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In order to prove Proposition 4.1 we first introduce two technical lemmas.
Lemma .5. For any subsetS ⊆ [p] the following decomposition holds,

Q̂SC ,S

(
Q̂S,S

)−1

= T1 + T2 + T3 +Q0
SC ,S

(
Q0

S,S

)−1
, (23)

where,

T1 = Q0
SC ,S

((
Q̂S,S

)−1

−
(
Q0

S,S

)−1
)
, (24)

T2 = (Q̂SC ,S −Q0
SC ,S)

(
Q0

S,S

)−1
, (25)

T3 = (Q̂SC ,S −Q0
SC ,S)

((
Q̂S,S

)−1

−
(
Q0

S,S

)−1
)
. (26)

(27)

In addition, if |||Q0
SC ,S

(
Q0

S,S

)−1 |||∞ < 1 andλmin(Q̂S,S) ≥ Cmin/2 > 0 the following relations
hold,

|||T1|||∞ ≤ 2
√
k

Cmin
|||Q̂S,S −Q0

S,S |||∞, (28)

|||T2|||∞ ≤
√
k

Cmin
|||Q̂SC ,S −Q0

SC ,S |||∞, (29)

|||T3|||∞ ≤ 2
√
k

C2
min

|||Q̂SC ,S −Q0
SC ,S |||∞|||Q̂S,S −Q0

S,S |||∞. (30)

The following lemma taken from the proofs of Proposition 1 in[19] and Proposition 1 in [12]
respectively is the crux to guaranteeing correct signed-support reconstruction ofA0

r.

Lemma .6. If Q̂S0,S0 > 0, then the dual vector̂z from the KKT conditions of the optimization
problem(8) satisfies the following inequality,

‖ẑ(S0)C‖∞ ≤ |||Q̂(S0)C ,S0

(
Q̂S0,S0

)−1

|||∞
(
1 +

‖ĜS0‖∞
λ

)
+

‖Ĝ(S0)C‖∞
λ

. (31)

In addition, if

‖ĜS0‖∞ ≤ Aminλmin(Q̂S0,S0)

2k
− λ (32)

then‖A0
r − Âr‖∞ ≤ Amin/2. The same result holds for problem(2).

Proof of Proposition 4.1: To guarantee that our estimated support is at least contained in the true
support we need to impose that‖ẑSC‖∞ < 1. To guarantee that we do not introduce extra elements
in estimating the support and also to determine the correct sign of the solution we need to impose that
‖A0

r−Âr‖∞ ≤ Amin/2. Now notice that sinceλmin(Q
0
S0,S0) = Cmin the relationλmin(Q̂S0,S0) ≥

Cmin/2 is guaranteed as long as|||Q̂S0,S0 −Q0
S0,S0 |||∞ ≤ Cmin/2. Using Lemma .5 it is easy to see

that the bounds of Proposition 4.1 lead to the conditions of Lemma .6 being verified. Thus, these
lead to a correct recovery of the signed structure ofA0

r.
Lemma .7. Let r, j ∈ [p] and letρ(τ) represent ap × p matrix with all rows equal to zero except
the rth row which equals thejth row of (I + ηA0)

τ
(the τ th power ofI + ηA0 ). Let R̃(j) ∈

R
(n+m+1)×(n+m+1) be defined as,

R̃ =




0 0 . . . 0 0 0 . . . 0 0
...

...
.. .

...
...

...
. ..

...
...

0 0 . . . 0 0 0 . . . 0 0
ρ(m) ρ(m− 1) . . . ρ(1) ρ(0) 0 . . . 0 0

ρ(m+ 1) ρ(m) . . . ρ(2) ρ(1) ρ(0) . . . 0 0
...

...
.. .

...
...

