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In order to prove Proposition 4.1 we first introduce two técAhemmas.
Lemma .5. For any subsef C [p] the following decomposition holds,

@SC,S (@s,s)il =T +To+T5+ Q%o,s (Q%,s)_l ) (23)
where,
0 A -t 0o !
Ty = Qgeg <(Qs,s> —(Q%s) ) ; (24)
Ty = (Qscs— Qs (Q%s) (25)
T = (Qses—Qles) ((@S,s)_l - (Q%,s)1> : (26)
(27)

In addition, if ||\QOSC’S( %75)71 loo < 1 and Amin(@s,s) > Cin/2 > 0 the following relations
hold,
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1Q@sc s — Q% slloo, (29)
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ITslle < [Qse,s — Qse sllcl@s.s — QS sl (30)

The following lemma taken from the proofs of Proposition 1[119] and Proposition 1 in [12]
respectively is the crux to guaranteeing correct signgmbstt reconstruction afi’.

Lemma .6. If 650750 > 0, then the dual vecto£ from the KKT conditions of the optimization
problem(8) satisfies the following inequality,
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In addition, if
AminAmin(QSU,SO)
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then||AY — A, || < Awmin/2. The same result holds for proble).

1Gsolloo < Y (32)

Proof of Proposition 4.1: To guarantee that our estimated support is at least coudtainte true
support we need to impose theisc ||, < 1. To guarantee that we do not introduce extra elements
in estimating the support and also to determine the corigicios the solution we need to impose that

A — A, ||lso < Amin/2. Now notice that sincamin(ngjso) = Cmin the relatiommin(@507so) >
Cmin/2 is guaranteed as long ﬁ#@\so’So — Q%OSO lloo < Chin/2. Using Lemma .5 it is easy to see
that the bounds of Proposition 4.1 lead to the conditionsevhina .6 being verified. Thus, these
lead to a correct recovery of the signed structurdpf [

Lemma .7. Letr, j € [p] and letp(7) represent g x p matrix with all rows equal to zero except
the v row which equals thg'" row of (I +nA°)" (the r*" power of + nA° ). Let R(j) €
R(ntmt1)x(ntm+1) he defined as,

0 0 ... 0 0 0 ... 0 0

~ 0 o o0 00 0 0
R= p(m) pim —1) —.op(1) p(0) 0 ... 0 0 1].@®3

p(m +1) p(m) —oop(2) p(1) p(0) ... 0 0

: f RPN : f .00

pm+n—1) pm+n—-2) ... pn) pn—1) pn—-2) ... p0) 0



DefineR(j) = 1/2(R + R*) and lety; denote itsi'” eigenvalue and assumg,.x = omax (I +
nA%) < 1. Then,

p(n+m+1)
Vv, = 0, (34)
i=1
1
max |y < ————, (35)
2 1 Omax
p(n+m+1) 1 n
Y. W<y (36)
p "7 21— omax
Proof. First it is immediate to see th@” (nfmtl) ), — = Tr(R) = 0. LetI;, represent @ x p

matrix with zeros everywhere and ones |n the block pOSWhBI’ep(T) appears and, . represent
a similar matrix but with ones in the block-position wheife )* appears. The® can be written as,

m+n—1
( Z L, ®p(T +I2T®p(7)*>7 (37)

where® denotes the Kronecker product of matrices. This expressaonbe used to compute an
upper bound ot;|. Namely,

HlaX |Vz| = O'mflx < ngmx 117— ® P Zamax Il-r Unnx( ( )) (38)
7=0
o0 oo 1
< Omax(p _ 39
< 2 runslpl) £ D e = T )
For the other bound we do,
(n+m+1)
Z vi=Tr(R?* < " 2 ZTT (40)
i=1
= §n§j llo(r)1I3 (41)
n
< = - 42
< nZamax_Qlfamax, (42)
where in the last step we used the fact that o, < 1. O

