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Abstract

We present results from our experiments that we could not include in the main
paper [2].

1 Experimental Evaluation

We compare the timing performance of MF-LRSDP, OptSpace, alternation and damped Newton for
various synthetic and real experiments.

1.1 Evaluation with Synthetic Data

Exact Factorization: vary size. Figure shows the time (in seconds, log-scale) that MF-LRSDP
and OptSpace takes for factorization of rank 5 matrices of different sizes n. Clearly, MF-LRSDP is
more efficient.
Exact Factorization: vary rank. Figure shows the time (in seconds, log-scale) that MF-LRSDP
and OptSpace takes for factorization of 500× 500 matrices of different ranks r. Again, MF-LRSDP
takes lesser time for reconstruction.
Noisy Factorization: vary noise standard deviation. We vary the standard deviation σ of the
additive noise for rank 5, 200 × 200 matrices and study the timing performance by MF-LRSDP,
OptSpace, alternation and damped Newton. MF-LRSDP takes more time than OptSpace because
the noise terms are treated as variables in MF-LRSDP. This might seem like a disadvantage, but it
also makes MF-LRSDP more flexible as we can, potentially, minimize the L1 norm of noise instead
of the L2 norm within the same framework.
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(a) Time vs. |Ω|/n for different
sizes
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(b) Time vs. |Ω|/n for different
ranks
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Figure 1: (a) Time (in seconds, log scale) taken for reconstruction vs. |Ω|/n for rank 5 square matrices of
different sizes n by MF-LRSDP and OptSpace. MF-LRSDP takes less time. (b) Time (in seconds, log scale)
taken for reconstruction vs. |Ω|/n for 500 × 500 matrices of different ranks by MF-LRSDP and OptSpace.
Again, MF-LRSDP is more efficient. (c) Time (in seconds, log scale) taken for reconstruction vs. noise standard
deviation for rank 5, 200 × 200 matrices by MF-LRSDP, OptSpace, alternation and damped Newton.

MF-LRSDP Alternation Damped Newton OptSpace
Dinosaur 35.5 29.3 8.2 1.4

Longer Dinosaur 91.8 145.6 39.0561 5.3376
Giraffe 120.1 55.4 1395.9 9.7
Face 46.5 122.6 33.1 8.2

Table 1: Average time (in seconds) taken for reconstruction of the four real sequences. OptSpace takes the
least time but its reconstruction results are poor. Other algorithms give comparable results except for the
Giraffe sequence where the damped Newton takes a long time to converge. This is because damped Newton is
not efficient for ( moderate-sized) square matrices.

1.2 Evaluation with Real Data

Affine SfM. We test the performance of MF-LRSDP, alternation, damped Newton and OptSpace on
a ’longer Dinosaur’ 1 sequence for which M is a 72× 1441 matrix. Figure 2 shows the cumulative
histogram (of 25 trials) over the RMS pixel error. MF-LRSDP gives the best performance followed
by damped Newton, alternation and OptSpace.
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Figure 2: Cumulative histogram (of 25 trials) for the longer Dinosaur sequence. MF-LRSDP gives the best
performance followed by damped Newton, alternation and OptSpace.

Timing Evaluations of Real Data. Table 1 shows the average time taken by the algorithms on the
different sequences. We note that OptSpace is the most efficient algorithm, but it’s poor accuracy
makes it unsuitable for our problems. Other algorithms give comparable timing result except for the
Giraffe sequence where the damped Newton takes a long time to converge. This is because damped
Newton is not efficient for moderate-sized square matrices. On the other hand, it is quite efficient
for large tall or fat matrices (where either m or n is small) as can be seen for the face dataset, where
M is a 2944× 20 matrix. This can be attributed to it’s ’reduced’ implementation [1].

1http://www.robots.ox.ac.uk/ vgg/data/data-mview.html
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