...
. .. 0 0

ρ(m+ n− 1) ρ(m+ n− 2) . . . ρ(n) ρ(n− 1) ρ(n− 2) . . . ρ(0) 0




. (33)
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DefineR(j) = 1/2(R̃ + R̃∗) and letνi denote itsith eigenvalue and assumeσmax ≡ σmax(I +
ηA0) < 1. Then,

p(n+m+1)∑

i=1

νi = 0, (34)

max
i

|νi| ≤
1

1− σmax
, (35)

p(n+m+1)∑

i=1

ν2i ≤ 1

2

n

1− σmax
. (36)

Proof. First it is immediate to see that
∑p(n+m+1)

i=1 νi = Tr(R) = 0. Let I1τ represent ap × p
matrix with zeros everywhere and ones in the block-positionwhereρ(τ) appears andI2τ represent
a similar matrix but with ones in the block-position whereρ(τ)∗ appears. ThenR can be written as,

R =
1

2

(
m+n−1∑

τ=0

I1τ ⊗ ρ(τ) + I2τ ⊗ ρ(τ)∗

)
, (37)

where⊗ denotes the Kronecker product of matrices. This expressioncan be used to compute an
upper bound on|νi|. Namely,

max
i

|νi| = σmax(R) ≤
∞∑

τ=0

σmax(I1τ ⊗ ρ(τ)) ≤
∞∑

τ=0

σmax(I1τ )σmax(ρ(τ)) (38)

≤
∞∑

τ=0

σmax(ρ(τ)) ≤
∞∑

τ=0

στ
max =

1

1− σmax(ϕ∗)
. (39)

For the other bound we do,

(n+m+1)p∑

i=1

ν2i = Tr(R2) ≤ 1

4
n 2

∞∑

τ=0

Tr(ρ(τ)ρ(τ)∗) (40)

=
1

2
n

∞∑

τ=0

‖ρ(τ)‖22 (41)

≤ 1

2
n

∞∑

τ=0

σ2τ
max ≤ 1

2

n

1− σmax
, (42)

where in the last step we used the fact that0 ≤ σmax < 1.

Lemma .8. Let j ∈ [p]. Defineρ(τ) ∈ R
1×p to be thejth row of (I + ηA0)τ . LetΦj ∈ R

n×(n+m)

be defined as,

Φj =




ρ(m) ρ(m− 1) . . . ρ(1) ρ(0) 0 . . . 0
ρ(m+ 1) ρ(m) . . . ρ(2) ρ(1) ρ(0) . . . 0

...
...

. . .
...

...
...

.. . 0
ρ(m+ n− 1) ρ(m+ n− 2) . . . ρ(n) ρ(n− 1) ρ(n− 2) . . . ρ(0)


 ,

(43)
Let νl denote thelth eigenvalue of the matrixR(i, j) = 1/2(Φ∗

jΦi + Φ∗
iΦj) ∈ R

(n+m)×(n+m)

(wherei ∈ [p]) and assumeσmax ≡ σmax(I + ηA0) < 1 then,

|νl| ≤
1

(1− σmax)2
, (44)

1

n

(n+m)p∑

l=1

ν2l ≤ 2

(1− σmax)3

(
1 +

3

2n

1

1− σmax

)
. (45)
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Proof. The first bound can be proved in a trivial manner. In fact, since for any matrixA andB we
haveσmax(A+B) ≤ σmax(A) + σmax(B) andσmax(AB) ≤ σmax(A)σmax(B) we can write

max
l

|νl| = σmax(1/2(Φ
∗
jΦi +Φ∗

iΦj)) ≤ 1/2(σmax(Φ
∗
jΦi) + σmax(Φ

∗
iΦj)) (46)

≤ σmax(Φ
∗
iΦj) ≤ σmax(Φi)σmax(Φj) ≤

1

(1− σmax)2
, (47)

where in the last inequality we used the factσmax(Φj) ≤ 1/(1 − σmax). The proof of this is just a
copy of the proof of the bound (35) in Lemma .7.

Before we prove the second bound let us introduce some notation to differentiateρ(τ) associated
with Φj from ρ(τ) associated withΦi. Let us call themρ(τ, j) andρ(τ, i) respectively. Now notice
thatΦ∗

iΦj can be written as a block matrix
(

Ã D̃

C̃ B̃

)
(48)

whereÃ, B̃, C̃ andD̃ are matrix blocks where each block is ap by p matrix. Ã hasp × p blocks,
B̃ hasn× n blocks,C̃ hasn×m blocks andD̃ hasm× n blocks. If we index the blocks of each
matrix with the indicesx, y these can be described in the following way

Ãxy =

m∑

s=1

ρ(m− x+ s, i)∗ρ(m− y + s, j) (49)

B̃xy =
n−x∑

s=0

ρ(s, i)∗ρ(s+ x− y, j), x ≥ y (50)