Lemma .8. Letj < [p]. Definep(r) € R'*? to be thej'" row of (I +7A%)". Let®; € R™*(n+m)
be defined as,

p(m) p(m —1) oop(1) p(0) 0 .0
o p(m +1) p(m) op(2) 0 p(1) p(0) ... 0
- z s DU A A
pim+n—1) pm+n—-2) ... pn) pn—1) pn—-2) ... p(0)

43
Let v, denote the™ eigenvalue of the matriR(i, j) = 1/2(®;®; + ®;®;) € R(“m)X(”gfm))
(wherei € [p]) and assUMe@ ,ax = omax (I + nA°%) < 1then,
1
(1 = omax)?’
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Proof. The first bound can be proved in a trivial manner. In fact, siftc any matrixA and B we
haveoax(A 4+ B) < 0max(A) + 0max(B) andomax(AB) < 0max(A)omax(B) we can write

max V1] = Omax(1/2(®7 @i + @7 ®;)) < 1/2(0max (P Pi) + Tmax (P; D)) (46)
o
(1 - O'max)27

where in the last inequality we used the fagt,(®;) < 1/(1 — omax). The proof of this is just a
copy of the proof of the bound (35) in Lemma .7.

S Umax((P;;k(Dj) S Jmax(q)i)omax(q)j) S (47)

Before we prove the second bound let us introduce some ootatidifferentiatep(7) associated
with @, from p(7) associated witl®,. Let us call thenp(r, j) andp(r, i) respectively. Now notice
that®;®; can be written as a block matrix

A D
-~ = 48
(&3) (48)
whereA, B, C and D are matrix blocks where each block iy p matrix. A hasp x p blocks,

B hasn x n blocks,C hasn x m blocks andD hasm x n blocks. If we index the blocks of each
matrix with the indices:, y these can be described in the following way

}:p —z+s,4) p(m —y+s,j) (49)
s=1

EwZEZM&UW@+x7yJ%x2y (50)
s=0

p(s+y—m,i)p(s,5),r <y (51)
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With this in mind and denoting byl, B, C' and D the symmetrized versions of these same matrices
(e.9..A =1/2(A + A*)) we can write,

(n+m)p
}: v? = Tr(R(i,7)?) = Tr(A%) + Tr(B?) + 2Tr(CD). (54)

We now compute a bound for each one of the terms. We exemplifigiail the calculation of the
first bound only. First write,

m m

=3 ) Tr(AsAL). (55)

rz=1y=1

Now notice that eacti'r(A,,A},) is a sum over, 72 € [p] of terms of the type,

(p(m—a:—&—n, ) p(m Yy+T7,] )+p( —m—i—ﬁ,j)*p(m—y—i—ﬁ,i))x (56)
X(p(m -y + 72,] ) p(m -+ 72,1 ) + p(m -y + T2, Z)*P(m —r+ T27j))' (57)

The trace of a matrix of this type can be easily upper bounged b
(O_max)m—z—l-‘rl+m—y+7’1+m—y+72+m—m+72 _ (O_max)Z(nL—m)+2(m—y)+2n+27'2 (58)

which finally leads to
1

Tr(A?) < ————. 59
T( ) - (1 - Umax)4 ( )
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Doing a similar thing to the other terms leads to

n,mn i ) - 27’l
Tr(B%) <3 3 i < s 0
T,y T1,7T2
m n m,n,n—y,n—-y 1
Tr(DC) =Y Tr(CoyDys) < Y opmmotvintn < (61)
(1= Cuae)
Putting all these together leads to the desired bound. O

Proof of Proposition 4.2: We will start by proving that this exact same bound holds wtien

probability of the evenf||Gs|- > €} is computed with respect to a trajectofy(t) }7, that is
initiated at instant = —m with the valuew(—m). In other wordsz(—m) = w(—m). Assume
we have done so. Now notice that as — oo, X converges in distribution te consecutive

samples from the model (6) when this is initiated from stadiy state. Sinc#@s |l is & continuous

function of X = [2(0),...,z(n — 1)], by the Continuous Mapping Theorel(:s|/- converges
in distribution to the corresponding random variable in tase when the trajectofy: (i)}, is
initiated from stationary state. Since the probability bowoes not depend on we have that this
same bound holds for stationary trajectories too.

