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A Video Clips

Included in the supplemental archive is a sample of test results testset_samples.mp4:

e The cyan lines indicate the best of the top K = 4 hypotheses for the ensemble; the red lines
indicate the best of top K = 4 hypotheses for the single frame SC model.

o The point clouds show the top 150 unfiltered locations for each limb according to the en-
semble model.

e The video illustrates the significant qualitative increase in accuracy of the ensemble over
single-frame methods, eliminating the “jitter”” due to the lack of smoothing.

B Proof of Theorem 1

We prove the theorem by applying the following result from [1]:

Theorem 1 (Bartlett and Mendelson, 2002). Consider a loss function L and a dominating cost
function ¢ such that L(y,z) < ¢(y,x). Let F : X — A be a class of functions. Then for any
integer n and any 0 < § < 1, with probability 1 — 6 over samples of length n, every f in I satisfies

A ~ 81In(2/4§
BL(Y, (X)) < BaolY, (X)) + Ra(@ o F) + [ S0 <1>

where ¢ o F is a centered composition of ¢ with f € F, ¢ o f = oy, f(X)) — ¢(y,0).

Furthermore, there are absolute constants c and C such that for every class F and every integer n,

Let A=R™and I : X — A be a class of functions that is the direct sum of real-valued classes
Fy, ..., Fp,. Then, for every integer n and every sample (X1,Y1),...,(Xn, Yn),

Gn(poF) <2L>  Gu(F). 3)

i=1
Let F = {z— w'f(z,") | ||w||2 < B, ||f(x,")||]2 < 1}. Then,

Gn(F) < —=. “4)

SIS

"These authors have contributed equally.



Proving the theorem reduces to analyzing the Lipschitz constant of the dominating cost function,

Py, 0.) = Ty (113 Zep(x’ y) — tp(mva)> .

Let ¢p(y,0,) = 0,(z,y) — tp(zr, ). If we let 62 be a m-dimensional vector whose elements
correspond to the scores of every possible clique assignment given 6,,, then we can rewrite ¢, as the

following:

(bp(y» 95) = <y7 92> - t(fL‘, @),
where we consider y to be a binary m-dimensional vector that selects the active clique assignments
in the output y. We now make use of the following lemma from [2]:
Lemma 1 (Weiss & Taskar, 2010). Let 0, be a vector of clique assignment scores. Let g(0,) =
(y.62) — t(x, ). Then g(u) — g(v) < V20[u - v]le.
Lemma 2. ¢(y, -) is Lipschitz with constant \/2L.

Proof. By Lemma 1, we see that ¢, is Lipschitz with constant V/2(. Since ¢ is simply the average
of P such functions, the Lipschitz of ¢ must be V20 as well. O

Finally, to prove the theorem, we note that the loss function £(6, (X,Y) , «) can be represented as
a function in R™% space by contatenating the clique scoring vectors of each of the P individual
sub-models. Substituing m P for the dimensionality of the loss function (/m in Theorem 1) yields
the desired result.
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