B̃xy =

n−y∑

s=0

ρ(s+ y − x, i)∗ρ(s, j), x ≤ y (51)

C̃xy =

n−x∑

s=0

ρ(s, i)∗ρ(m− y + x+ s, j) (52)

D̃xy =

n−y∑

s=0

ρ(m− x+ y + s, i)∗ρ(s, j). (53)

With this in mind and denoting byA,B,C andD the symmetrized versions of these same matrices
(e.g.:A = 1/2(Ã+ Ã∗)) we can write,

(n+m)p∑

l=1

ν2l = Tr(R(i, j)2) = Tr(A2) + Tr(B2) + 2Tr(CD). (54)

We now compute a bound for each one of the terms. We exemplify in detail the calculation of the
first bound only. First write,

Tr(A2) =
m∑

x=1

m∑

y=1

Tr(AxyA
∗
xy). (55)

Now notice that eachTr(AxyA
∗
xy) is a sum overτ1, τ2 ∈ [p] of terms of the type,

(ρ(m− x+ τ1, i)
∗ρ(m− y + τ1, j) + ρ(m− x+ τ1, j)

∗ρ(m− y + τ1, i))× (56)

×(ρ(m− y + τ2, j)
∗ρ(m− x+ τ2, i) + ρ(m− y + τ2, i)

∗ρ(m− x+ τ2, j)). (57)

The trace of a matrix of this type can be easily upper bounded by

(σmax)
m−x+τ1+m−y+τ1+m−y+τ2+m−x+τ2 = (σmax)

2(m−x)+2(m−y)+2τ1+2τ2 (58)

which finally leads to

Tr(A2) ≤ 1

(1− σmax)4
. (59)
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Doing a similar thing to the other terms leads to

Tr(B2) ≤
n,n∑

x,y

∑

τ1,τ2

σ2τ1+2τ2+2|x−y|
max ≤ 2n

(1− σmax)3
(60)

Tr(DC) =

m∑

x=1

n∑

y=1

Tr(CxyDyx) ≤
m,n,n−y,n−y∑

x,y,τ1,τ2

σ2(m−x)+2y+2τ1+2τ2
max ≤ 1

(1− σmax)4
. (61)

Putting all these together leads to the desired bound.

Proof of Proposition 4.2: We will start by proving that this exact same bound holds whenthe
probability of the event{‖ĜS‖∞ > ǫ} is computed with respect to a trajectory{x(t)}nt=0 that is
initiated at instantt = −m with the valuew(−m). In other words,x(−m) = w(−m). Assume
we have done so. Now notice that asm → ∞, X converges in distribution ton consecutive
samples from the model (6) when this is initiated from stationary state. Since‖ĜS‖∞ is a continuous
function ofX = [x(0), ..., x(n − 1)], by the Continuous Mapping Theorem,‖ĜS‖∞ converges
in distribution to the corresponding random variable in thecase when the trajectory{x(i)}ni=0 is
initiated from stationary state. Since the probability bound does not depend onm we have that this
same bound holds for stationary trajectories too.

We now prove our claim. Recall that̂Gj = (XjW
∗
r )/(nη). SinceX is a linear function of the in-

dependent gaussian random variablesW we can writeXjW
∗
r = ηz∗R(j)z, wherez ∈ R

p(n+m+1)

is a vector of i.i.d.N(0, 1) random variables andR(j) ∈ R
p(n+m+1)×p(n+m+1) is the symmetric

matrix defined in Lemma .7.

Now apply the standard Bernstein method. First by union bound we have

P
{
‖ĜS‖∞ > ǫ

}
≤ 2|S| max

j∈S
P
{
z∗R(j)z > nǫ

}
.

Next denoting by{νi}1≤i≤p(n+m+1) the eigenvalues ofR(j), we have, for anyγ > 0,

P
{
z∗R(j)z > nǫ

}
= P

{ p(n+m+1)∑

i=1

νiz
2
i > nǫ

}

≤ e−nγǫ

p(n+m+1)∏

i=1

E
{
eγνiz

2
i

}

= exp


−n

(
γǫ+

1

2n

(n+m+1)p∑

i=1

log(1− 2νiγ)
)

 .

Let γ = 1
2 (1− σmax)ǫ. Using the bound obtained for|maxi νi| in Eq. (35), Lemma .7,|2νiγ| ≤ ǫ.

