Fisher metric We assume that we are given an anatomical or a functional atlas A composed of
R regions: {A,},_,. p. Similarly, T = {7gwm, Twwm, Tcsr } denotes the set of brain tissues. In
each point v € V, we have a probability distribution pag1as(-|v) € RZ*A which informs about the
tissue type and the atlas region in v. Without any loss of generality, one can assume that the tis-
sue information is encoded in the atlas. Therefore, we consider the probability patias(-|v) € RA,
We also consider a probability distribution pjc(-|v) € RY which encodes the spatial proxim-
ity. A simple example is pioc(-|v) ~ N(v,02 ). Therefore, we consider the probability family:

M = {p("l)) S R'AXV}UE\; where p(|”) = patlas('|v)ploc('|v)-

A natural way to encode proximity on M is to use the Fisher metric as in [22]. With some smooth-
ness assumption about p, M together with this metric is a compact Riemannian manifold [27]. For
clarity, we present this framework only for 3D images but it could be applied to cortical surfaces
with minor changes. The metric tensor g is then given for all v € V by:

o) =y [LEAILII) o
7 J

If we further assume that pj.(-|v) is isotropic we have:

d10g proc (ufv) \ ?
9ij(v) = g™ (v) +5ij/ Proc(ulv) (8OC> du (11)
uey VU

atlas

where d;; is the Kronecker delta and ¢ is the metric tensor when p(:|v) = Patias(-|v). When

atlas 044
Ploc(-[v) ~ N (v, 0} I3), we have: g;;(v) = gf}l"‘b(v) + a;j )
loc

Computing the kernel Once the notion of proximity is defined, one has to compute the kernel
matrix. The computation of the kernel matrix requires the computation of e =% x, for all the subjects
of the training set. The eigendecomposition of the Laplace-Beltrami operator is intractable since the
number of voxels in a brain images is about 10°. Hence e~#2x, is considered as the solution at
t = 3 of the heat equation with the Dirichlet homogeneous boundary conditions:

U _Au=0
at
{ ult = 0) = x, (12)
1 ° 0 > ou
The Laplace-Beltrami operator is given by [21]: Au = Jdotg Z Do- Z hij+/det gf
etg = 0v; \i v;

where h is the inverse tensor of g.

To solve equation (12), one can use a variational approach [28]. We used the rectangular finite
elements in space and the explicit finite difference scheme for the time discretization. A, and A
denote the space step and the time step respectively. A, is fixed by the MRI spatial resolution. A
is then chosen so as to respect the Courant-Friedrichs-Lewy (CFL) condition, which can be written
in this case as: A; < 2(max\;)~!, where ); are the eigenvalues of the general eigenproblem:
KU = AMU with K the stiffness matrix and M the mass matrix. To compute the optimal time
step A, we estimated the largest eigenvalue with the power iteration method.

6 Experiments and results

6.1 Material

Subjects and MRI acquisition Data were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database '. The Principal Investigator of this initiative is Michael W. Weiner,
M.D., VA Medical Center and University of California - San Francisco.For up-to-date information
see www.adni-info.org. We studied 30 patients with probable AD (age+ standard-deviation (SD) =
74+4, range = 60-80 years, mini-mental score (MMS) = 23+ 2) and 30 elderly controls (age+ SD =
73+£4, range = 60-80, MMS = 29+1) which were selected from the ADNI database according to the

'www.loni.ucla.edu/ADNI



following criteria. Subjects were excluded if their scan revealed major artifacts or gross structural
abnormalities of the white matter, for it makes the tissue segmentation step fail. 80-year-old subjects
or older were also excluded. The MR scans are T1-weighted MR images. MRI acquisition was done
according to the ADNI acquisition protocol in [29].

Features extraction For the 3D image analyses, all T1-weighted MR images were segmented into
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using the SPM5 (Statistical
Parametric Mapping, London, UK) unified segmentation routine [30] and spatially normalized with
DARTEL [9]. The features are the GM probability maps in the MNI space. For the surface-based
analyses, the features are the cortical thickness values at each vertex of the cortical surface. Cortical
thickness measures were performed with Freesurfer (Massachusetts General Hospital, Boston, MA).

6.2 Proposed experiments

As an illustration of the method, we present the results of the AD versus controls analysis. We
present the maps associated to the optimal margin hyperplane (OMH). The classification function
obtained with a linear SVM is the sign of the inner product of the features with w°Pt, a vector
orthogonal to the OMH [3, 4]. Therefore, if the absolute value of the i*" component of w°P*, \wfpt

is small compared to the other components (|w?pt\) ji» the i*" feature will have a small influence

[l

on the classification. Conversely, if |w;;’pt| is relatively large, the i*" feature will play an important
role in the classifier. Thus the optimal weights wPt allow us to evaluate the anatomical consistency
of the classifier. In all experiments, the C' parameter of the SVM was fixed to one (A = ﬁ [4D.