We now prove our claim. Recall thaAlj = (X;W})/(nn). SinceX is a linear function of the in-
dependent gaussian random variatilésve can writeX ;W = nz*R(j)z, wherez Rp(ntm+1)
is a vector of i.i.d.N(0, 1) random variables ang(j) € Rr(»tm+Dxp(ntm+l) js the symmetric
matrix defined in Lemma .7.

Now apply the standard Bernstein method. First by union dove have

P{||Gslloo > €} <25 meabg(P{z*R(j)z > nel .
J

Next denoting by{v; }1<;<pn+m+1) the eigenvalues ak(j), we have, for anyy > 0,

p(n+m+1)
P{z*R(j)z > ne} = IP’{ Z vizt > ne}
i=1
p(n+m+1) )
< e~ E H E{e'wizi }
i=1
(n+m+1)p
= exp —n(’ye + o Z log(1 — 2147))

i=1

Lety = %(1 — omax)€. Using the bound obtained fomax; v;| in Eq. (35), Lemma .7[2v;7y| < e.
Now notice that ifiz| < 1/2 thenlog(1 — x) > —z — 2. Thus, if we assume < 1/2 and given
thatzgﬂm“)p v; = 0 (see Eqg. (34)) we can continue the chain of inequalities,

(n+m+1)p
P(||G <2 - — 242 2 2
(IGslles >€) < |5\m§XGXP n(ye—27"~ ; v;) (62)
1 o 1 2 2 1
< 2|S]exp —n(§(1 — Omax)€ — 1(1 — Omax) € (1 — Omax) ") (63)
n 2
< (1= o .
< 2|S\exp( 4(1 Omax )€ ) (64)

where the second inequality is obtained using the bound irf35). [

Proof of Proposition 4.3: The proof is very similar to that of proposition 4.2. We wilisi show
that the bound

2

—~ ~ o _(1—g, .. )3
P(1Qi; — E(Qij)| > €) < 2¢” a7 (1 7Tmas)e (65)
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holds in the case where the probability measure and expettae taken with respect to trajectories
{z(7)}_, that started at time instant= —m with (—m) = w(—m). Assume we have done so.
Now notice that asn — oo, X converges in distribution to consecutive samples from the model
6 when this is initiated from stationary state. In additiaam — oo, we have from lemma .9 that
E(@Z—j) — QY. Since@ij is a continuous function oX = [z(0), ..., x(n —1)], a simple application
of the Continuous Mapping Theorem plus the fact that the uppand is continuous ia leads us
to conclude that the bound also holds when the system iati@itifrom stationary state.

To prove our previous statement first recall the definitio@@tnd notice that we can write,
Qij = %Z*R(iaj)za (66)

wherez € R™*" is a vector of i.i.dN(0, 1) andR(i, j) € R("+™)x(+m) is defined has in lemma
.8. Lettingy; denote thé!” eigenvalue of the symmetric matri(i, j) we can further write,

(n+m)p
2 2 n
Qij - ]E(Ql]) = n Z Vl(Zl2 — 1). (67)
=1
By Lemma .8 we know that,
ol € )
= (1 - Omax)2’
(n+m)p
1 2 2 3 1 3
n S 0 omm? U T 2n < 69
" ; = (1—0max)3( +2n1_‘7ma><>_(1—0max)3’ (69)

where we applied” > 3/D in the last line.