Now notice that if|x| < 1/2 thenlog(1 − x) > −x − x2. Thus, if we assumeǫ < 1/2 and given
that

∑(n+m+1)p
i=1 νi = 0 (see Eq. (34)) we can continue the chain of inequalities,

P(‖ĜS‖∞ > ǫ) ≤ 2|S|max
j

exp


−n(γǫ− 2γ2 1

n

(n+m+1)p∑

i=1

ν2i )


 (62)

≤ 2|S| exp
(
−n(

1

2
(1− σmax)ǫ

2 − 1

4
(1− σmax)

2ǫ2(1− σmax)
−1)

)
(63)

≤ 2|S| exp
(
−n

4
(1− σmax)ǫ

2
)
. (64)

where the second inequality is obtained using the bound in Eq. (36).

Proof of Proposition 4.3: The proof is very similar to that of proposition 4.2. We will first show
that the bound

P(|Q̂ij − E(Q̂ij)| > ǫ) ≤ 2e
− n

32η2 (1−σmax)
3ǫ2

, (65)
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holds in the case where the probability measure and expectation are taken with respect to trajectories
{x(i)}ni=0 that started at time instantt = −m with x(−m) = w(−m). Assume we have done so.
Now notice that asm → ∞, X converges in distribution ton consecutive samples from the model
6 when this is initiated from stationary state. In addition,asm → ∞, we have from lemma .9 that
E(Q̂ij) → Q0

ij . SinceQ̂ij is a continuous function ofX = [x(0), ..., x(n−1)], a simple application
of the Continuous Mapping Theorem plus the fact that the upper bound is continuous inǫ leads us
to conclude that the bound also holds when the system is initiated from stationary state.

To prove our previous statement first recall the definition ofQ̂ and notice that we can write,

Q̂ij =
η

n
z∗R(i, j)z, (66)

wherez ∈ R
m+n is a vector of i.i.d.N(0, 1) andR(i, j) ∈ R

(n+m)×(n+m) is defined has in lemma
.8. Lettingνl denote thelth eigenvalue of the symmetric matrixR(i, j) we can further write,

Q̂ij − E(Q̂ij) =
η

n

(n+m)p∑

l=1

νl(z
2
l − 1). (67)

By Lemma .8 we know that,

|νl| ≤
1

(1− σmax)2
, (68)

1

n

(n+m)p∑

l=1

ν2l ≤ 2

(1− σmax)3

(
1 +

3

2n

1

1− σmax

)
≤ 3

(1− σmax)3
, (69)

where we appliedT > 3/D in the last line.

Now we are done since applying Bernstein trick, this time withγ = 1/8 (1−σmax)
3ǫ/η, and making

again use of the fact thatlog(1− x) > −x− x2 for |x| < 1/2 we get,

P(Q̂ij − E(Q̂ij) > ǫ) = P(

(n+m)p∑

l=1

νl(z
2
l − 1) > ǫn/η) (70)

≤ e−
γǫn
η e−γ

∑(n+m)p
l=1 νl + e−1/2

∑(m+n)p
l=1 log(1−2γνl) (71)

≤ e−
γǫn
η

−γ
∑(n+m)p

l=1 νl+γ
∑(n+m)p

l=1 νl+2γ2 ∑(n+m)p
l=1 ν2

l (72)

≤ e
− n

32η2 (1−σmax)
3ǫ2

, (73)

where had to assume thatǫ < 2/D in order to apply the bound onlog(1 − x). An analogous
reasoning leads us to,

P(Q̂ij − E(Q̂ij) < −ǫ) ≤ e
− n

32η2 (1−σmax)
3ǫ2 (74)

and the results follows.