6.3 Results: spatial proximity

In this section, we present the results for the spatial proximity in the 3D case (method presented in
section 4.1). Due to space limitations, the surface case is not presented. Fig. 1(a) presents the OMH
when no spatial regularization is performed. Fig. 1(b) shows the results with spatial proximity but
without tissue probability maps. w becomes smoother and spatially consistent. However it mixes
tissues and does not respect the topology of the cortex. For instance, it mixes tissues of the temporal
lobe with tissues of the frontal and parietal lobes. The results with both spatial proximity and tissue
maps are shown on Fig. 1(c). The OMH is much more consistent with the brain anatomy. 3 controls
the size of the spatial regularization and was chosen to be equivalent to a 4mm-FWHM of the
Gaussian smoothing. The classification accuracy was estimated by a leave-one-out cross validation.
The classifiers were able to distinguish AD from CN with similar accuracies (83% with no spatial
priors and 85% with spatial priors).

6.4 Results: anatomical proximity

In this section, we present the results for the anatomical proximity. We first present the discrete
surface case. The discrete 3D case leads to comparable results but is omitted here due to space
limitations. We then present the continuous 3D case. Extension to surfaces is left for future work.

Discrete case For the discrete case, we used “short-range* proximity, defined by the cortical atlas
of Desikan et al. [31] with binary probabilities. We tested different values for 5 = 0,1,--- 5.
The accuracies ranged between 80% and 85%. The highest accuracy was reached for 3 = 3. The
optimal SVM weights w are shown on Fig. 2. When no regularization has been carried out, they
are noisy and scattered (Fig. 2 (a)). When the amount of regularization is increased, voxels of a
same region tend to be considered as similar by the classifier (Fig. 2(b-d)). Note how the anatomical
coherence of the OMH varies with 5.

Continuous case We then present the results of the 3D continuous case (section 5.2). The atlas
information used was only the tissue types. We chose 01, = 10mm for the spatial confidency.
(3 was chosen to be equivalent to a 4mm-FWHM of the Gaussian smoothing. The classifier reached
87% accuracy. The optimal SVM weights w are shown on Fig. 1(d). The tissue knowledge enables
the classifier to be more consistent with the anatomy. For instance, note the difference with the
Gaussian smoothing (Fig. 1(b)) and how the proposed method avoids mixing the temporal lobe with
the parietal and frontal lobes.



(a) (b) (©) (d)

Figure 1: Normalized w coefficients: (a) no spatial prior, (b) spatial proximity: FWHM=4mm, (c) spatial
proximity and tissues: FWHM~4mm, (d) Fisher metric using tissue maps.

(b) (d)

Figure 2: Normalized w of the left hemisphere when the SVM is regularized with a cortical atlas [31]:

(@) 8 =0 (no prior), (b) 5 =1, (c) = 2,(d) B = 3.

7 Discussion

In this contribution, we proposed to use regularization operators to add spatial consistency to SVMs
for brain image analysis. We show that this provides a flexible approach to model different types of
proximity between the features. We proposed derivations for both 3D image features, such as tissue
maps, or surface characteristics, such as cortical thickness. We considered two different types of
formulations: a discrete viewpoint in which the proximity is encoded via a graph, and a continuous
viewpoint in which the data lies on a Riemannian manifold. In particular, the latter viewpoint is
useful for surface cases because it overcomes problems due to surface parameterization. This paper
introduced two different types of proximity. We first considered the case of regularization based on
spatial proximity, which results in spatially consistent OMH making their anatomical interpretation
more meaningful. We then considered a different type of proximity which allows modeling higher-
level knowledge, which we call anatomical proximity. In this model, two voxels are considered close
if they belong to the same brain network. For example, two voxels can be close if they belong to the
same anatomical region. This can be seen as a “short-range” connectivity. Another example is that
of “long-range” proximity which models the fact that distant voxels can be anatomically connected,
through white matter tracts, or functionally connected, based on fMRI networks.

Preliminary evaluation was performed on 30 patients with AD and 30 age-matched controls. The
results demonstrate that the proposed approaches allow obtaining spatially and anatomically coher-
ent discrimination patterns. In particular, the obtained hyperplanes are largely consistent with the
neuropathology of AD, with highly discriminant features in the medial temporal lobe, as well as
lateral temporal, parietal associative and frontal areas. As for the classification results, they were
comparable to those reported in the literature for AD classification (e.g. [5, 8, 7]). The use of regu-
larization did not substantially improve the accuracy. However, the most important point is that the
proposed approach makes the results more consistent with the anatomy, making their interpretation
more meaningful.

Finally, it should be noted that the proposed approach is not specific to structural MRI, and can be
applied to other pathologies and other types of data (e.g. functional or diffusion-weighted MRI).
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