
Sidestepping Intractable Inference
with Structured Ensemble Cascades

Supplementary Materials

David Weiss∗ Benjamin Sapp∗ Ben Taskar
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA

{djweiss,bensapp,taskar}@cis.upenn.edu

A Video Clips

Included in the supplemental archive is a sample of test results testset samples.mp4:

• The cyan lines indicate the best of the topK = 4 hypotheses for the ensemble; the red lines
indicate the best of top K = 4 hypotheses for the single frame SC model.

• The point clouds show the top 150 unfiltered locations for each limb according to the en-
semble model.

• The video illustrates the significant qualitative increase in accuracy of the ensemble over
single-frame methods, eliminating the “jitter” due to the lack of smoothing.

B Proof of Theorem 1

We prove the theorem by applying the following result from [1]:
Theorem 1 (Bartlett and Mendelson, 2002). Consider a loss function L and a dominating cost
function φ such that L(y, x) ≤ φ(y, x). Let F : X 7→ A be a class of functions. Then for any
integer n and any 0 < δ < 1, with probability 1− δ over samples of length n, every f in F satisfies

EL(Y, f(X)) ≤ Ênφ(Y, f(X)) +Rn(φ̃ ◦ F ) +
√

8 ln(2/δ)

n
, (1)

where φ̃ ◦ F is a centered composition of φ with f ∈ F , φ̃ ◦ f = φ(y, f(X))− φ(y, 0).
Furthermore, there are absolute constants c and C such that for every class F and every integer n,

cRn(F ) ≤ Gn(F ) ≤ C lnnRn(F ). (2)

Let A = Rm and F : X → A be a class of functions that is the direct sum of real-valued classes
F1, . . . , Fm. Then, for every integer n and every sample (X1, Y1), . . . , (Xn, Yn),

Ĝn(φ̃ ◦ F ) ≤ 2L

m∑
i=1

Ĝn(Fi). (3)

Let F = {x 7→ w>f(x, ·) | ||w||2 ≤ B, ||f(x, ·)||2 ≤ 1}. Then,

Ĝn(F ) ≤
2B√
n
. (4)
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Proving the theorem reduces to analyzing the Lipschitz constant of the dominating cost function,

φ(y, θx) = rγ

(
1

P

∑
p

θp(x, y)− tp(x, α)

)
.

Let φp(y, θp) = θp(x, y) − tp(x, α). If we let θpx be a m-dimensional vector whose elements
correspond to the scores of every possible clique assignment given θp, then we can rewrite φp as the
following:

φp(y, θ
p
x) = 〈y, θpx〉 − t(x, α),

where we consider y to be a binary m-dimensional vector that selects the active clique assignments
in the output y. We now make use of the following lemma from [2]:
Lemma 1 (Weiss & Taskar, 2010). Let θx be a vector of clique assignment scores. Let g(θx) =

〈y, θx〉 − t(x, α). Then g(u)− g(v) ≤
√
2`||u− v||2.

Lemma 2. φ(y, ·) is Lipschitz with constant
√
2`.

Proof. By Lemma 1, we see that φp is Lipschitz with constant
√
2`. Since φ is simply the average

of P such functions, the Lipschitz of φ must be
√
2` as well.

Finally, to prove the theorem, we note that the loss function L(θ, 〈X,Y 〉 , α) can be represented as
a function in RmP space by contatenating the clique scoring vectors of each of the P individual
sub-models. Substituing mP for the dimensionality of the loss function (m in Theorem 1) yields
the desired result.
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