Lemma .9. As before, assumeσmax ≡ σmax(I + ηA0) < 1 and consider that model(6) was
initiated at time−m with w(−m), that is,x(−m) = w(−m) then

|E(Q̂ij)−Q0
ij | ≤

1

n+m

η

(1− σmax)2
. (75)

Proof. Let ρ = I + ηA0. Since,

Q0
ij = η

∞∑

l=0

(ρlρ∗l)ij , (76)

and

E(Q̂ij) = η

n+m−1∑

l=0

m+ n− l

n+m
(ρlρ∗l)ij , (77)
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we can write,

Q0
ij − E(Q̂ij) = η

(
∞∑

l=m+n

(ρlρ∗l)ij +

n+m−1∑

l=1

l

m+ n
(ρlρ∗l)ij

)
. (78)

Using the fact that for any matrixA and B maxij(Aij) ≤ σmax(A), σmax(AB) ≤
σmax(A)σmax(B) andσmax(A + B) ≤ σmax(A) + σmax(B) and introducing the notationζ = ρ2

we can write,

|E(Q̂ij)−Q0
ij | ≤ η

(
ζn+m

1− ζ
+

ζ

n+m

m+n−2∑

l=0

ζl

)
=

η(ζ2 + ζn+m − 2ζm+n+1)

(m+ n)(1− ζ)2
(79)

≤ η

(m+ n)(1− σmax)2
, (80)

where we used the fact that forζ ∈ [0, 1] andn ∈ N we have1−ζ ≥ 1−
√
ζ andζ2+ζn−2ζ1+n ≤

1.

Proof of Theorem 3.1:

In order to prove Theorem 3.1 we need to compute the probability that the conditions given by
Proposition 4.1 hold. From the statement of the theorem we have that the first two conditions
(α,Cmin > 0) of Proposition 4.1 hold. In order to make the first conditionon Ĝ imply the second
condition onĜ we assume that

λα

3
≤ AminCmin

4k
− λ (81)

which is guaranteed to hold if
λ ≤ AminCmin/8k. (82)

We also combine the two last conditions onQ̂ to

|||Q̂[p],S0 −Q0
[p],S0 |||∞ ≤ α

12

Cmin√
k

. (83)

Where[p] = S0 ∪ (S0)c. We then impose that both the probability of the condition onQ̂ failing
and the probability of the condition on̂G failing are upper bounded byδ/2. Using Proposition 4.2
we see that the condition on̂G fails with probability smaller thanδ/2 given that the following is
satisfied

λ2 = 36α−2(nηD)−1 log(4p/δ). (84)

But we also want (82) to be satisfied and so substitutingλ from the previous expression in (82) we
conclude thatn must satisfy

n ≥ 2304k2Cmin
−2Amin

−2α−2(Dη)−1 log(4p/δ). (85)

In addition, the application of the probability bound in Proposition 4.2 requires that

λ2α2

9
< 1/4 (86)

so we need to impose further that,

n ≥ 16(Dη)−1 log(4p/δ). (87)

To use Corollary 4.4 for computing the probability that the condition onQ̂ holds we need,

nη > 3/D, (88)

and
αCmin

12
√
k

< 2kD−1. (89)

The last expression imposes the following conditions onk,

k3/2 > 24−1αCminD. (90)
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The probability of the condition on̂Q will be upper bounded byδ/2 if

n > 4608η−1k3α−2Cmin
−2D−3 log 4pk/δ. (91)

The restriction (90) onk looks unfortunate but sincek ≥ 1 we can actually show it always holds.
Just noticeα < 1 and that

σmax(Q
0
S0,S0) ≤ σmax(Q

0) ≤ η

1− σmax
⇔ D ≤ σ−1

max(Q
0
S0,S0) (92)

thereforeCminD ≤ σmin(Q
0
S0,S0)/σmax(Q

0
S0,S0) ≤ 1. This last expression also allows us to

simplify the four restrictions onn into a single one that dominates them. In fact, sinceCminD ≤ 1
we also haveC−2

minD
−2 ≥ C−1

minD
−1 ≥ 1 and this allows us to conclude that the only two conditions

onn that we actually need to impose are the one at Equations (85),and (91). A little more of algebra
shows that these two inequalities are satisfied if

nη >
104k2(kD−2 +A−2

min)

α2DC2
min

log(4pk/δ). (93)

This conclude the proof of Theorem 3.1.

Lemma .10. Letσmax ≡ σmax(I + ηA0) andρmin(A
0) = −λmax((A

0 + (A0)∗)/2) > 0 then,

−λmin

(
A0 + (A0)∗

2

)
≥ lim sup

η→0

1− σmax

η
, (94)

lim inf
η→0

1− σmax

η
≥ −λmax

(
A0 + (A0)∗

2

)
. (95)

Proof.