Now we are done since applying Bernstein trick, this timéayit= 1/8 (1—o.x )¢/, and making
again use of the fact thadg(1 — x) > —x — 22 for |z| < 1/2 we get,

(n+m)p
P(Qi; —E(Qij) > €) =P( > w(z} —1) >en/n) (70)
=1
< e W e S v g o= 1/2 S0 log(1-279m) (71)
< e Y STy SR oy (TP LR (72)
< T (73)

where had to assume that< 2/D in order to apply the bound olvg(1 — 2). An analogous
reasoning leads us to,

P(Qij — E(Qy) < —€) < o~ 3z (1—omax)’€? 74)
and the results follows.
O

Lemma .9. As before, assume@,.x = omax(I + n4%) < 1 and consider that moddb) was
initiated at time—m with w(—m), that is,x(—m) = w(—m) then

R 1 "
E(Q;;) — 0 < . &
| (Q J) 1J| - n+m(1—0'max)2 ( )

Proof. Letp = I + nA°. Since,

O=nd (o), (76)
=0
and _—
n+m-—
N m4n—10,, 4
E(Q;;) = — (i 77
(Qij) =n " (P'P™")ij (77)



we can write,

0 n+m—1

~ . l .

b5~ EQy) =1 ( Do W+ Y ——(p l)z-j) : (78)
l=m+n =1

Using the fact that for any matrixd and B max;;j(4;;) < Omax(A), Omax(AB) <

T max (A)Omax (B) andopax (A + B) < omax(A) + omax (B) and introducing the notatiog = p?

we can write,

nitm m+n—2 n+m m+n

1—¢ ntm (m+n)(1—¢)?
! : (80)

o (m + ’I’L)(l - 07rzaw)2

where we used the fact that fore [0, 1] andn € IN we havel —¢ > 1—+/C and(?+ (" —2¢1" <
1. ]

=0

Proof of Theorem 3.1:

In order to prove Theorem 3.1 we need to compute the probaliiat the conditions given by
Proposition 4.1 hold. From the statement of the theorem we lifaat the first two conditions

(o, Cin > 0) of Proposition 4.1 hold. In order to make the first conditamG imply the second

condition onG we assume that
)\ (67 Ami n C(rnin

— < — 1
3 = 4k A (81)
which is guaranteed to hold if
>\ S AminOmin/Sk~ (82)
We also combine the two last conditions @rto
AN [e% Cmin
|||Q[p],SO - Q?p},so ”|OO < ﬁ \/E . (83)

Where[p] = S° U (S%)¢. We then impose that both the probability of the conditior‘@)miling
and the probability of the condition of failing are upper bounded hy/2. Using Proposition 4.2
we see that the condition o fails with probability smaller thar /2 given that the following is
satisfied

M =360 %(nnD) " log(4p/9). (84)
But we also want (82) to be satisfied and so substitutifigpm the previous expression in (82) we
conclude that, must satisfy

n > 2304k%Crnin ™ 2 Amin 2~ 2(Dn) " log(4p/6). (85)
In addition, the application of the probability bound in position 4.2 requires that
AQQO‘Q <1/4 (86)
so we need to impose further that,
n > 16(Dn) " log(4p/d). (87)
To use Corollary 4.4 for computing the probability that tleadition on@ holds we need,
nn > 3/D, (88)
and s
12\”1/%’ < 2kD™!, (89)
The last expression imposes the following conditiongpn
k3% > 247 aCrin D. (90)
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The probability of the condition 0@ will be upper bounded by/2 if
n > 46087 k32 Chuin 2D % log 4pk /6. (91)

The restriction (90) otk looks unfortunate but since > 1 we can actually show it always holds.
Just noticex < 1 and that

Umax(Q%O’SO) S Umax(QO) < 77

—1- Omax

& D<o, (Q% g0) (92)

thereforeCrninD < 0min(Q%0 g0)/0max(Q%0 go) < 1. This last expression also allows us to
simplify the four restrictions om into a single one that dominates them. In fact, siagg, D < 1
we also have’ 2 D2 > C_! D~' > 1 and this allows us to conclude that the only two conditions

onn that we actually need to impose are the one at EquationsdB88);91). A little more of algebra
shows that these two inequalities are satisfied if