1− σmax

η
=

1− λ
1/2
max((I + ηA0)∗(I + ηA0))

η
(96)

=
1− λ

1/2
max(I + η(A0 + (A0)∗) + η2(A0)∗A0)

η
(97)

=
1− (1 + ηu∗(A0 + (A0)∗ + η(A0)∗A0)u)1/2

η
, (98)

whereu is some unit vector that depends onη. Thus, since
√
1 + x = 1 + x/2 +O(x2),

lim inf
η→0

1− σmax

η
= − lim sup

η→0
u∗

(
A0 + (A0)∗

2

)
u ≥ −λmax

(
A0 + (A0)∗

2

)
. (99)

The other inequality is proved in a similar way.

Proof of Theorem 2.1:

In order to prove Theorem 2.1 we first state and prove the following lemma,

Lemma .11. Let G be a simple connected graph of vertex degree bounded above byk. Let Ã
be its adjacency matrix andA0 = −hI + Ã with h > k then for thisA0 the system in(1) has
Q0 = −(1/2)(A0)−1 and,

|||Q0
(S0)C ,S0(Q

0
S0,S0)−1|||∞ = |||(A0

(S0)C ,(S0)C )
−1A0

(S0)C ,S0 |||∞ ≤ k/h. (100)

Proof. Ã is symmetric soA0 is symmetric. SinceÃ is irreducible and non-negative, Perron-
Frobenious theorem tells thatλmax(Ã) ≤ k and consequentlyλmax(A

0) ≤ −h + λmax(Ã) ≤
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−h + k. Thush > k implies thatA0 is negative definite and using equation (4) we can compute
Q0 = −(1/2)(A0)−1. Now notice that, by the block matrix inverse formula, we have

(Q0
S0,S0)−1 = −2C−1, (101)

Q0
(S0)C ,S0 =

1

2
((A0

(S0)C ,(S0)C )
−1A0

(S0)C ,S0C), (102)

whereC = A0
S0,S0 −A0

S0,(S0)C (A
0
(S0)C ,(S0)C )

−1A0
(S0)C ,S0 and thus

|||Q0
(S0)C ,S0(Q

0
S0,S0)−1|||∞ = |||(A0

(S0)C ,(S0)C )
−1A0

(S0)C ,S0 |||∞. (103)

Recall the definition of|||B|||∞,

|||B|||∞ = max
i

∑

j

|Bij |. (104)

Let z = h−1 and write,

(A0
(S0)C ,(S0)C )

−1 = −z(I − zÃ(S0)C ,(S0)C )
−1 = −z

∞∑

n=0

(zÃ(S0)C ,(S0)C )
n, (105)

A0
(S0)C ,S0 = z−1zÃ(S0)C ,S0 . (106)

This allows us to conclude that|||(A0
(S0)C ,(S0)C )

−1A0
(S0)C ,S0 |||∞ is in fact the maximum over all

path generating functions of paths starting from a nodei ∈ (S0)C and hittingS0 for a first time.
Let Ωi denote this set of paths,ω a general path inG and|ω| its length. Letk1, ..., k|ω| denote the
degree of each vertex visited byω and note thatkm ≤ k, ∀m. Then each of these path generating
functions can be written in the following form,

∑

ω∈Ωi

z|ω| ≤
∑

ω∈Ωi

1

k1...k|ω|
(kz)|ω| = EG((kz)

Ti,S0 ), (107)

whereTi,S0 is the first hitting time of the setS0 by a random walk that starts at nodei ∈ S0C and
moves with equal probability to each neighboring node. ButTi,S0 ≥ 1 andkz < 1 so the previous
expression is upper bounded bykz.

Now what remains to complete the proof of Theorem 2.1 is to compute the quantitiesα, Amin,
ρmin(A

0) andCmin in Theorem 1.1 . From Lemma .11 we know thatα = 1− k/(k +m). Clearly,
Amin = 1. We also have thatρmin(A

0) = σmin(A
0) ≥ k + m − σmax(Ã) ≥ m + k − k = m.

Finally,

λmin(Q
0
S0,S0) =

1

2
λmin(−(A0)−1) =

1

2

1

λmax(−A0)
≥ 1

2

1

m+ k + k
≥ 1

4(m+ k)
(108)

where in the last step we made use of the fact thatm + k > k. Substituting these values in the
inequality from Theorem 1.1 gives the desired result.
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