10%k2(kD=2 4+ A_2)

nn > W2DC2 log(4pk/0). (93)
This conclude the proof of Theorem 3.1.
]
Lemma .10. Let oyax = Tmax (I +1A4%) and pin (A°) = —Amax ((A° + (A°)*)/2) > 0 then,
A 4 (AY)* 1-—
—Amin <+(>> > lim sup ﬂ7 (94)
2 n—0 n
1— AO AO *
lim nf = 0max 5 _y <+()> . (95)
n—0 n 2
Proof.
1= omax 1 — AM2((I +1A°)* (I + nA°
Omax _ A (( +1n ) ( +7 )) (96)
n n
L= Mdas (4 m(A° + (A°)") + 2 (A°)"A°) ©7)
n
L (Lt (A0 4 (A°) (A0 A0 2 8)
77 )

whereu is some unit vector that dependsgnThus, since/1 + z = 1 + 2/2 + O(2?),
1— s AO AO * AO AO *
lim inf —— 208X _ — limsupu”® <+()> U > —Amax (—i_()) . (99)
n—0 n n—0 2 2

The other inequality is proved in a similar way. O

Proof of Theorem 2.1:
In order to prove Theorem 2.1 we first state and prove thevidtig lemma,

Lemma .11. Let G be a simple connected graph of vertex degree bounded aboxe het A
be its adjacency matrix and® = —hI + A with h > k then for thisA® the system irf1) has
Q% = —(1/2)(A%)~! and,

1Q%s0)0,50(Q%0,50) " oo = I(Als0yc, (50)c) T Afsoye solloe < k/h. (100)

Proof. A is symmetric soA° is symmetric. Sinced is irreducible and non-negative, Perron-
Frobenious theorem tells that,..(4) < k and consequently .. (A%) < —h + Apax(A) <
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—h + k. Thush > k implies thatA® is negative definite and using equation (4) we can compute
Q" = —(1/2)(A%) L. Now notice that, by the block matrix inverse formula, weédav

(Q%0 go) " =—2C7, (101)
Q?SO)C,SO = %((A?SO)C,(SO)C)_lA(()SO)C,SOC)’ (102)

whereC' = Ao g0 — Ao g0yc (Als0)c (50yc) " Algoye g0 and thus
1Q¢s0ye 50(Q%0,50) oo = (Als0)c (50)0) ™" Alsoye golloo- (103)

Recall the definition of| B|| o,

IBlloc = max ) |Byl. (104)
J
Letz = h~! and write,
(A(()SO)C’(SO)C)71 = *Z(I - ZA(SO)07(50)0)71 = —Z i(ZA(SO)CV(SO)C)n, (105)
n=0
A(()S())C"Sg = 2_1214(50)0750. (106)

This allows us to conclude thqﬂ(A?So)c (50)0)7114?30)0.50 llso is in fact the maximum over all

path generating functions of paths starting from a node (S°)¢ and hittingS° for a first time.
Let ©2; denote this set of paths, a general path idr and|w| its length. Letky, ..., k|| denote the
degree of each vertex visited hyand note that,,, < k,¥m. Then each of these path generating
functions can be written in the following form,

S < 3 (el = Eg((ke) ), (107)

we; we,; ! ||

whereT; so is the first hitting time of the sef® by a random walk that starts at node 59 and
moves with equal probability to each neighboring node. Bufo > 1 andkz < 1 so the previous
expression is upper bounded by. O

Now what remains to complete the proof of Theorem 2.1 is tomam the quantitiesr, Ay,
Pmin(A%) @andCy,;y, in Theorem 1.1 . From Lemma .11 we know that 1 — k/(k + m). Clearly,

Amin = 1. We also have thatim (A°) = owin(A%) > k +m — omax(A) > m+k — k = m.
Finally,
1 1 1 11 1
Amin 00 0) = = Amin(— AO =5 =5 =
(Qs0 g0) D) (=(4%)7) 2 Amax(—A%) T 2m+k+k = 4(m+k)

where in the last step we made use of the fact that £ > k. Substituting these values in the
inequality from Theorem 1.1 gives the desired result.

O

(108)
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